文档库 最新最全的文档下载
当前位置:文档库 › 学习FLUENT心得笔记2

学习FLUENT心得笔记2

学习FLUENT心得笔记2
学习FLUENT心得笔记2

学习FLUENT心得笔记2(不看后悔哟)

进口排气孔边界条件:

用于计算进口排气孔处的损失系数,流动方向,以及周围的温度和压力。

输入:除了一些常见的参数外,主要是一个损失系数(前面的11个和压力边界条件相同)。对于损失系数,按照公式计算:其中ρ为密度,kL是一个无量纲的经验系数,注意:△p

表示流动方向的压力损失,你可以定义为常数或者速的多项式、分段式函数。定义面板和定义温度相关属性的相同。

进气风扇边界条件

用于模型化一个外部的有指定压力升高、流动方向、周围温度和压力的进气风扇。

输入:前11项和压力边界条件的一样。通过进气风扇的压力上升被认为是流速的函数。对于逆向流,进气风扇被当作一个带损失系数的出口排气孔。你可以设置压力上升为常量,或者速度的函数。

压力出口边界条件:需要指定一个静压,这只适用于亚音速流动,对于超音速,这个条件是无用的。流动的一些特性将由上游推倒得到。如果在解算过程中流动逆相,需要设置一系列的“逆流”条件。

输入:静压,

逆流条件:

总温,湍流参数,化学成分质量分数,混合物分数和变迁,过程变量,多相边界条件。

辐射条件,分散相边界条件。

定义静压:注意输入的静压和工作条件面板的工作压力相关,注意关于液体静压的评论。

系统也提供一个关于径向平衡边界条件的选择,选择该项的化,输入的静压只适用于最小半径,其他部分的压力通过下是计算,

r为距离回转轴的半径距离,vθ为切向速度。注意折椅边界条件对于旋转速度是零也适用。该条件只适用于3D计算和轴对称计算。

定义逆流条件:适用于流体被拖动穿过出口。

定义辐射参数:

定义分散相条件:

6.9压力far-field 边界条件:用于定于无穷远处自由流的压力条件,常被称作特性边界条件,因为这里使用因为这里使用特性信息(黎曼常量)来计算边界的流动变量。该条件仅适用于利用理想气体公式计算密度的流动,其他的不允许。该区域必须足够的远。

6.10 出口流边界条件:用于模拟结算前流动的速度和方向等都未知的流动,不需要任何设定,但是要能够了解该条件的限制条件。

不适用的场合:如果有进口压力边界条件,适用压力出口边界条件;模拟可压缩流;模拟密度变化的流动,即使是不可压缩流。

6.11 出口处放气孔边界条件:(间原文);

6.12 排气扇边界条件:

6.13 壁面边界条件:用于限制液体和固体区域。对于粘性流,默认使用无滑动的壁面边界条件,但是你可以为壁面指定一个切向速度(当壁面作平移或者旋转运动时)。或者通过指定剪切力定义一个滑动壁。(你也可以通过使用对称性边界条件在剪切力为0时定义一个滑动壁)。

输入:1,热力边界条件,2,壁面运动条件,3,剪切力条件(对于滑动壁),4,壁面粗糙度,5,成分边界条件,6,化学反应边界条件,7,辐射边界,8,分散相边界,9,多相边界。

定义热力边界:设计能量计算时,需要设定。有5中方法。1,固定热流密度,2,固定温度,3,对流热交换,4,外部辐射热交换,5,辐射和对流的复合热交换。

对于双面壁,你可以选择是否两面是对称的。如果热壁面的厚度不为零,还需要输入壁面的热阻和热源。你可以模拟边界和内部壁面内部的热传导。(称为壳传导)在壁面面板的thermal页面输入参数。

1,

输入热流密度,默认值为0,2,指定壁面温度后,通过公式计算热流密度。3,对流热交换,你需要输入自由流温度和对流热交换系数,利用公式计算热流密度。4,外部辐射,设定外部发射率和外部温度。5,辐射和对流复合热交换,需要输入4个参数。

