文档库 最新最全的文档下载
当前位置:文档库 › 四种常见的滤波电路分析技巧

四种常见的滤波电路分析技巧

四种常见的滤波电路分析技巧
四种常见的滤波电路分析技巧

在整流电路输出的电压是单向脉动性电压,不能直接给电子电路使用。

所以要对输出的电压进行滤波,消除电压中的交流成分,成为直流电后给

电子电路使用。在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。本文对其各种形式的滤波电路进行分析。

01滤波电路种类

滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π 型 RC 滤波电路;π 型 LC 滤波电路;电子滤波器电路。

02滤波原理

1. 单向脉动性直流电压的特点

如图 1(a)所示。是单向脉动性直流电压波形,从图中可以看出,电压

的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间

轴上,电压呈现出周期性的变化,所以是脉动性的。

但根据波形分解原理可知,这一电压可以分解一个直流电压和一组频率

不同的交流电压,如图 1(b)所示。在图 1(b)中,虚线部分是单向脉动性直

流电压 U。中的直流成分,实线部分是 UO 中的交流成分。

2. 电容滤波原理

根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,

或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。图 2 所示

是电容滤波原理图。

图 2(a)为整流电路的输出电路。交流电压经整流电路之后输出的是单

向脉动性直流电,即电路中的 UO。

图 2(b)为电容滤波电路。由于电容 C1 对直流电相当于开路,这样整

流电路输出的直流电压不能通过C1 到地,只有加到负载 RL 图为 RL 上。

对于整流电路输出的交流成分,因 C1 容量较大,容抗较小,交流成分通

过 C1 流到地端,而不能加到负载 RL。这样,通过电容 C1 的滤波,从单

向脉动性直流电中取出了所需要的直流电压 +U。

滤波电容 C1 的容量越大,对交流成分的容抗越小,使残留在负载 RL

上的交流成分越小,滤波效果就越好。

3. 电感滤波原理

图 3 所示是电感滤波原理图。由于电感 L1 对直流电相当于通路,这

样整流电路输出的直流电压直接加到负载 RL 上。

对于整流电路输出的交流成分,因 L1 电感量较大,感抗较大,对交流

成分产生很大的阻碍作用,阻止了交流电通过 C1 流到加到负载 RL。这样,通过电感 L1 的滤波,从单向脉动性直流电中取出了所需要的直流电压 +U。

滤波电感 L1 的电感量越大,对交流成分的感抗越大,使残留在负载

RL 上的交流成分越小,滤波效果就越好,但直流电阻也会增大。

03π 型 RC滤波电路识图方法

图 4 所示是π 型 RC 滤波电路。电路中的 C1、C2 和 C3 是 3 只滤

波电容,R1 和 R2 是滤波电阻,C1、R1 和C2 构成第一节π 型的 RC 滤

波电路, C2、R2 和 C3 构成第二节π 型 RC 滤波电路。由于这种滤波

电路的形式如同希腊字母π 和采用了电阻器、电容器,所以称为π 型

RC 滤波电路。

π 型 RC 滤波电路原理如下:

(1)这一电路的滤波原理是:从整流电路输出的电压首先经过 C1 的滤波,将大部分的交流成分滤除,然后再加到由 R1 和 C2 构成的滤波电路中。C2 的容抗与 R1 构成一个分压电路,因 C2 的容抗很小,所以对交流成分的分

压衰减量很大,达到滤波目的。对于直流电而言,由于 C2 具有隔直作用,

所以 R1 和 C2 分压电路对直流不存在分压衰减的作用,这样直流电压通过

R1 输出。

(2)在 R1 大小不变时,加大 C2 的容量可以提高滤波效果,在 C2 容量

大小不变时,加大 R1 的阻值可以提高滤波效果。但是,滤波电阻 R1 的阻

值不能太大,因为流过负载的直流电流要流过 R1,在 R1 上会产生直流压降,使直流输出电压 Uo2 减小。R1 的阻值越大,或流过负载的电流越大时,在 R1 上的压降越大,使直流输出电压越低。

(3)C1 是第一节滤波电容,加大容量可以提高滤波效果。但是 C1 太大后,在开机时对 C1 的充电时间很长,这一充电电流是流过整流二极管的,当充

电电流太大、时间太长时,会损坏整流二极管。所以采用这种π 型 RC 滤

波电路可以使 C1 容量较小,通过合理设计 R1 和 C2 的值来进一步提高滤

波效果。

(4)这一滤波电路中共有 3 个直流电压输出端,分别输出 Uo1、 Uo2 和

Uo3 三组直流电压。其中, Uo1 只经过电容 C1 滤波;Uo2 则经过了 C1、

R1 和 C2 电路的滤波,所以滤波效果更好, Uo2 中的交流成分更小;Uo3

则经过了 2 节滤波电路的滤波,滤波效果最好,所以 Uo3 中的交流成分最少。

(5)3 个直流输出电压的大小是不同的。Uo1 电压最高,一般这一电压直接加到功率放大器电路,或加到需要直流工作电压最高、工作电流最大的电路中;Uo2 电压稍低,这是因为电阻 R1 对直流电压存在电压降;Uo3 电压最低,这一电压一般供给前级电路作为直流工作电压,因为前级电路的直流工作电压比较低,且要求直流工作电压中的交流成分少。

