文档库 最新最全的文档下载
当前位置:文档库 › PPAR_磷酸化与非磷酸化的研究进展_宋扬

PPAR_磷酸化与非磷酸化的研究进展_宋扬

PPAR_磷酸化与非磷酸化的研究进展_宋扬
PPAR_磷酸化与非磷酸化的研究进展_宋扬

关于编制电子级磷酸生产建设项目可行性研究报告编制说明

关于编制电子级磷酸生产建设项目可行性研 究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示:电子级磷酸项目投资环境分析,电子级磷酸项目背景和发展概况,电子级磷酸项目建设的必要性,电子级磷酸行业竞争格局分析,电子级磷酸行业财务指标分析参考,电子级磷酸行业市场分析与建设规模,电子级磷酸项目建设条件与选址方案,电子级磷酸项目不确定性及风险分析,电子级磷酸行业发展趋势分析 1、本报告为模板形式,客户可下载后,跟据报告说明,自行修改,完成自己的需求目的。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写资金申请报告 项目建议书商业计划书节能评估报告可行性研究报告

目录 目录 ............................................................................................................................ - 1 - 第1章电子级磷酸项目总论 ..................................................................................... 7§1.1 项目背景 ....................................................................................................... 7§1.1.1 项目名称 ............................................................................................. 7 §1.1.2 项目承办单位 ..................................................................................... 7 §1.1.3 项目主管部门 ..................................................................................... 7 §1.1.4 项目拟建地区、地点 ......................................................................... 7 §1.1.5 承担可行性研究工作的单位和法人代表 ......................................... 7 §1.1.6 研究工作依据 ..................................................................................... 7 §1.1.7 研究工作概况 ..................................................................................... 8§1.2 可行性研究结论 ........................................................................................... 8§1.2.1 市场预测和项目规模 ......................................................................... 8 §1.2.2 原材料、燃料和动力供应 ................................................................. 9 §1.2.3 厂址 ..................................................................................................... 9 §1.2.4 项目工程技术方案 ............................................................................. 9 §1.2.5 环境保护 ............................................................................................. 9 §1.2.6 工厂组织及劳动定员 ......................................................................... 9 §1.2.7 项目建设进度 ..................................................................................... 9 §1.2.8 投资估算和资金筹措 ..................................................................... 10 §1.2.9 项目财务和经济评论 ..................................................................... 10 §1.2.10 项目综合评价结论 ....................................................................... 10§1.3 主要技术经济指标表 ............................................................................... 10§1.4 存在问题及建议 ....................................................................................... 10第2章电子级磷酸项目背景和发展概况 ............................................................. 11§2.1 项目提出的背景 ....................................................................................... 11§2.1.1 国家或行业发展规划 ..................................................................... 11 §2.1.2 项目发起人和发起缘由 ................................................................. 11§2.2 项目发展概况 ........................................................................................... 11§2.2.1 已进行的调查研究项目及其成果 ................................................. 11 §2.2.2 试验试制工作情况 ......................................................................... 12 §2.2.3 厂址初勘和初步测量工作情况 ..................................................... 12 §2.2.4 项目建议书的编制、提出及审批过程 ......................................... 12§2.3 投资的必要性 ........................................................................................... 12第3章市场分析与建设规模 ................................................................................. 14§3.1 市场调查 ................................................................................................... 14§3.1.1 拟建项目产出物用途调查 ............................................................. 14 §3.1.2 产品现有生产能力调查 ................................................................. 14 §3.1.3 产品产量及销售量调查 ................................................................. 14 §3.1.4 替代产品调查 ................................................................................. 15 §3.1.5 产品价格调查 ................................................................................. 15 §3.1.6 国外市场调查 ................................................................................. 15

微胶囊技术包覆聚磷酸铵研究进展_汪玲

微胶囊技术包覆聚磷酸铵研究进展 汪玲,刘吉平* (北京理工大学材料学院,北京,100081) 摘要微胶囊技术包覆聚磷酸铵用于阻燃研究可以降低聚磷酸铵的水溶性,有效改善阻燃剂易吸潮、易氧化、热稳定性差、相容性差等缺点,是-种前景良好的对聚磷酸铵进行改性的方法。本文介绍了聚磷酸铵的阻燃机理和微胶囊技术的基本概念,综述了国内外使用微胶囊技术包覆聚磷酸铵的研究进展,并对微胶囊技术包覆聚磷酸铵现状给予总结同时得出结论:目前,微胶囊技术主要应用于包覆聚磷酸铵,而对其他阻燃剂的报道相对较少。因此,应着重扩大微胶囊技术的应用范围研究,另外还应积极开展微胶囊工艺、阻燃剂复配、提高力学性能、抑烟性能等研究,以提高其可适用性和广泛性。 关键词聚磷酸铵,微胶囊技术,包覆,阻燃剂 膨胀型阻燃剂(IFR)是-种典型的无卤阻燃剂[1]。聚磷酸铵(APP)是IFR常用组分之-,其阻燃机理为:聚磷酸铵受热后脱去氨气生成强脱水剂聚磷酸,聚磷酸可使被阻燃物表面脱水生成碳化物,碳化物在基质表面形成致密性膨胀炭层,炭层可减弱聚合物与热源间的热量传递,并阻止气体扩散,由于没有足够的燃料和氧气,因而终止燃烧起到阻燃作用[2-3]。但是聚磷酸铵作为阻燃剂加入后与环氧树脂的相容性差和吸湿性强,限制了其应用。因此,近年来大量文献报道了采用微胶囊技术包覆聚磷酸铵用于阻燃研究。 1 微胶囊技术 微胶囊包覆技术是指将APP利用天然的或合成的高分子材料包覆,形成-种直径1~50μm的具有半透性或封闭膜的微型胶囊APP产品,降低了聚磷酸铵的水溶性,具有更高的热稳定性、耐水性以及相容性。 国外知名企业赫司特公司、孟山都公司及Albright Wilson公司均生产高聚合度APP产品。微胶囊的外形可以是球状的,也可以是不规则的形状;胶囊外表可以是光滑的,也可以是折叠的;微胶囊的囊膜既可以是单层,也可以是双层或多层结构。微胶囊技术的优势在于形成微胶囊时,囊芯被包覆而与外界环境隔离,它的性质能毫无影响的被保留下来,而在适当条件下壁材被破坏时又能将囊芯释放出来,给使用带来许多便利。微胶囊化的目的主要是降低阻燃剂的水溶性,增加阻燃剂与材料的相容性,改变阻燃剂的外观及状态,提高阻燃剂的热裂解温度以及掩盖阻燃剂的不良性质。其制备方法主要有化学法,物理化学法,机械法[4]。