2,

薄壁的热阻:你需要输入薄壁的材料种类,壁厚,以及内部的热源强度。热阻的定义为,其中,△x表示壁厚,k表示壁面的导热系数

3,

两面壁的热力边界条件:1,如果定义为对偶壁面,则不需要其他的热力参数,(同2中的参数),一面的设定将自动适用于另一边。2,非对偶的壁面,需要为两区域分别指定不同的参数(只能选定温度和热流密度)。这两个非对偶壁面可以有不同的厚度和导热系数。

4,

壁面中的壳传导:除了计算穿过壁面的热传导,也计算壁面内部的热传导(用于能量计算)。注意:壁面厚度不能是0,另外有几项限制:1,用于3D,2,用于分离的解算器,3,不能用于非预混合燃烧,4,不能用于多相混合物,VOF,等方法。5,当与离散坐标辐射模型共同使用时,壳传导壁不能是半透明的。6,壳传导壁不能拆分或者合并,如果想进行这种操作的话,可以先

不选择壳传导,对壁面进行操作,再对拆分或者合并后的壁面进行壳传导的计算。7,壳传导壁不能是已经采用的壁。8壳传导壁端面的热流密度不被包括再热平衡报告中。

5,

定义壁面运动:(在动量页中输入)。1,定义一个静止壁面:2,为壁面定义速度条件:注意你不能定义壁面的法向速度,而只能定义切向速度。定义相对或者绝对速度:如果壁面相邻的单元处于运动之中,你可以为壁面选择相对与相邻区域的速度。(如果相邻单元是静止的,则没有区别)。平移壁面速度:旋转壁面速度:需要定义旋转轴和旋转原点,(旋转轴是任意的)对于

3D问题,旋转轴通过旋转原点并且与指定的从坐标原点到指定方向点(X,Y,Z)矢量平行的轴,对于2D问题,只需指定旋转原点,方向为垂直平面。对于2D轴对称问题,旋转轴总为X 轴。注意壁面的切向旋转运动的模拟只有在壁面限制一个绕指定的旋转轴旋转的表面。速度分量基础上的壁面运动:通过分别定义各个方向的速度分量,(通过边界截面或者函数)。对于两面壁,你可以为壁面和阴影区域指定不同的运动速度。但是,不能为相邻固体区域的壁面指定速度。6,

定义壁面的剪切力条件:三种,1,非滑动;2,指定的剪切力,3,Marangoni Stress;注意对于运动的壁面,只能使用2,其他的适用与静止壁面。;

非滑动为默认的条件,说明相邻的流体和壁面以相同的速度一起运动(如果运动的话)。另外两种条件用于剪切力已知的条件(运动未知)。你可以设定各个方向的应力分量(常量或者函数),Marangoni Stess允许根据壁面温度设置表面张力的梯度。剪切力根据壁面的温度梯度和表面张力梯度进行计算。Marangoni Stess只有在设计能量计算是才有效。(在动量页面输入)

1,

模拟非滑动壁。2,指定剪切力。3,系统也可以表面张力由于温度变化产生的变形所引起的应力,这里dσ/dT表示表面张力对于温度的梯度。表示表面温度梯度。

壁面粗糙度:

改良的壁面定律:

(2)

粗糙管道的试验证明,在使用常规的对数尺作图时,壁面附近平均流速的斜率不变,但是截距变化。所以得到式2:这里u*表示,表示由于粗糙度变化引起的截距变化的数量。系统按照给定的参数,按照相应的公式(分段)来计算该值。(见原文)

设置粗糙度参数:(在momentum页面)1,屋里粗糙度高度,;2,粗糙度常数C Ks。是一个和粗糙类型有关的常量,默认值为0。5,(适用于通用的沙粒粗糙度)。现在没有对任意类型粗糙度都适用的设置方法。保证从壁面到相邻单元质心的距离要大于Ks。

定义壁面的成分边界条件:

默认的成分的质量梯度为0,如果想输入质量分数,

定义壁面的反应边界条件:如果成分的质量梯度为0,则不参与反应。(在成分边界页面设置)。

定义辐射,离散相,多相边界条件。如果用户自己定义单位,可以在UDS页面设置。

剪切力的计算:对层流:

壁面的热计算:

6.14 对称边界条件:注意中心线处使用轴心边界条件。对于几何形状对称,但是流动不对称的模拟,不能采用该边界条件,而要采用旋转周期的边界条件。特性:对称平面法线速度为0,法线方向各变量梯度为0。因此,对称平面处的通量为0,由于剪切力也为0,所以将对称平面定义为“滑动”壁面(对于粘性流计算)。

周期边界条件:两种,一种允许压力损失,一种不允许。适用于模型中两个相对平面处的流动完全一样的情况。

不允许压力损失的情况:1,平移周期边界,边界和几何轴心平行,2,旋转周期,边界和几何轴心有夹角。需要指定周期(连接解算器也能输入压力升高)。注意:与边界相邻区域的单元不一定要求运动。你需要利用grid/check来计算几何体中所有周期边界和轴线的最大、最小和平均夹角。如果这些值之间的差异不能忽略的话,那么你的模型就不具有周期特性。

6.15轴线边界条件:

6.17 流体边界:指定流体材料。如果你在模拟成分传输和燃烧,你不需要指定该边界。(而要在成分模型面板处指定)。你也可以定义源(热、质量等),你也可以定义一个层流区域(用特定的湍流模型时)。计算所有的流动方程。

6.18 固体边界。知能够计算热传导,而不能计算流东方程的区域(不一定非得是固体)。

6.19 多孔介质边界:

6.20 风扇边界:

6.21 散热器边界调件:能够计算压力损失和热传导系数。(是散热器法线速度的函数)

v表示法线速度,KL是试验系数。可以是常数,也可是多项式,分段函数。

对于多项式,有公式:。

对于热计算:;其中系数h可为常数或函数。对多项式:

你可以作后处理。

6.22 多孔突变边界条件:

6.23 用户定义的风扇边界条件:你可以周期的产生截面文件,用于指定风扇的压力上升,旋转和径向速度等特性。(你需要编写程序用于周期性地改变风扇的参数)。

6、24 热交换器边界:用集总参数的方法模拟热交换器。说明压力损失和冷却剂的热损耗。因为沿冷却剂路径温度是变化的,所以热损也是不同的。所以模型中沿路径分为若干个小的单元。每个单元的入口温度经过计算后,确定该处的热损耗率。

热交换器理论:

6.25 边界截面:四种

1,

点截面。另外通过插值确定其他未知点。由于点是无序的,所以,要提供临近区域相关的点。2,

线截面。点有序排列。因此插值时较方便。用于2D。

3,

网格截面。用于3D。

4,

半径截面。

截面文件格式:每个文件可以有多个截面,每个界面的组成,1,名称,2,类型,3,点的数目。注意所有的数量要适用SI单位,因为不进行单位转换。

重定向边界截面。

对于3D,可以重新定义一个截面的方向。因此可以重复利用。(这里假设截面是平面)。

6.26 固定变量值:。

用于集中参数法(或者称为黑箱法)即只需知道输出值即可的地方。可以被固定的值包括:速度分量,质量分数,温度(只有你使用分离解算器时,才能采用),湍流参数和熵,以及用户自定义标量。

6.27 定义质量、动量和其他源。

你需要为要设置源的若干个单元设置一个单独的区域。

1.

一个流量源不能被一个进口代替(由于尺度问题)。如果你要模拟一个小于一个单元的进口,你可以把这个单元放到一个区域,然后定义这个区域为源。

2.

对于一个能量源,你可以把它放到产热的单元,然后把单元区域设为源。

3.

由于反应产生的成分源在一个模型中可能不是很明确。如在模拟火焰的时候,你需要指定一个生成PM的区域。

注意:如果你定义一个质量源,你也要定义一个动量和能量源,不然的话,会引起流入区域速度和温度的降低。所有的源必须按照SI单位定义。

定义过程:你首先要计算源区域的体积。(你定义的是每单位体积的量)

1,

质量源:你需要定义各成分的质量和总质量(有一种成分的质量不需输入,系统通过总质量和分质量进行计算得到)。

2,

动量源:

3,

能量源:

4,

湍流源:

6.28 带GT的对偶性边界

7 物理性质

1,

密度或者分子量,2,粘度,3,热容。4,热传到率,5,质量扩散系数。6,标准焓,7,分子运动论参数。

材料种类:通过读入Case文件来定义材料。可以自己定义新的材料。

你可以自己定义材料库,位置:fluent\cortex\lib\propdb.scm

密度:1,常量,2,温度和成分的函数。

对于可压缩流,理想气体方程是合适的函数。

对于不可压缩流体:1,如果不希望是温度的函数,那么应该是一个常量;2,虽然流体是不可压缩的,但是你希望密度随温度变化(按照理想气体定律),3,密度是温度的函数,4,对于自然对流情况。

多区域模型中混合密度的关系:注意:1,对于分离解算器,不使用任何多相方法,所以理想气态方程不能和其他方法同时使用。2,所有的区域共享同一个运行压力和运行温度。

不可压缩理想气体定律:其中Pop表示运行压力,R表示通用气体常数,Mw表示分子量,所以密度只和温度有关,与当地压力无关。所以要注意运行压力的输入。

可压缩理想气体定律:这里p表示相对压力,(就是常见的理想气体方程)。

对于多相混合物的密度:1,对于非理想气体,选择volume-weighted-mixing-law,,其中,Yi 是质量分数。2,对于理想气体,其中Mw,i表示I中成分的分子量。

如果对于不可压缩流体采用理想气体方程,用于计算密度。

粘度:1,常数,2,分子运动论,3,非牛顿流体黏性,4,温度或成分函数,5,用户定义。

温度函数:有两个已知的适用于空气的公式,

热传导率:1,常数,2,分子运动论,3,温度或者成分函数,4,用户定义,5,各向异性(固体)

热容:1,常数,2,分子运动论,3,用户定义,

辐射特性:对于P1,Roseland模型,需要吸收系数和散射系数。Dtrm模型,只需要吸收系数。对Do模型,对半透明介质,还需要折射率参数。

吸收系数是对与气体而言的,见比尔定律。

常数;多成分吸收系数:水蒸气和二氧化碳的质量分数的函数。(用于燃烧计算)。你需要选择吸收路径的计算方法,1,wsggm-cell-based,不许输入其他参数,2,wsggm-domain-based,会计算区域的平均直径(有效行程),不需其他输入3,wsggm-user-specified,用户自己设置路径长度。另外微粒物会影响吸收系数。

散射系数:默认为0,各向同性的,可以设为常数,温度函数或者用户定义函数。对于燃烧系统,由于微粒物的存在,需要提高该值得设定。(同吸收系数)

折射率:

7.7 质量扩散系数

对于成分的输运方程,有两种设置质量扩散系数的方法。长用的是Fick’s 定律。对于特殊要求,可以使用完整的多成分扩散模型(计算量较大)。

对于层流,采用公式:(1)

其中,Di,m为混合物中I组分的质量扩散系数。Dt,I 为热量扩散系数。

对于湍流:

热扩散系数:

经过该式计算后,重的分子运动的较慢,轻的运动较快。

质量扩散系数的输入:三种方法,

一是,恒定的稀释逼近,对所有的成分设定相同的常量系数。

二是,稀释逼近,为每种成分分别设置常量系数。

三是,多成分方法,定义成分I在成分j中的双元系数,Di,j ,可以是常量,函数。

对于稀释混合物(载体的浓度较大),可以使用前两种方法;而对于非稀释混合物,可以采用第三种输入方法。系统会自动计算I种成分在混合物中的扩散系数。

热扩散系数的输入:

7.8 标准焓(生成焓或者生成热)

对于反应速率无穷大或者漩涡耗散模型的反应流动,需要该参数。

7.9 标准熵

7.10 分子热传递系数

7.11 分子运动论参数

7.12 运行压力

为了在低马赫条件下克服圆整带来的误差影响,使用运行压力(系统平均绝对压力)进行修正。

所有你输入和Fluent报告的都是表压Pgauge.

对于高马赫数的流动,运行压力的意义不大,所以你可以设定为0,此时Pabs将等于Pgauge.