04π型 LC滤波电路识图方法

图 5 所示是π 型 LC 滤波电路。π 型 LC 滤波电路与π 型 RC 滤波电路基本相同。这一电路只是将滤波电阻换成滤波电感,因为滤波电阻对直流电和交流电存在相同的电阻,而滤波电感对交流电感抗大,对直流电的电阻小,这样既能提高滤波效果,又不会降低直流输出电压。

在图 5 的电路中,整流电路输出的单向脉动性直流电压先经电容 C1 滤波,去掉大部分交流成分,然后再加到 L1 和 C2 滤波电路中。

对于交流成分而言, L1 对它的感抗很大,这样在 L1 上的交流电压降大,加到负载上的交流成分小。

对直流电而言,由于 L1 不呈现感抗,相当于通路,同时滤波电感采用的线径较粗,直流电阻很小,这样对直流电压基本上没有电压降,所以直流输出电压比较高,这是采用电感滤波器的主要优点。

05电子滤波器识图方法

1. 电子滤波器

图 6 所示是电子滤波器。电路中的 VT1 是三极管,起到滤波管作用,C1 是 VT1 的基极滤波电容,R1 是 VT1 的基极偏置电阻,RL 是这一滤波电路的负载,C2 是输出电压的滤波电容。

电子滤波电路工作原理如下:

①电路中的 VT1、 R1、 C1 组成电子滤波器电路,这一电路相当于一只容量为C1×β1 大小电容器,β1 为 VT1 的电流放大倍数,而晶体管的电流放大倍数比较大,所以等效电容量很大,可见电子滤波器的滤波性能是很好的。等效电路如图 6(b)所示。图中 C 为等效电容。

②电路中的 R1 和 C1 构成一节 RC 滤波电路, R1 一方面为 VT1 提供基极偏置电流,同时也是滤波电阻。由于流过 R1 的电流是 VT1 的基极偏置电流,这一电流很小, R1 的阻值可以取得比较大,这样 R1 和 C1 的滤波效果就很好,使 VT1 基极上直流电压中的交流成分很少。由于发射极电压具有跟随基极电压的特性,这样 VT1 发射极输出电压中交流成分也很少,达到滤波的目的。

③在电子滤波器中,滤波主要是靠 R1 和 C1 实现的,这也是 RC 滤波电路,但与前面介绍的 RC 滤波电路是不同的。在这一电路中流过负载的直流电流是

VT1 的发射极电流,流过滤波电阻 R1 的电流是 VT1 基极电流,基极电流很小,所以可以使滤波电阻 R1 的阻值设得很大(滤波效果好),但不会使直流输出

电压下降很多。

④电路中的 R1 的阻值大小决定了 VT1 的基极电流大小,从而决定了 VT1 集电极与发射极之间的管压降,也就决定了 VT1 发射极输出直流电压大小,所以改变 R1 的大小,可以调整直流输出电压 +V 的大小。

2. 电子稳压滤波器

图 7 所示是另一种电子稳压滤波器,与前一种电路相比,在 VT1 基极

与地端之间接入了稳压二极管 VD1。电子稳压原理如下:

在 VT1 基极与地端之间接入了稳压二极管 VD1 后,输入电压经 R1 使

稳压二极管 VD1 处于反向偏置状态,此时 VD1 的稳压特性使 VT1 管的基

极电压稳定,这样 VT1 发射极输出的直流电压也比较稳定。注意:这一电

压的稳定特性是由于 VD1 的稳压特性决定的,与电子滤波器电路本身没有

关系。

R1 同时还是 VD1 的限流保护电阻。在加入稳压二极管 VD1 后,改变

R1 的大小不能改变 VT1 发射极输出电压大小,由于 VT1 的发射结存在 PN 结电压降,所以发射极输出电压比 VD1 的稳压值略小。

C1、 R1 与 VT1 同样组成电子滤波器电路,起到滤波作用。

在有些场合下,为了进一步提高滤波效果,可采用双管电子滤波器电路,2 只电子滤波管构成了复合管电路。这样总的电流放大倍数为各管电流放大

倍数之积,显然可以提高滤波效果。

06电源滤波电路识图小结

关于电源滤波电路分析主要注意以下几点:

(1)分析滤波电容工作原理时,主要利用电容器的“隔直通交”特性,或

是充电与放电特性,即整流电路输出单向脉动性直流电压时对滤波电容充电,当没有单向脉动性直流电压输出时,滤波电容对负载放电。

(2)分析滤波电感工作原理时,主要是认识电感器对直流电的电阻很小、

无感抗作用,而对交流电存在感抗。

(3)进行电子滤波器电路分析时,要知道电子滤波管基极上的电容是滤波

的关键元件。另外,要进行直流电路的分析,电子滤波管有基极电流和集电极、发射极电流,流过负载的电流是电子滤波管的发射极电流,改变基极电

流大小可以调节电子滤波管集电极与发射极之间的管压降,从而改变电子滤

波器输出的直流电压大小。

(4)电子滤波器本身没有稳压功能,但加入稳压二极管之后可以使输出的

直流电压比较稳定。

各种滤波器及其典型电路

第一章滤波器 1.1 滤波器的基本知识 1、滤波器的基本特性 定义:滤波器是一种通过一定频率的信号而阻止或衰减其他频率信号的部件。功能:滤波器是具有频率选择作用的电路或运算处理系统,具有滤除噪声和分离各种不同信号的功能。 类型: 按处理信号形式分:模拟滤波器和数字滤波器。 按功能分:低通、高通、带通、带阻、带通。 按电路组成分:LC无源、RC无源、由特殊元件构成的无源滤波器、RC有源滤波器 按传递函数的微分方程阶数分:一阶、二阶、…高阶。 如图1.1中的a、b、c、d图分别为低通滤波器、高通滤波器、带通滤波器、带阻滤波器传输函数的幅频特性曲线。

图1.1 几种滤波器传输特性曲线 .2、模拟滤波器的传递函数与频率特性 (一)模拟滤波器的传递函数 模拟滤波电路的特性可由传递函数来描述。传递函数是输出与输入信号电压或电流拉氏变换之比。经分析,任意个互相隔离的线性网络级联后,总的传递函数等于各网络传递函数的乘积。这样,任何复杂的滤波网络,可由若干简单的一阶与二阶滤波电路级联构成。 (二)模拟滤波器的频率特性 模拟滤波器的传递函数H(s)表达了滤波器的输入与输出间的传递关系。若滤波器的输入信号Ui是角频率为w的单位信号,滤波器的输出Uo(jw)=H(jw)表达了在单位信号输入情况下的输出信号随频率变化的关系,称为滤波器的频率特性函数,简称频率特性。频率特性H(jw)是一个复函数,其幅值A(w)称为幅频特性,其幅角∮(w)表示输出信号的相位相对于输入信号相位的变化,称为

相频特性 (三)滤波器的主要特性指标 1、特征频率: (1)通带截止频f p=wp/(2)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 (2)阻带截止频f r=wr/(2)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 (3)转折频率f c=wc/(2)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 (4)固有频率f0=w0/(2)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 (1)对低通滤波器通带增益Kp一般指w=0时的增益也用A(0)表示;高通指w→∞时的增益也用() A∞表示;带通则指中心频率处的增益。 (2)对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 (3)通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB 为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标我们用α表示。 阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器频率选择特性的

整流滤波电路详解

为电感对直流的阻抗小,交流的阻抗大,因此能够得到较好的滤波效果而直流损失小。电感滤波缺点是体积大,成本高. 桥式整流电感滤波电路如图2所示。电感滤波的波形图如图2所示。根据电感的特点,当输出电流发生变化时,L中将感应出一个反电势,使整流管的导电角增大,其方向将阻止电流发生变化。 图2电感滤波电路 在桥式整流电路中,当u2正半周时,D1、D3导电,电感中的电流将滞后u2不到90°。当u2超过90°后开始下降,电感上的反电势有助于D1、D3继续导电。当u2处于负半周时,D2、D4导电,变压器副边电压全部加到D1、D3两端,致使D1、D3反偏而截止,此时,电感中的电流将经由D2、D4提供。由于桥式电路的对称性和电感中电流的连续性,四个二极管D1、D3;D2、D4的导电角θ都是180°,这一点与电容滤波电路不同。 图3电感滤波电路波形图 已知桥式整流电路二极管的导通角是180°,整流输出电压是半个半个正弦波,其平均值约为。电感滤波电路,二极管的导通角也是180°,当忽略电感器L的电阻时,负载上输出的电压平均值也是。如果考虑滤波电感的直流电阻R,则电感滤波电路输出的电压平均值为 要注意电感滤波电路的电流必须要足够大,即RL不能太大,应满足wL>>RL,此时IO(AV)可用下式计算 由于电感的直流电阻小,交流阻抗很大,因此直流分量经过电感后的损失很小,但是对于交流分量,在wL和上分压后,很大一部分交流分量降落在电感上,因而降低了输出电压中的脉动成分。电感L愈大,RL愈小,则滤波效果愈好,所以电感滤波适用于负载电流比较大且变化比较大的场合。采用电感滤波以后,延长了整流管的导电角,从而避免了过大的冲击电流。 电容滤波原理详解 1.空载时的情况 当电路采用电容滤波,输出端空载,如图4(a)所示,设初始时电容电压uC为零。接入电源后,当u2在正半周时,通过D1、D3向电容器C充电;当在u2的负半周时,通过D2、D4向电容器C充电,充电时间常数为