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展

论述蛋白质磷酸化与去磷酸化在细胞信号系统传导中的作用及研究进展 病毒所梁晓声200628012415030 细胞信号传导过程中磷酸酶/磷酸激酶对蛋白磷酸化程度的调控控制了细胞信号传递与否,信号强度等等细胞信号传导的过程从某种程度上说就是信号传导相关分子磷酸化水平的调节过程。 磷酸酶/磷酸激酶作为胞内信号直接或间接的靶酶通过磷酸化程度控制其它酶类或蛋白质的活性,一般情况下被磷酸化的酶有活性,脱磷酸后的酶没有活性。通过这种方式可以在不改变细胞内酶或相关蛋白的浓度的情况下将部分酶活冻结或解冻。在有外界信号刺激的时候可以迅速解冻酶活而不必合成新的酶。 由于酶反应具有高度专一性,使得蛋白质磷酸化与去磷酸化这种方式在胞内介导胞外信号时具有专一应答的特点。这就使得细胞信号传导途径的上游成分只能针对一个或几个的下游成分起作用,使信号传递具有很强的专一性。同时对信号的灭活也不会由于识别的错误而影响其他信号传导途径。 磷酸化与去磷酸化在细胞对外界信号的持续反应中具有重要的作用。信号引起的细胞生理学效应中,有许多是相当持久的,如细胞的分裂、分化等。虽然胞内信号分子的寿命可以很短,但蛋白激酶一旦激活,其活性却可以通过某些方式(如自身磷酸化)维持较长时间;更重要的是被它磷酸化所调节的蛋白质和酶类,其效应可以维持更长时间,直到被蛋白磷酸酶脱磷酸化为止。 蛋白磷酸化对外界信号具有放大作用,由于是酶促反应,一个酶分子可以催化成百上千个底物分子,即使只有很弱的胞外信号也可以通过酶促反应得到充分的放大。 蛋白质激酶 蛋白质激酶是一类磷酸转移酶,其作用是将ATP的磷酸基转移到它们的底物上特定氨基酸残基上去。依据这些氨基酸残基的特异性,将这些激酶分为4类。其中主要的两类是蛋白质丝氨酸/苏氨酸激酶(STK),和蛋白质酪氨酸激酶(PTK)。这两类酶的蛋白质激酶结构域的大小约为250-300个氨基酸残基。二者的催化域在进化上是密切相关的,并认为它们有共同的祖先。因此,它们的催化域的氨基酸残基序列在很大程度上也是一致的。更重要的是,这些序列表现为一组组高度保守的,甚至是完全保守的氨基酸模体,这些模体却嵌埋在氨基酸残基序列保守性很差的区域之内。一共有11种这类高度保守的短氨基酸残基序列模体。它们都以罗马数字命名,从最N-端的I开始,到最C-端的XI。对这些酶的结晶进行X-射线结构分析,发现这些模体对这些蛋白质激酶催化结构域的磷酸转移酶活性十分重要。据以为,亚域I,II和VII在结合ATP中起重要作用;而亚域VIII则在识别肽底物中起主要作用。对酪氨酸激酶家族来说,在亚域VIII中,紧靠关键模体上游的氨基酸残基有十分有趣的差异,它们是-KWTAPE- 或-KWMAPE-,看来这些序列造成了激酶家族的这个分支的底物专一性。 蛋白磷酸酯酶 丝氨酸/苏氨酸蛋白磷酸酯酶,选择性地作用于含磷酸丝氨酸或磷酸苏氨酸残基的肽链,使之脱去磷酸基团并改变生物活性。主要成员:PPl,PP2A,PP2B,PP2C等。 酪氨酸蛋白磷酸酯酶(PTPase)分胞质型(非受体型)和受体型(PTPR)