Density Relationship Mach Number

Regime

Operating

Pressure

Ideal Gas Law0.1$" type="#_x0000_t75">

0 or Mean Flow Pressure

alt="${\rm M} Mean Flow Pressure

Profile

Function

of Temperature

Incompressible not used Constant Incompressible not used

Incompressible Ideal Gas Law Incompressible

Mean Flow

Pressure

上表是推荐的设置值。

7.13 参考压力位置

对于不包括压力边界的流动,Fluent在每次迭代后,使用参考压力调节整个区域的压力,保证不浮动。

7.14 真实气体模型

主要用于冷却剂。

8 模拟基本流体流动

质量守恒定律:

Sm是从分散相中加入到连续相的质量。

动量守恒定律:其中是应力张量。

周期性流动:两种,一种没有压降(循环的),一种有压降(周期的)(线性似的周期的流动或者充分发展流动)

线性似周期性流动:应用广泛,包括管排、紧凑型换热器等,在这些模拟中,相似的流动重复出现。另外也包扩充分发展的管流。

主要的约束:1,不可压缩流,2,几何模型必须是平移周期型,3,耦合解算器只可以设置压力变化,分离解算器可以设置压力变化和流量。4,没有静质量的输入或者输出,5,如果包括输入或者输出,成分可以模拟,不允许化学反应。6,分散相或者多相不允许。

速度定义:

压力定义:

对于耦合解算器,△p是一个常数,对于分离解算器,

可以分为线性变化成分和一个周期性的成分。其中β未知,需要通过子迭代来进行计算。你可以设置进行子迭代的步数。

应用:首先,你需

要生成一个有多个平移周期性边界的网格。

输入:

1,

分离解算器:可以设置压力梯度或者质量流量。设置质量流量时,需要指定松弛因子、迭代步数、的初始值来控制β的计算。

2,

漩涡或旋转流动

3,

可压缩流动:要设置运行压力(可以认为是环境压力),

4,

非粘性流

9 模拟运动区域的流动(可以使用旋转参考系)

1 多重参考系模型

2 混合平面模型

3 滑动网格模型

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

Fluent 学习心得

Fluent 学习心得 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大

学习fluent (流体常识及软件计算参数设置)

luent中一些问题----(目录) 1 如何入门 2 CFD计算中涉及到的流体及流动的基本概念和术语 2.1 理想流体(Ideal Fluid)和粘性流体(Viscous Fluid) 2.2 牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid) 2.3 可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid) 2.4 层流(Laminar Flow)和湍流(Turbulent Flow) 2.5 定常流动(Steady Flow)和非定常流动(Unsteady Flow) 2.6 亚音速流动(Subsonic)与超音速流动(Supersonic) 2.7 热传导(Heat Transfer)及扩散(Diffusion) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不 同? 3.1 离散化的目的 3.2 计算区域的离散及通常使用的网格 3.3 控制方程的离散及其方法 3.4 各种离散化方法的区别 4 常见离散格式的性能的对比(稳定性、精度和经济性) 5 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么? 6 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难? 6.1 可压缩Euler及Navier-Stokes方程数值解 6.2 不可压缩Navier-Stokes方程求解 7 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 8 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别? 9 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解? 10 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节? 11 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢? 12 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理? b、计算域内的内部边界如何处理(2D)? 13 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些? 14 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的? 15 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收