电源滤波电路(图) 电源滤波电路解析

电源滤波电路、整流电源滤波电路分析 电源滤波电路 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

直流电源滤波电路及电子滤波器原理分析

直流电源滤波电路及电子滤波器原理分析 整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成 分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01。故整流输出 的电压必须采取一定的措施。尽量降低输出电压中的脉动成分,同时要尽量保 存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就 是直流电源中的滤波电路。常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称 作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则 滤波器的滤波效果越差。脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流 的输出电压的脉动系数S≈0.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。)RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图 1虚线框即为加的一级RC滤波电路。若用S’表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R’)S’。由分析可知,在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的 电容量,又会增大电容器的体积和重量,实现起来也不现实。为了解决这个矛盾,于是常常采用有源滤波电路,也被称作电子滤波器。电路如图2。它是由 C1、R、C2组成的π型RC滤波电路与有源器件--晶体管T组成的射极输出器 连接而成的电路。由图2可知,流过R的电流IR=IE/(1+β)=IRL/(1+β)。流 过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合

滤波器分类及原理

滤波器原理 滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。 广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。 因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其 传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网 络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性, 对所通过的信号进行变换与处理。 本文所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、 数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应 用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。带通滤波器二、滤波器分类 ⒈根据滤波器的选频作用分类 ⑴低通滤波器 从0~f2频率之间,幅频特性平直,它 可以使信号中低于f2的频率成分几乎不受衰 减地通过,而高于f2的频率成分受到极大地 衰减。 ⑵高通滤波器 与低通滤波相反,从频率f1~∞,其幅 频特性平直。它使信号中高于f1的频率成分 几乎不受衰减地通过,而低于f1的频率成分 将受到极大地衰减。 ⑶带通滤波器 它的通频带在f1~f2之间。它使信号中 高于f1而低于f2的频率成分可以不受衰减地 通过,而其它成分受到衰减。 ⑷带阻滤波器 与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过。 低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。

常见几款的无源滤波电路

常见几款的无源滤波电路 无源滤波器缺点:带负载能力差,无放大作用,特性不理想边沿不陡峭,各级互相影响。 RC滤波1,C值的选取:C不能选的太小,否则负载电容对滤波电路的影响很大,一般IC的输入电容往往有l~lOpF的输入电容。C值选的太大,则会影响滤波电路的高频特性,因为大电容的高频特性一般都不好。 2,R值的选取:R值过小会加大电源的负载,R值过大则会消耗较多的能量。 RC滤波电路的最大缺陷就是他不仅消耗我们希望抑制的信号能量,而目也消耗我们希望保留的信号能量。另外由于受电容高频特性的限制也不能用在太高频的场合,例如数MHz 以上需要用LC滤波器。 1. 电容滤波电路 电容滤波电路 分析电容滤波电路工作原理时,主要是用到了电容器的隔直通交特性和储能特性。前面整流电路输出的脉动性直流电压可分解成一个直流电压和一组频率不同的交流电,交流电压部分就会从电容器流过到地,而直流电压部分却因电容器的通交隔直特性而不能接地才流到下一级电路。这样电容器就把原单向脉动性直流电压中的交流部分的滤去掉了。 另外电容滤波电路也可以用电容储能特性来解释,当单向脉动直流电压处于高峰值时电容就充电,而当处于低峰值电压时就放电,这样把高峰值电压存储起来到低峰值电压处再释放。把高低不平的单向脉动性直流电压转换成比较平滑的直流电压。 滤波电容的容量通常比较大,并且往往是整机电路中容量最大的一只电容器。滤波电容的容量大,滤波效果好。电容滤波电路是各种滤波电路中最常用一种。 电源滤波电容如何选取,掌握其精髓与方法,其实也不难。 1)理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的SFR参数,这表示频率大于SFR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对

滤波电路解析

整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无涯滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流桥式整流的输出电压的脉动系数S≈0.67。对于全波和格式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(To整流输出的直流动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合。 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C 并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