聚磷酸铵

聚磷酸铵 摘要:以磷酸铵盐、尿素为原料,制备了高聚合度聚磷酸铵无机阻燃剂。测定了聚磷酸铵的溶解度[1]。以防火材料的制备测定防火性能,对现代工艺的提高有了自己的认识和理解。 关键词:聚磷酸铵、阻燃性能、防火材料[2]。 前言:聚磷酸铵(APP)是近十多年来发展起来的一种重要的无机阻燃剂,广泛用于塑料、纤维、纸张、橡胶、木材等的阻燃,并可用于配制耐火材料。APP 含磷、氮量大,热稳定性好,水溶性小,近于中性。同时,它具有分散性好,比重小,毒性低和价格低廉的特点。 1实验部分 1.1实验原理 其结构是为(NH4)n+2PnO3n+1。APP有水溶性(n为10∽20)及水难溶性(n?0)两种。作为阻燃剂的n一般大于25[3]。 合成方法主要有高温聚合法和低温溶剂法。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。在尿素和磷酸二氢胺反应体系中,存在下列反应: CO(NH2)2 +2NH4H2PO4-----(NH4)2P2O7+CO2 (NH4)2P2O7+CO(NH2)2-----2/n(NH)4n+2PnO3n+1+4NH3+CO2 当n很大时,产物可写成(NH4PO3)。 1.2药品与仪器 药品:液体石蜡(碳数在16 以上),尿素,磷酸二氢铵,苯等。 仪器:烧杯(500ml,200ml),抽滤装置,电炉,温度计。 1.3合成

在500ml干燥的烧杯中,加入150ml液体石蜡,加热至200℃,在该温度下,不断搅拌,将30g尿素与28克磷酸二氢胺混合,分批加入至温度为200℃的液体石蜡中,注意温度不能过高,30分钟内加完。与190∽200℃的条件下继续反应25∽30分钟,观察反应产物(由粘稠泡沫液体变为白色固体)。然后冷却至室温,尽可能倾出液体石蜡,将生成物研细后,每次用30∽40ml苯浸洗2-3次,除去产物中夹留得石蜡,抽滤,回收苯。然后用蒸馏水洗涤产物。在120℃烘箱中,烘30分钟,即得产物,成重,计算产率。 1.4产品质量检验 (1) 溶解度测定:准确称取上述产物2克加入50ml蒸馏水煮沸5分钟后,过滤产物,烘干,称余物,计算100ml蒸馏水中的溶解度。 (2) 阻燃性能测试:称取4gAPP加100ml蒸馏水,搅拌均匀后,将一片滤纸浸在此液体中。10分钟后称出烘干,与一未处理的滤纸,使燃烧对比实验,观察其现象。 (3) 测定产品的熔点 1.5防火涂料的制备及防火性能 涂料的配比见下表1 表1:涂料配方 品名用量品名用量 聚乙烯醇缩甲醛胶25.0 聚磷酸铵22 三聚氰胺11.5 季戊四醇 6.0 六偏磷酸钠(10%) 5.0 甲基硅油消泡剂0.5 羧甲基纤维素钠 3.0 去离子水22.0 制备步骤为:将六偏磷酸钠,羧甲基纤维素钠分别配制成10%和2%的水溶液;将要求量的去离子水加入烧杯中;低速(约800r/min)搅拌下,将配方量的阻燃剂、颜料、填料、分散剂依次加入,再加入适量的消泡剂,然后高速搅拌(大

捷诺维(磷酸西格列汀片)说明书

捷诺维(磷酸西格列汀片)说明书 【捷诺维药品名称】 商品名:捷诺维 通用名:磷酸西格列汀片 英文名:JANUVIA 【捷诺维成份】 磷酸西格列汀 【捷诺维性状】 捷诺维为浅褐色薄膜衣片,除去包衣后显白色或类白色。 【捷诺维规格】 100mg 【捷诺维适应症】 捷诺维配合饮食控制和运动,用于改善2型糖尿病患者的血糖控制。 【捷诺维用法用量】 捷诺维单药治疗的推荐剂量为100mg每日1次。捷诺维可与或不与食物同服。 【捷诺维不良反应】 可能出现超敏反应;肝酶升高;上呼吸道感染;鼻咽炎。 【捷诺维禁忌】 对捷诺维中任何成份过敏者禁用。(参见注意事项,超敏反应和不良反应,上市后经验。) 【捷诺维注意事项】 捷诺维不得用于1型糖尿病患者或治疗糖尿病酮症酸中毒。 肾功能不全患者用药:捷诺维可通过肾脏排泄。由于捷诺维适用于中重度肾功能不全患者的规格尚未上市,因此捷诺维不建议使用于中重度肾功能不全的患者(肌酐清除率[CrCl]<50mL/min)。 与磺酰脲类药物联合使用时发生低血糖:在捷诺维单药治疗或与已知不导致低血糖的药物(即二甲双胍或吡格列酮)进行联合治疗的临床试验中,接受捷诺维治疗的患者报告的低血糖发生率与安慰剂组相似。与其它抗高血糖药物和磺酰脲类药物联合使用时的情况相似,当捷诺维与已知可导致低血糖的磺酰脲类药物联合使用时,磺酰脲类药物诱导的低血糖发生率高于安慰剂组(参见不良反应)。因此,为了降低磺酰脲类药物诱导发生低血糖的风险,可以考虑减少磺酰脲类药物的剂量。目前尚未充分研究捷诺维与胰岛素的联合使用。 超敏反应:捷诺维上市后在患者的治疗过程中发现了以下严重超敏反应。这些反应包括过敏反应、血管性水肿和剥脱性皮肤损害,包括Stevens-Johnson综合征。由于这些反应来自人数不定的人群自发性报告,因此通常不可能可靠地估计这些反应的发生率或确定这些不良反应与药物暴露之间的因果关系。这些反应发生在使用捷诺维治疗的开始3个月内,有些报告

全面电子级磷酸简介.doc

.精品. 电子级磷酸盐 简介 电子级磷酸属于高纯磷酸,广泛用于大规模集成电路、薄膜液晶显示器(TFT-LCD)等微电子工业,主要用于芯片的清洗和蚀刻,其纯度和洁净度对电子元器件的成品率、电性能及可靠性有很大影响,纯度较低的主要用于液晶面板部件的清洗(面板级),纯度高的用于电子晶片生产过程的清洗和浊刻(称为IC级)。电子级磷酸还可用于制备高纯磷酸盐,也是高纯有机磷产品的主要原料,另外还可用作超高纯试剂和光纤玻璃原料等。 产业链 制作工艺 电子级磷酸可由元素磷或磷的氧化物经化学反应得到,也可由成品磷酸净化精制而得,制备的关键在于控制并达到所要求的碱金属与重金属杂质离子的含量和颗粒度。 目前有如下几种主要制备工艺:1)用高纯磷制备电子级磷酸;2)用高纯三氯化磷制备电子级磷酸;3)用三氯氧磷制备电子级磷酸。 提纯工艺主要有:1)磷酸的净化精制法;2)有机溶剂萃取法;3) ①冷冻结晶法;②熔融结晶法;5)其他净化法其他的净化方法有电渗析:①电渗析法;②膜分离。 电子级磷酸的国际质量标准 国际半导体设备与材料组织(SEMI) 将电子化学品按应用范围分为SEMI-C1、SEMI - C7、SEMI-C8和SEMI -C12四个等级。我国则划分为BV-Ⅰ、BV-Ⅱ、BV- Ⅲ和BV- Ⅳ四个等级,BV-Ⅲ级已达到国际SEMI -C7质量标准,适用于018~112μm工艺技术的加工制作,这是目前我国生产的较高水平的微电子化学品。

国内外技术差别 国内技术水平:目前国内市场所需MOS 级、BV电子级磷酸已有工厂生产,BVII级和BVIII 电子级磷酸仍处于研发状态,所需产品依赖进口。 国外技术水平:高纯电子化学品的生产技术在国际上尚处于高度保密和高度垄断阶段,生产技术主要由德国、日本和美国等少数几个发达国家掌握,有关生产方法、工艺技术、实验研究、产品质量指标体系的确立及分析方法、设备包装材质的研究等等内容鲜见报道,国外技术拥有方甚至不进行实质性专利申请,技术研发机构很难检索到有价值的技术文献信息。技术难点:高纯电子化学品技术的研发必须依靠自主创新,建立完整的研发、生产、检测及包装体系,但在该技术的开发存在着工艺、设备、材料、控制等许多难题,技术开发和生产控制难度很高,研发投入大,即便是建立一个小型实验室,至少需要数百万元的投入,如果建设中等规模的工业化装置,总投资至少在数千万元,甚至过亿。 我国电子磷酸市场现状 (1)企业规模小,目前国内30多家,只有十几家企业进行生产和销售高纯磷酸,且规模均不大,主要集中在江苏、四川和贵州。 (2)国内生产的产品只能达到高纯磷酸低端产品要求,只能应用于电子工业的液晶显示器生产上作清洗剂。 (3)高纯磷酸由于其专利技术等原因,致使我国IC、LED、TFT-LCD行业用的高纯磷酸长期依赖进口,而目前我国市场上的高纯磷酸供应商主要集中在日本、美国和德国。 (4)我国电子级磷酸出口量远远大于进口量,这些出口的初级产品大多被用于再提纯,生产更高级别的产品,又部分返销回国内。 (5)我国总体技术水平落后于发达国家,而且,原材料的消耗以及生产成本普遍高于国外