LC滤波电路分析

LC滤波器具有结构简单、设备投资少、运行可靠性较高、运行费用较低等优点,应用很广泛。LC滤波器又分为单调谐滤波器、高通滤波器、双调谐滤波器及三调谐滤波器等几种。 LC滤波主要是电感的电阻小,直流损耗小.对交流电的感抗大,滤波效果好.缺点是体积大,笨重.成本高.用在要求高的电源电路中. RC滤波中的电阻要消耗一部分直流电压,R不能取得很大,用在电流小要求不高的电路 中.RC体积小,成本低.滤波效果不如LC电路 LC滤波器的组成 LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; LC 滤波的单相桥式整流网侧谐波分析 摘要: 对LC 滤波的单相桥式整流电路作了较深入的理论分析, 得到了与谐波有关的各项性能指标 和谐波含量的表达式及关系曲线, 仿真结果验证了所得结论的正确性。 1 引言 许多电力电子装置含有由直流电压源供电的逆变或斩波电路。在这类装置中直流电压源大多是由电网交流电源整流后, 再经并联有大电容的滤波电路滤波得到的。滤波电容的引入造成了这类装置网侧电流的较大畸变。近年来,这类装置越多地投入使用(如各种电压型交2直2交变频装置、直流斩波调速装置、开关电源及不间断电源等) , 其网侧谐波问题逐渐引起了人们的关注。对其网侧谐波进行深入的分析是一项有意义的工作。 以往对整流电路分析大多针对电感滤波型整流电路, 个别对含有滤波电容的整流电路也只是作了一些定性分析。作者曾对电容滤波型整流电路作了较深入的分析, 但分析中没有考虑电网电抗的影响, 然而当电网电抗影响不能忽略时必须进一步分析研究。另一方面,在并联电容前串一小电感以抑制电流冲击引起的畸变, 这种电路一般称为LC 滤波整流电路。可证明, 这种情况在一定条件下与电容滤波型整流电路考虑电网电抗的情况是完全等效的。 本文在考虑电网电抗影响情况下, 对LC滤波单相桥式整流电路的网侧谐波进行较深入的定性和定量分析, 给出网侧电流谐波含量和某些性能指标与电路参数的关系表达式及关系曲线, 分析电路参数对电流谐波成分和各项性能指标的影响, 仿真结果验证了结论的正确性。 2 电路模型及直流电流工作方式 在由直流电压源供电的装置中, 输出电压幅值可由逆变电路或斩波电路来调节, 因此其整流电路由二极管组成是常见的情况。文中的分析即针对二极管单相桥式整流电路。图1 是分析所采用的电路模型和电压、电流波形,C 是滤波电容,L 是抑制电流冲击的电感。稳态时逆变或斩波电路消耗的直流平均电流一定, 所以可用电阻模型代表逆变或斩波电路。 在图 1 中若L 取值由小变大(以至无穷大) , C 取值由大变小, 则整流电路负载由容性 逐渐变为感性, 直流侧充电电流 id 由断续方式1 经断续方式2 变成连续方式, 如图2 所示。因 是二极管整流, 所以不论是哪种方式, 二极管VD1和VD4只能在电压正半周时导通, 而VD2和 VD3只能在电压负半周时导通。在断续方式 1中, id 在电源电压过零前即为零, VD1、 VD4和 VD2、 VD3间不发生换相过程; 在断续方式 2 中,电源电压过零时 id 未降到零, 两组二极管间发

电容、电阻、电感作用及滤波电路的简单分析

(一)电容: 1.一般是过滤作用,比如比如电解电容可以过滤低频,陶瓷电容可过滤高频。,原理就是电容的通交隔直特性,电容对交流信号通路,信号频率越高,阻抗越小,电容容量越大,阻抗越小,而对直流信号断路。比如直流电源正负极接一个电容,对交流信号来说相当于短路,于是波动信号就会通过这个电容而消耗掉,于是电压就更稳定,同理,如果在数字地接一电容,那么波动信号就会通过它与地短接,流入地端,而不流入下一级电路。 2.由于正常情况下,并联补偿电容是带电的,并用来补偿线路中的无功功率,提高功率因数,减少电的浪费。当设备或者线路需要维修时,虽然电线或者设备已经断电了,但是这时候的补偿电容由于是两端还有一定的电压,如果这时候人一旦碰到电容或者和电容相连的线路时,人就会有触电危险。但是如果我们在断电后,利用接地线把存储在补偿电容两端的电经过地线直接引入大地,这样使得电容不带电,从而保证维修人员的安全。 3.电容会充电放电的,接地也可以是放电过程,使电容器保持在一端了零电位。从而使电容容量达到最优。 4.耦合电容,又称电场耦合或静电耦合。耦合电容器是使得强电和弱电两个系统通过电容器耦合并隔离,提供高频信号通路,阻止工频电流进入弱电系统,保证人身安全。 电容耦合的作用是将交流信号从前一级传到下一级。耦合的方法还有直接耦合和变压器耦合的方法。直接耦合效率最高,信号又不失真,但是,前后两级工作点的调整比较复杂,相互牵连。为了使后一级的工作点不受前一级的影响,就需要在直流方面把前一级和后一级分开,同时,又能使交流信号从前一级顺利的传递到后一级,同时能完成这一任务的方法就是采用电容传输或者变压器传输来实现。他们都能传递交流信号和隔断直流,使前后级的工作点互不牵连。但不同的是,用电容传输时,信号的相位要延迟一些,用变压器传输时,信号的高频成分要损失一些。一般情况下,小信号传输时,常用电容作为耦合元件,大信号或者强信号传输时,常用变压器作为耦合元件。 5.电容能抑制器件两端电压变化率,起缓冲作用。同理电感抑制器件两端电流变化率,如整流电路中电感使导通角增大,续流二极管使输出电压平均值增大。 (二)电阻: 上拉电阻、下拉电阻的作用 所谓上,就是指高电平;所谓下,是指低电平。上拉,就是通过一个电阻将信号接电源,一般用于时钟信号数据信号等。下拉,就是通过一个电阻将信号接地,一般用于保护信号。这是根据电路需要设计的,主要目的是为了防止干扰,增加电路的稳定性。一般就是刚上电的时候,端口电压不稳定,为了让他稳定为高或低,就会用到上拉或下拉电阻。有些芯片内部集成了上拉电阻,所以外部就不用上拉电阻了。但是有一些开漏的,外部必须加上拉电阻。假如没有上拉,时钟和数据信号容易出错,毕竟,CPU的功率有限,带很多BUS线的时候,提供高电平信号有些吃力。而一旦这些信号被负载或者干扰拉下到某个电压下,CPU无法正确地接收信息和发出指令,只能不断地复位重启。 假如没有下拉,保护电路极易受到外界干扰,使CPU误以为被保护对象出问题而采取保护动作,导致误保护。 驱动CMOS时,如果TTL输出最低高电平低于CMOS最低高电平时,提高输出高电平 2 .OC门必须加上拉,提高电平值