浅谈阻燃材料聚磷酸铵的研究进展

浅谈阻燃材料聚磷酸铵的研究进展 摘要:聚磷酸铵是一种高效无机无卤磷系阻燃剂,是膨胀型阻燃剂的主要成分之一。本文就聚磷酸铵的合成方法,改性研究现状和应用前景进行了介绍。 关键词:聚磷酸铵;阻燃剂;合成方法;改性,应用进展 聚磷酸铵(简称APP)是一种磷氮系特效膨胀型无机阻燃剂,通式为(NH4)n+ 2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n 在10- 20 之间为水溶性,称为短链APP;聚合度n 大于20 的为水难溶性,称为长链APP。该产品P- N 阻燃元素含量高、热稳定性能好,产品近乎中性,能与其他物质配伍,阻燃性能持久,无毒抑烟。APP作为膨胀型阻燃剂的基础材料, 被广泛应用于阻燃领域,随着全球阻燃剂朝无卤化方向发展,以APP 为主要原料的膨胀型阻燃剂成为研究开发的热点。APP 的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP 含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的[1]。 1 聚磷酸铵的合成 目前聚磷酸铵的合成工艺很多,主要有磷酸和尿素缩合法,聚磷酸铵化法,正聚磷酸铵与氨气高温中和法,P2O5-NH3-H2O 高温气相反应法,NH4H2PO4和CO(NH2)2缩合法,NH4H2PO4和NH3缩合法以及H3PO4和NH3缩合法等。根据聚磷酸铵不同的用途合成的方法也不一样。 1.1 磷酸和尿素缩合法 这种合成方法是将磷酸和尿素以一定比例混合,加热搅拌后,得到澄清透明的液体再将这种液体加热,经发泡、聚合和固化3 个阶段即可得到白色干燥固体,冷却后得到成品。 李茂林等以85%的磷酸和尿素为原料探究了聚磷酸铵生产的最佳工艺条件,合成的产品聚合度为170,结果表明反应温度220℃,反应时间3h,n(H3PO4) (以P2O5计85%)∶n [CO(NH2)2]=1∶1.8为最佳工艺条件。 张长水等以正交实验法探讨了用磷酸和尿素为原料合成聚磷酸铵时,原料配比、反应温度、聚合时间等因素对产品聚合度的影响。实验结果表明,较优工艺条件为:尿素与磷酸的摩尔配比为 1.7∶1,预聚合温度180℃,固化温度240℃,固化时间为160min,产品外观为白色固体,平均聚合度为34,溶解度为0.98g·(100g 水)-1。 1.2 磷酸法 这种合成方法要求磷酸以沸腾状态进入反应器,通入氨后使氨气与五氧化二磷的摩尔比在0.5~0.6 之间,反应器温度在180℃左右,此时局部氨化的磷酸将进入浓缩器内浓缩,使氨气与五氧化二磷混合物的含量在70%左右,再进入绝热氨化器内继续氨化,使混合物氨气与五氧化二磷的含量不少于77%,最后在辅助氨化器内进行氨化以达到一定规格的产品。 V.Archie等用物质的量之比为0.8~1.2 的氨气和五氧化二磷在

捷诺维(JANUVIA)(磷酸西格列汀片)

捷诺维(JANUVIA)(磷酸西格列汀片) 【药品名称】 商品名称:捷诺维(JANUVIA) 通用名称:磷酸西格列汀片 英文名称:Sitagliptin Phosphate T ablets 【成份】 本品主要成分为磷酸西格列汀。化学名称:7-[(3R)-3-氨基-1-氧-4-(2,4,5-三氟苯基)丁基]-5,6,7,8-四氢-3-(三氟甲基)-1,2,4-三唑酮[4,3-a]吡嗪磷酸盐(1:1)一水合物。分子式:C16H15F6N5O?H3PO4?H2O 分子量:523.32 【适应症】 单药治疗本品配合饮食控制和运动,用于改善2型糖尿病患者的血糖控制。与二甲双胍联用当单独使用盐酸二甲双胍血糖控制不佳时,可与盐酸二甲双胍... 【用法用量】 本品单药或与二甲双胍联合治疗的推荐剂量为100 mg,每日一次。本品可与或不与食物同服。 肾功能不全的患者 轻度肾功能不全患者(肌酐清除率[CrCl] ? 50 mL/min,相应的血清肌酐水平大约为男性? 1.7 mg/dL和女性? 1.5 mg/dL)服用本品时,不需要调整剂量。 中度肾功能不全的患者(肌酐清除率[CrCl] ? 30至< 50 mL/min,相应的血清肌酐水平大约为男性> 1.7至? 3.0 mg/dL和女性> 1.5至? 2.5 mg/dL)服用本品时,剂量调整为50 mg,每日一次。 严重肾功能不全的患者(肌酐清除率[CrCl] < 30 mL/min,相应的血清肌酐水平大约为男

性> 3.0 mg/dL和女性> 2.5 mg/dL)或需要血液透析或腹膜透析的终末期肾病(ESRD)患者服用本品时,剂量调整为25 mg,每日一次。服用本品不需要考虑透析的时间。 由于需要根据患者肾功能调整剂量,因此开始使用本品治疗之前建议对患者肾功能进行评估,之后定期评估。 【不良反应】 临床试验的经验 由于临床试验在一系列不同情况下进行,因此某类药物在临床试验中的不良反应发生率无法与另一类药物在临床试验中的不良反应发生率进行直接比较,并且不能反映临床实践中的不良反应发生率。 在本品单药治疗以及本品与二甲双胍或吡格列酮联合治疗的对照临床研究中,不良反应、低血糖和因临床不良反应导致停药的总体发生率在治疗组和安慰剂治疗组之间相似。本品与格列美脲联合治疗,加用或不加用二甲双胍时,本品治疗组临床不良反应的总体发生率高于安慰剂组,部分原因是本品治疗组的低血糖发生率较高(参见表1);在本品治疗组中,因临床不良反应导致停药的发生率与安慰剂治疗组相似。 在2项分别为期18周和24周的安慰剂对照的单药治疗研究中,患者接受了本品100 mg,每日一次、本品200 mg,每日一次和安慰剂治疗。此外,研究者还进行了3项为期24周的安慰剂对照、联合治疗研究,分别为联合二甲双胍、吡格列酮和格列美脲,加用或不加用二甲双胍的治疗研究。除了稳定剂量的二甲双胍、吡格列酮、格列美脲或格列美脲加二甲双胍外,糖尿病控制不良的患者还接受了本品100 mg,每日一次或安慰剂治疗。不考虑研究者对因果关系的评估结果,在本品100 mg,每日一次单药治疗组、本品加吡格列酮联合治疗组或本品加格列美脲,加用或不加用二甲双胍联合治疗组中,发生率≥5%并且高于安慰剂治疗组的不良反应参见表1。

聚磷酸铵的合成及其阻燃性能研究

聚磷酸铵的合成及其阻燃性能研究3 胡云楚1,2,吴志平2,孙汉洲1,周 莹1,刘 元2 (1.中南林业科技大学理学院,湖南株洲412006;2.中南林业科技大学工业学院,湖南长沙41004) 摘 要: 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的合成条件、聚磷酸铵2硼酸复合阻燃剂的复合阻燃效应。聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1∶1.8,预聚合温度为(124±2)℃,预聚合反应时间为25min左右,聚合固化温度230~240℃左右,聚合固化时间为140min左右。在最佳条件下合成的聚磷酸铵的聚合度为23.3,溶解度为0.67g/100mL 水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率的2.15倍。聚磷酸铵和硼酸以4∶1复配所制得的聚磷酸铵2硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%。200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段。聚磷酸铵2硼酸复合阻燃剂在高温下不仅能催化木材产生更多的木炭,而且能使木炭结构紧密、不易燃烧。 关键词: 聚磷酸铵;硼酸;灼烧成炭试验;阻燃性能; 复合效应 中图分类号: TB34文献标识码:A 文章编号:100129731(2006)0320424204 1 引 言 近年来火灾所造成的财产损失和人员伤亡一直呈上升趋势,许多火灾的发生均与高分子材料和木质材料的使用状况及其可燃性有关,因此,阻燃技术的发展是保障人民生命财产安全的需要,也是高聚物和木质材料具有广泛应用前景的基础[1~3]。 聚磷酸铵热稳定性好,产品接近中性,并可以与其它阻燃剂混合,分散性好,同时价格便宜,毒性较低,使用安全。李蕾等报道[4],国内聚磷酸铵阻燃剂的聚合度为20~50;C.Drevelle等[5]报道,聚磷酸铵的聚合度为700,溶解度低于1%。目前国内外对聚磷酸铵合成工艺及在聚合物中阻燃应用的研究报道较多,未见其在木材阻燃方面的研究报道。 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。硼酸和聚磷酸铵具有原料充足、价格便宜、阻燃效果好、对环境无害的特性,将两者按一定配比复合可以提高阻燃效果[3~11]。 作者根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的最佳合成条件、聚磷酸铵2硼酸复合阻燃剂的最佳配比及其复合阻燃效应。 2 实 验 2.1 仪器与试剂 HC T22型微机差热天平、65112A型电动搅拌器、KDM型连续可调电子控温电热套、FN1012型鼓风干燥箱、KSW电阻炉温控制器、5212型箱式电阻炉、A2 1100紫外可见分光光度计、P HS23C酸度剂、PB2032N 型电子天平、100ml玛瑙研钵、30ml瓷坩锅、坩锅架。 尿素、磷酸、硼酸、多聚磷酸钠、钼酸铵、硫酸肼、氢氧化钠均为国产分析纯试剂;杨木粉,植物粉碎机粉碎为40目以下。 2.2 聚磷酸铵的合成 反应原理: n H3PO4+(n-1)CO(N H2)2 (N H4)n+2P n O3n+1+(n-4)N H3+(n-1)CO2 副反应: CO(N H2)2+H2O CO2↑+2N H3↑ 先将85%的磷酸与99%的尿素按1∶1.8(摩尔比)依次加入三口烧瓶中,加热搅拌,控制升温速度≥10℃/min,待温度升至预聚合温度(100℃左右)时尿素全部融化,溶液澄清冒泡,同时有大量气体逸出(前期p H=6,后期p H=8),待溶液变稠发粘后,在不断搅拌下出料至白瓷盘中,放入已恒温的烘箱中进行聚合固化,待固化完全后,将其冷却,粉碎即得聚磷酸铵 (A PP)。 2.3 聚磷酸铵溶解度的测定 用电子天平称取0.500g样品放入10ml蒸馏水中,于室温下搅拌后,静置24h,过滤,滤渣为未溶解样品,在100℃以下烘干60min,称重,计算溶解度。 2.4 聚磷酸铵聚合度的测定 用分光光度法确定聚磷酸铵样品中P的物质的量,用一阶倒数滴定曲线确定聚磷酸铵的物质的量,根据P的物质的量与聚磷酸铵的物质的量之比计算聚磷酸铵的平均聚合度。测定聚磷酸铵聚合度的详细步骤 3基金项目:国家自然科学基金资助项目(30471358);湖南省自然科学基金资助项目(03JJ Y3063)收到初稿日期:2005207204收到修改稿日期:2005211226 通讯作者:胡云楚作者简介:胡云楚 (1960-),男,湖南湘潭人,教授,博士研究生,从事材料化学和木材阻燃研究。