什么是滤波电路以及如何分析滤波电路

. 什么是滤波电路 滤波电路是将整流出来的直流脉动电压中的交流成分滤除的电路,以得到平滑实用的直流电压。滤波电路是有许多种类,例如,电容滤波电路、电感滤波电路、倒L型LC滤波电路、π型LC滤波电路、RC滤波电路等,如图5-74所示。由于电感元件大笨重,而且在负载电流突然变化时会产生较大的感应电动势,易造成半导体管的损坏,所以在实际电路中通常使用电容滤波电路和RC滤波电路,在一些要求较高的电路中,还使用有源滤波电路

2.怎么分析电容滤波电路 (1)电容滤波电路如图5-75所示。图中T为电源变压器,VD1``~VD4为整流二极管,C为滤波电容器,R1为负载电阻。 2)电容滤波电路时利用电容器的充分电原理工作,其工作过程可用图5-76示意图进行说明。U0为整流电路输出的脉动电压,UC为滤波电路输出电压(即滤波电容C上电压)

①在t0时刻,Uc=0。t0~t1时刻,随着整流输出脉动电压U0的上升,U0>Uc,整流二极管导通,Uo向滤波电容C 充电,使C上电压Uc迅速上升,充电电流为ic:同时,U0向负载电阻供电,供电电流为iR,如图5-76 (a)所示 ②到t1时刻,C上电压UC=U0。,充电停止。t1~t2时刻。U0处于下降和下一周期的上升阶段,但因为U0 ③t2~t3时刻,U0上升再次达到U0>Uc;整流二极管导通,U0又开始向c充电,补充C 上己放掉的电荷。 ④t3~t4时刻,U0又处于U0

(3)从波形图可见,在起始的若干周期内,虽然滤波电容C 时而充电、时而放电,但其电压Uc的总趋势是上升的。经过若干周期以后,电路达到稳定状态,每个周期C的充放电情况都相同,即C上充电得到的电荷刚好补充了上一次放电放掉的电荷。正是通过电容器C的充放电,使得输出电压Uc保持基本恒定,成为波动较小的直流电。滤波电容C 的容重越大,滤波效果相对就越好。 (4)电容滤波电路虽然很简单,但是滤波效果不是很理想,输出电压中仍有交流分量,因此实际电路中使用较多的是RC 滤波电路。 3.怎样分析RC虑波电路 (1)RC虑波电路中采用了两个滤波电容C1、C2和一个滤波电阻R1组成π形状,如图5-77所示.RC滤波电路可看作是在C1电容滤波电路的基础上,再经过R1和C2的滤波,整个滤波电路的最终输出电压即为C2上的电压Uc2。

LC滤波电路原理与设计详解

LC滤波电路 LC滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。\ LC滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理, 滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路 电容滤波电路电感滤波电路作用原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

带通滤波器电路分析

带通滤波器电路分析与优化 一、实验目的 1.熟悉利用修正节点法求解电路传递函数的方法; 2.理解各种电路优化的方法,并能将其灵活应用于具体电路的优化; 3.掌握利用MATLAB 工具来优化电路的方法,并能够用程序来实现优化方法,以利于对电路的研究。 二、实验要求 分析下面的带通滤波器电路 + out - 图1. 高通滤波器电路图 考虑电路的频率响应: () ()() out in u f H f u f = 要求优化上面各个元件参数,使得()n H f 有以下的理想响应: 理想的|H n (f )| 图2. 理想带通滤波器的幅频响应 设计过程可以看成对下面的代价函数进行优化,求最小值: ()2 1 ()()K n k ideal k k g H f H f ==-∑ (其中()ideal H f 是上图给出的理想的频率响应) 可选的优化内容包括: 1 在元件值没有约束的情况下寻找最优的元件参数,使得归一化后的频率响应满足上图。

2 假设元件的值限制在下面的范围内: 0.110R M Ω≤≤Ω,0.0110pF C F μ≤≤,0.01100H L H μμ≤≤ 如何选择元件,满足设计要求 3 假设元件的取值是离散的,即: 1、1.1、1. 2、1. 3、1.5、1.6、1.8、2.0、2.2、2. 4、2.7、3.0、3.3、3.6、3.9、4.3、4.7、5.1、5.6、6.2、6.8、7. 5、8.2、9.1此时如何选择元件,满足设计要求 4 假设所有元件值有5%±的误差,(简单起见,假设元件值在这个范围内均匀分布)分析此时代价函数的变化(代价函数成为一个概率分布) 5 设定一个代价函数变化极限,然后尝试反过来确定允许的元件误差范围 三、实验内容 1.问题分析 首先,利用修正节点法求解该电路的传递函数,其传递函数为 () ()() out in u f H f u f = ,当 输入为1时,所得到的输出即为传递函数的值。为了求得与理想带通滤波器的幅频响应较一 致的滤波器,我们设定了如下代价函数:() 21()()K n k ideal k k g H f H f ==-∑,由于带通滤波器 在滤波器边缘变化较快,而其他地方变化较慢,我们应当对边缘处进行着重考虑。因此,我们最终选定如下代价函数:()2 1w()*()()K k n k ideal k k g f H f H f == -∑, 其中w()k f 为频点k f 处的权重,经过基本的筛选和分析,最后采取在3.5~3.7 Mhz Mhz 之间的权重为15,3.8~4Mhz Mhz 之间权重为50,3.7~3.8Mhz Mhz 之间权重为100,其余频率段的权重为 1。 2.代价函数的求取 首先,要求得该电路传递函数的值,可以有两种方法供选择,第一是通过修改第一次大作业的读网表文件来求取该值,此方法通用性较好,可以在分析不同的电路时较为方便的得到结果。第二是直接列出修正节点法方程进行求取,此方法通用性不好,只能针对此电路,但是对于本次所研究的对象,表达较为简单,实现起来较为容易。综合考虑,我们选择用第二种方法来求取。 在实现时,首先进行数据转换,即电阻转为电导,电容和电感也进行相应的转换。将转换后的数据保存在xteg 中,而修正节点法电路表达式中T 矩阵的元素保存在数组T 中,通过p=inv(T)*b;求得电路参数的值。为了得到多个频点的值,可用如下方法得到不同频率的传递函数的值: f_start=10000; f_step=10000; f_end=8000000; for f=f_start:f_step:f_end s=2*pi*f*j; i=f/10000; …… H(i)=abs(p(4))/abs(p(1)); 其中,H(i)为传递函数。 代价函数的求取要用到所求得的传递函数和理想幅频响应,根据以上结论,可通过如下方法实现: for i=1:800 w(i)=1;

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

滤波电路基本原理

滤波电路基本原理 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波

LC滤波电路原理及设计详解

LC滤波电路 LC 滤波器也称为无源滤波器,是传统的谐波补偿装置。LC滤波器之所以称为无源滤波器,顾名思义,就是该装置不需要额外提供电源。LC滤波器一般是由滤波电容器、电抗器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要; 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 LC 滤波器的适用场合 无源LC电路不易集成,通常电源中整流后的滤波电路均采用无源电路,且在大电流负载时应采用LC电路。 有源滤波器适用场合 有源滤波器电路不适于高压大电流的负载,只适用于信号处理,滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。 经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学 理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同 频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信 号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路 电容滤波电路电感滤波电路作用原理整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LC n型滤波和RGt型滤波等)<有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1. 57,全波整流和桥式整流的输出电压的脉动系数S≈0. 67。对于全波和桥式整流电路采用C型滤波电路后,其脉动

电路分析三之信号滤波器

信号滤波器
1、信号滤波器的作用:
信号滤波器用来从输入信号中过滤出有用信号滤除无用信号 和噪声干扰。 原理是利用电路的幅频特性,其通带的范围设为有用信号的范 围,而把其他频谱成分过滤掉。
与电源滤波器的区别和相同点:
区别:信号滤波器用来过滤信号,其通带是一定的频率范围,而电
源滤波器则是用来滤除交流成分,使直流通过,从而保持输出电压稳 定;交流电源则是只允许某一特定的频率通过。
相同点:都是用电路的幅频特性来工作。
附件: 滤波器的种类/作用/原理
一、概述
1.定义 凡是可以使信号中特定的频率成分通过, 而极大地衰减或抑制其他频率成分的装置或系统都 称之为滤波器,相当于频率“筛子”。
2.分类

幅频特性如下
频率通带:能通过滤波器的频率范围 频率阻带:被滤波器抑制或极大地衰减的信号频率范围。 截止频率:通带与阻带的交界点。 2)按物理原理分:机械式、电路式 按处理信号分:模拟、数字 3.滤波器的作用 1)将有用的信号与噪声分离,提高信号的抗干扰性及信噪比; 2)滤掉不感兴趣的频率成分,提高分析精度; 3)从复杂频率成分中分离出单一的频率分量 。 二、理想滤波器与实际滤波器