磷酸西格列汀片说明书模板

精心整理磷酸西格列汀片说明书,让您了解捷诺维(磷酸西格列汀片)副作用、磷酸西格列汀片(捷诺维)效果、不良反应等信息。百济新特药房—全国连锁专科药房,医保定点药房,消费者信得过商店,专家指导用药,磷酸西格列汀片(捷诺维)说明书如下: 【捷诺维药品名称】 商品名:捷诺维 通用名:磷酸西格列汀片 英文名:JANUVIA 【捷诺维成份】 磷酸西格列汀 【捷诺维性状】 捷诺维为浅褐色薄膜衣片,除去包衣后显白色或类白色。 【捷诺维规格】 100mg 【捷诺维适应症】 捷诺维配合饮食控制和运动,用于改善2型糖尿病患者的血糖控制。 【捷诺维用法用量】 捷诺维单药治疗的推荐剂量为100mg每日1次。捷诺维可与或不与食物同服。 【捷诺维不良反应】 可能出现超敏反应;肝酶升高;上呼吸道感染;鼻咽炎。 【捷诺维禁忌】 对捷诺维中任何成份过敏者禁用。(参见注意事项,超敏反应和不良反应,上市后经验。)【捷诺维注意事项】 捷诺维不得用于1型糖尿病患者或治疗糖尿病酮症酸中毒。 肾功能不全患者用药:捷诺维可通过肾脏排泄。由于捷诺维适用于中重度肾功能不全患者的规格尚未上市,因此捷诺维不建议使用于中重度肾功能不全的患者(肌酐清除率[CrCl]<50mL/min)。

与磺酰脲类药物联合使用时发生低血糖:在捷诺维单药治疗或与已知不导致低血糖的药物(即二甲双胍或吡格列酮)进行联合治疗的临床试验中,接受捷诺维治疗的患者报告的低血糖发生率与安慰剂组相似。与其它抗高血糖药物和磺酰脲类药物联合使用时的情况相似,当捷诺维与已知可导致低血糖的磺酰脲类药物联合使用时,磺酰脲类药物诱导的低血糖发生率高于安慰剂组(参见不良反应)。因此,为了降低磺酰脲类药物诱导发生低血糖的风险,可以考虑减少磺酰脲类药物的剂量。目前尚未充分研究捷诺维与胰岛素的联合使用。 超敏反应:捷诺维上市后在患者的治疗过程中发现了以下严重超敏反应。这些反应包括过敏反应、血管性水肿和剥脱性皮肤损害,包括Stevens-Johnson综合征。由于这些反应来自人数不定的人群自发性报告,因此通常不可能可靠地估计这些反应的发生率或确定这些不良反应与药物暴露之间的因果关系。这些反应发生在使用捷诺维治疗的开始3个月内,有些报告发生在首次服用之后。如怀疑发生超敏反应,停止使用捷诺维,评估是否有其他潜在的原因,采用其他方案治疗糖尿病。(参见禁忌和不良反应“上市后经验”部分。) 【捷诺维儿童用药】 目前,尚未确定捷诺维在18岁以下儿童患者中使用的安全性和有效性。 【捷诺维老年患者用药】 临床研究中,捷诺维在老年患者(≥65岁)中使用的安全性和有效性与较年轻的患者(<65岁)是相当的。不需要依据年龄进行剂量调整。由于不建议中重度肾功能不全的患者使用捷诺维,因此建议在开始使用捷诺维前及使用过程中定期评估患者的肾功能。(见用法用量,“肾功能不全的患者”的部分)。 【捷诺维孕妇及哺乳期妇女用药】 孕妇及哺乳期妇女禁用 【捷诺维药物相互作用】 在药物相互作用研究中,西格列汀对以下药物的药代动力学不存在具有临床意义的影响:二甲双胍、罗格列酮、格列本脲、辛伐他汀、华法林以及口服避孕药。根据这些数据,西格列汀不会对CYP同工酶CYP3A4、2C8或2C9产生抑制作用。根据体外研究数据,西格列汀也不会抑制CYP2D6、1A2、2C19或2B6或诱导CYP3A4。 在2型糖尿病患者中进行了人群药代动力学分析显示,联合用药不会对西格列汀的药代动力学产生具有临床意义的影响。接受评估的药物是2型糖尿病患者常用的药物,其中包括降胆固醇药物(例如他汀类药物、贝特类药物、依折麦布);抗血小板药物(例如氯吡格雷);抗高血压药物(例

电子级磷酸

电子级磷酸的相关报告 前言 电子级磷酸属高纯磷酸,高纯磷酸(H3PO4)是电子行业使用的一种超高纯化学试剂,属于微电子化学产品之一,目前世界上仅有美国、日本、韩国等少数几个国家能够生产。电子级磷酸广泛应用于超大规模集成电路、大屏幕液晶显示器等微电子工业,主要用于芯片的湿法清洗和湿法蚀刻,包括:①基片涂胶前的清洗;②光刻过程中的蚀刻及最终去胶;③硅片本身制作过程中的清洗和绝缘膜蚀刻、半导体膜蚀刻、导体膜蚀刻、有机材料蚀刻等。 近年来,随着我国微电子和面板产业的高速发展,世界上许多著名IC晶圆代工、半导体封装以及LED、TFT—LCD企业巨头在中国大陆投资建厂,电子化学品的需求越来越大。“十五”期问,我国电子专用超净高纯化学试剂需求量超过1万t,而国内生产企业仅能提供10%。其中,国内通用型试剂市场今后的年增长率仍将维持在5%一8%左右,电子化学品市场预计超过80亿美元,年增长率近20%;世界电子化学品产业市场年平均净增长率为8%以上。电子级磷酸由于具有优良的性能,已成为电子工业不可缺少的电化学品之一,其需求量正逐年增长。 一、行业概况: 电子级磷酸发展背景 高纯电子级磷酸属电子化学品系列产品之一,电子化学品一般指与电子工业配套的专用 化学品。伴随着国际半导体芯片(IC)和液晶制造业迅速向中国转移, 我国微电子技术, 特别是半导体器件和集成电路微细加工的蚀刻与清洗工艺和薄膜液晶制造工艺所需的电子级磷酸的需求量也在稳步增长。其质量对IC 产品成品率、电性能、可靠性和液晶显示器( LCD) 质量都有重要影响。预计到2010年国内市场(包括出口)对电子级磷酸需求量将达到150~ 160 kt /a, 以后年均增长率10% 以上, 成为高档磷酸的一个重要市场。微电子技术发展主要特点是依靠不断缩小元器件特征尺寸、增加芯片面积、提高集成度和运行速度而迅猛发展。自上世纪70年代起, 集成电路芯片的发展速度基本上遵循每1.5 年集成度增加1倍, 芯片特征尺 寸每3年缩小一半, 芯片面积增加约1.5倍, 芯片中晶体管数增加约4倍的规律, 即基本上每3年就有一代新的IC 产品问世。与此密切相关的电子级磷酸也随着IC 集成度的不断提高、电子技术要求的提升, 对产品要求也会越来越严格。不同级别电子级磷酸其金属杂质和微粒要求不同。而不同线宽IC 制造业须由对应规格的电子级磷酸与其配套。 1发展前景 近年来由于工业和液晶显示电视迅速发展用于半导体、液晶显示器及其他电子设备做腐刻剂的电子级磷酸需求增长强劲。目前我国已成为世界上电子级磷酸需求增长最快的国家。我国生产电子级磷酸具有丰富的原料优势,有条件大力发展电子级磷酸产品,而且随着电子行业的不断发展,国内对电子级磷酸的需求将会大幅度增长。因此电子级磷酸市场无疑将具有广阔的发展前景。 2市场情况 电子级磷酸应用于发展前途广阔的IT产业,被称为“磷酸行业皇冠上的明珠”。其关键技术长时间垄断在美国、德国、日本等发达国家跨国集团企业手中。虽然我国黄磷、磷酸的产量已居世界第一位,但是精细磷化工的产品只占其中的4%。电子级磷酸成为我国市场供不应求、国家鼓励出口的高附加值产品。 我国高纯磷酸市场具有以下特点: (1)企业规模小,目前国内30多家,只有十几家企业进行生产和销售高纯磷酸,且规模均不大,主要集中在江苏、四川和贵州。

聚磷酸铵的应用及研究进展

聚磷酸铵的应用及研究进展

目录 0. 前言 (3) 1. APP的改性 (3) 1.1 偶联剂改性 (4) 1.2 三氯氰胺改性 (4) 1.3 表面活性剂改性 (5) 1.4 微胶囊化处理APP (5) 2. APP应用 (6) 2.1 APP改性PE及研究进展 (6) 2.2 APP改性PS及研究进展 (7) 2.3 APP改性PU及研究进展 (7) 2.4 APP改性POM及研究进展 (7) 3. 研究方向 (8)

摘要:本文首先介绍了对与APP的偶联剂改性、微胶囊化、表面活性剂改性以及三聚氰胺改性四种改性方法;利用APP改性PE、PU、PS、POM的方法以及被改性后材料阻燃性能、力学性能等方便的提高以及生活中的应用、研究进展,最后还介绍了APP的发展前景以及研究方向。 关键词:APP;改性方法;PE;PS;POM;PU; 0. 前言 聚磷酸铵(简称APP)是膨胀型阻燃剂(IFR)的重要组成部分,具有酸源及气源双重功能,具有含磷量高、含氮量多、热稳定性好、近于中性、阻燃效果好等优点,已成为阻燃技术研究领域中的一个热点[1]。APP通式(NH4)n+2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n在10~20之间为水溶性,称为短链APP;n>20为水难溶性的长链APP。APP的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的。 但是,目前受生产制备条件的限制,一般得到APP的聚合度只有几十。因此,APP具有一定的水溶性,而且与高分子材料的相容性较差,无法满足相应的力学性能要求。因此,对于以APP为主的膨胀型阻燃剂的研究主要集中在以下3个方面:(1)研究新的合成方法和工艺,提高APP的聚合度;(2)对现有APP产品进行表面改性(或微胶囊化);(3)开发膨胀型阻燃剂的高效协效剂。目的是设法提高膨胀型阻燃剂的阻燃效率,降低成本和添加量,改善其与有机材料的相容性,提高在潮湿环境下阻燃剂的抗溶出性能及APP的分解温度等。本文针对目前研究众多的APP为主的膨胀型阻燃剂的表面改性以及应用进行综述。 1. APP的改性 由于目前聚磷酸按的生产受到生产条件的限制,在生产工艺和设备落后的条件下,一般得到APP聚合度只有几十,而且其与有机材料的相容性不能完全达到相应的力学性能要求。另外,以APP为基础的膨胀型阻燃剂(IFR)在聚丙烯(PP)、

相关文档