1.理想滤波器的频率特性 理想滤波器: 使通带内信号的幅值和相位都不失真, 阻喧内的频率成分都衰减为零的滤波器, 其通带和阻带之间有明显的分界线。 如理想低通滤波器的频率响应函数为
理想滤波器实际上并不存在。 2.实际滤波器 实际滤波器的幅频特性如下图所示
实际滤波器的特性需要以下参数描述:
①信频程选择性: 与上、下截止频率处相比,频率变化一倍频程时幅频特性的衰减量,即

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真和实测 (5) 1.3.2 三角信号源仿真和实测 (10) 1.3.3 方波信号源仿真和实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真和实测 (23) 2.3.2 三角信号源仿真和实测 (28) 2.3.3 方波信号源仿真和实测 (33)

第三章结论和误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得:

在任何频率下,使用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成 图2-一阶RC电路multisim仿真电路原理图

各种滤波电路合集

在整流电路输出的电压是单向脉动性电压,不能直接给电子电路使用。所以要对输出的电压进行滤波,消除电压中的交流成分,成为直流电后给电子电路使用。在滤波电路中,主要使用对交流电有特殊阻抗特性的器件,如:电容器、电感器。本文对其各种形式的滤波电路进行分析。 一、滤波电路种类 滤波电路主要有下列几种:电容滤波电路,这是最基本的滤波电路;π型 RC 滤波电路;π型 LC 滤波电路;电子滤波器电路。 二、滤波原理 1. 单向脉动性直流电压的特点 如图 1(a)所示。是单向脉动性直流电压波形,从图中可以看出,电压的方向性无论在何时都是一致的,但在电压幅度上是波动的,就是在时间轴上,电压呈现出周期性的变化,所以是脉动性的。 但根据波形分解原理可知,这一电压可以分解一个直流电压和一组频率不同的交流电压,如图 1(b)所示。在图 1(b)中,虚线部分是单向脉动性直流电压 U。中的直流成分,实线部分是 UO 中的交流成分。 2. 电容滤波原理 根据以上的分析,由于单向脉动性直流电压可分解成交流和直流两部分。在电源电路的滤波电路中,利用电容器的“隔直通交”的特性和储能特性,或者利用电感“隔交通直”的特性可以滤除电压中的交流成分。图2 所示是电容滤波原理图。 图 2(a)为整流电路的输出电路。交流电压经整流电路之后输出的是单向脉动性直流电,即电路中的 UO。 图 2(b)为电容滤波电路。由于电容 C1 对直流电相当于开路,这样整流电路输出的直流电压不能通过C1 到地,只有加到负载 RL 图为 RL 上。对于整流电路输出的交流成分,因 C1 容量较大,容抗较小,交流成分通过 C1 流到地端,而不能加到负载 RL。这样,通过电容 C1 的滤波,从单向脉动性直流电中取出了所需要的直流电压 +U。

电容滤波电路、电感滤波电路原理分析

电容滤波电路、电感滤波电路原理分析 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C 并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。

RC低通滤波器分析

RC低通滤波器分析 1、电路的组成 所谓的低通滤波器就是允许低频信号通过,而将高频信号衰减的电路,RC低通滤波器电路的组成如图3-17所示。 2、电压放大倍数 在电子技术中,将电路输出电压与输入电压的比定义为电路的电压放大倍数,或称为传递函数,用符号A u来表示,在这里A u为复数,即 令,则 (3-19) 的模和幅角为 (3-20)

(3-21) 式3-19称为RC低通电路的频响特性,式3-20称为RC低通电路的幅频特性,式3-21称为RC低通电路的相频特性。在电子电路中,描述电路幅频特性和相频特性的单位通常用对数传输单位分贝。 3、对数传输单位分贝(dB)的定义 在电信号的传输过程中,为了估计线路对信号传输的有效性,经常要计算的值。式中的P0和P i 分别为线路输出端和输入端信号的功率。当多级线路相串联时,总的的值为: 对上式取对数可简化计算,利用对数来描述的,被定义为对数传输单位贝尔(B)。即 (3-22) 贝尔的单位太大了,在实际上通常用贝尔的十分之一为计量单位,称为分贝(dB)。即,1B=10dB。 因为,所以,对于等电阻的一段网络,贝尔也可用输出电压和输入电压的比来定义。即 (3-23) 当电压放大倍数用dB做单位来计量时,常称为增益。根据增益的概念,我们通常将对信号电压的放大作用是100倍的电路,说成电路的增益是40dB,电压放大作用是1000倍的电路,说成电路的增益是60d B,当输出电压小于输入电压时,电路增益的分贝数是负值。例-20dB说明输入信号被电路衰减了10倍。 4.低通滤波器的波特图 利用对数传输单位,可将低通滤波器的幅频特性写成

相关文档
相关文档 最新文档