hyperworks学习心得及常见问题

制造系统信息集成技术(答案) 一、简答题: 1、如何将.igs文件或.stl文件导入hypermesh进行分网? files\import\切换选项至iges格式,然后点击import...按钮去寻找你的iges文件吧。划分网格前别忘了清理几何 2、在使用TOOL->reflect命令,映射单元时,得到了映射的结果,原先的对象却不见了,应如何处理? 答:方法1、在选择reflect后命令后,应选择duplicate命令,复制欲操作的对象。 方法2、先把已建的单元利用organize〉copy到一个辅助collector中,再进行操作。 3、igs导入hypermesh后,想将模型整体尺寸缩小一半,在hypermesh中能实现么? 答:可以在tool panel中,选择scale命令完成。 4、对加面载荷的菜单,magnitude是力的大小,magnitude%是什么? magnitude%是指在图形区中的显示设置,100%表示1:1的比例。magnitude%是显示的箭头大小与施加压力大小的百分比 5、另外ruled和skin有什么不同呢? skin可以构造曲面。ruled构造直平面。 6、在进行单元的删除或隐藏命令时,常用的by config 是什么选择方式? type 里的ctria3和quad4又是什么? 答:通过config命令用来选择单元的类型。 config也可以认为是一种大的类型,他提供了单元的基本形式,如4节点quad等,但是对应于不同的求解器,即使是4节点的quad也有不同的类型,如适用于平面应力,平面应变的,壳单元等了。type是具体的单元类型。 举个例子,比如同样4节点quad,选择config为quad4,那么广义的层面上就与3角形,体单元区分开了。type中选择plane1呢,说明你的单元是平面应力类型单元(这个在你之前的单元属性中已经定义了,否则没用)。这样又进行了细分,可以很方便的定位你要选择的单元。可以说分的越细,我们选择越方便。 7.Hypermesh常用的单位制是什么?如果某一长方体钢质模型为均一材质,对其进行强度计算,其密度、弹性模量、泊松比分别为:7.8e3Kg/M3,2.06E8,0.3,强度计算结果最大应力点为240Mpa,如果利用ANSYS作为求解器,分别写出在所设定的单位制下上述指标的单位及数值。 1. Hypermesh默认单位系统:tonne,mm,s, N, MPa单位系统,这个单位系统是最常用,还不易出错(吨,mm和s)。 备注:长度:m;力:N;质量:kg;时间:s;应力:Pa;密度:kg/m3 长度:mm;力:N;质量:吨;时间:s;应力:MPa;密度:吨/m m 3 8.hypermesh与其他软件的几何接口问题,通过什么接口进行模型转换? (一)Autocad建立的模型能导入hypermesh: 因为autocad的三维建模功能不是很强,一般不建议在autocad里面进行建模。如果已经在autocad里面建好模型的话,在autocad里面存贮成*.dxf的格式就可以导入到hypermesh里面。 (二)I-DEAS、catia的装配件导入hm:

fluent学习笔记

fluent技术基础与应用实例 4.2.2 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新 进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划 分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故 在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型

(1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法: ·非耦合求解 segregated ·耦合隐式求解 coupled implicit ·耦合显示求解 coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建 议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的存比较大。若果必须要耦合求解而机器存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和 组分方程解的步骤不同。 分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致 的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程, 收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition

fluent学习笔记

fluent技术基础与应用实例 fluent数值模拟步骤简介 主要步骤: 1、根据实际问题选择2D或3Dfluent求解器从而进行数值模拟。 2、导入网格(File→Read→Case,然后选择有gambit导出的.msh文件) 3、检查网格(Grid→Check)。如果网格最小体积为负值,就要重新进行网格划分。 4、选择计算模型。 5、确定流体物理性质(Define→Material)。 6、定义操作环境(Define→operating condition) 7、制定边界条件(Define→Boundary Conditions) 8、求解方法的设置及其控制。 9、流场初始化(Solve→Initialize) 10、迭代求解(Solve→Iterate) 11、检查结果。 12、保存结果,后处理等。 具体操作步骤: 1、fluent2d或3d求解器的选择。 2、网格的相关操作 (1)、读入网格文件 (2)、检查网格文件 文件读入后,一定要对网格进行检查。上述的操作可以得到网格信息,从中看出几何区域的大小。另外从minimum volume 可以知道最小网格的体积,若是它的值大于零,网格可以用于计算,否则就要重新划分网格。 (3)、设置计算区域 在gambit中画出的图形是没有单位的,它是一个纯数量的模型。故在进行实际计算的时候,要根据实际将模型放大或缩小。方法是改变fluent总求解器的单位。 (4)、显示网格。 Display→Grid 3、选择计算模型 (1)、基本求解器的定义 Define→Models→Solver Fluent中提供了三种求解方法:

·非耦合求解segregated ·耦合隐式求解coupled implicit ·耦合显示求解coupled explicit 非耦合求解方法主要用于不可压缩流体或者压缩性不强的流体。 耦合求解方法用在高速可压缩流体 fluent默认设置是非耦合求解方法,但对于高速可压缩流动,有强的体积力(浮力或离心力)的流动,求解问题时网格要比较密集,建议采用耦合隐式求解方法。耦合能量和动量方程,可以较快的得到收敛值。耦合隐式求解的短板:运行所需要的内存比较大。若果必须要耦合求解而机器内存不够用,可以考虑采用耦合显示求解方法。盖求解方法也耦合了动量,能量和组分方程,但是内存却比隐式求解方法要小。 需要指出的是,非耦合求解器的一些模型在耦合求解器里并不一定都有。耦合求解器里没有的模型包括:多相流模型、混合分数/PDF燃烧模型、预混燃烧模型。污染物生成模型、相变模型、Rosseland辐射模型、确定质量流率的周期性流动模型和周期性换热模型。 %%%有点重复,但是可以看看加深理解 Fluent提供三种不同的求解方法;分离解、隐式耦合解、显示耦合解。 分理解和耦合解的主要区别在于:连续方程、动量方程、能量方程和组分方程解的步骤不同。分离解按照顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程。隐式解和显示解的区别在于线性耦合方程的方式不同。 Fluent默认使用分离求解器,但是对于高速可压流动,强体积力导致的强烈耦合流动(流体流动耦合流体换热耦合流体的混合,三者相互耦合的过程—文档整理者注)(浮力或者旋转力),或者在非常精细的网格上的流动,需要考虑隐式解。这一解法耦合了流动和能量方程,收敛很快。%%% (2)、其他求解器的选择 在实际问题中,除了要计算流场,有时还要计算温度场或者浓度场等,因此还需要其他的模型。主要的模型有: Multiphase(多相流动)viscous(层流或湍流)energy(是否考虑传热)species(反应及其传热相关) (3)操作环境的设置 Define→operation→condition 该项设置所考虑的主要内容为外部环境对内部反应的影响 4、定义流体的物理性质 5、设置边界条件 Define→boundary condition (1)、设置流体区域(fluid)的边界条件

FLUENT学习经验总结(狠珍贵,学长传授)

1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 答:学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid): 在流体的运动过程中,由于压力、温度等因素的改变,流体质点的体积(或密度,因质点的质量一定),或多或少有所改变。流体质点的体积或密度在受到一定压力差或温度差的条件下可以改变的这个性质称为压缩性。真实流体都是可以压缩的。它的压缩程度依赖于流体的性质及外界的条件。例如水在100个大气压下,容积缩小0.5%,温度从20°变化到100°,容积降低4%。因此在一般情况下液体可以近似地看成不可压的。但是在某些特殊问题中,例如水中爆炸或水击等问题,则必须把液体看作是可压缩的。气体的压缩性比液体大得多,所以在一般情形下应该当作可压缩流体处理。但是如果压力差较小,运动速度较小,并且没有很大的温度差,则实际上气体所产生的体积变化也不大。此时,也可以近似地将气体视为不可压缩的。 在可压缩流体的连续方程中含密度,因而可把密度视为连续方程中的独立变量进行求解,再根据气体的状态方程求出压力。不可压流体的压力场是通过连续方程间接规定的。由于没有直接求解压力的方程,不可压流体的流动方程的求解具有其特殊的困难。 D. 层流(Laminar Flow)和湍流(Turbulent Flow):

Gambit Fluent小技巧

1.Gambit中修改背景颜色 选Edit→Defaults→GRAPHICS,将Variable中的WINDOWS_BACKGROUND_COLOR 后面的Value值改为想要的颜色,例如要将背景颜色变为白色,需在Value后输入white,然后单击“Modify”。 2. Gambit中实体及网格颜色的修改 选Operation中“实体”按钮(即第一排第一个),再选Geometry中“实体”按钮(即第二排第四个),再选V olune中颜色修改按钮(即第三排第五个),弹出修改颜色对话框,可以对实体及网格颜色进行修改。 注:可通过相同的方式对点、线、面(线、面网格)的颜色进行修改。 3.Fluent中结果显示窗口背景颜色修改 选File→Hardcopy,弹出Graphics Hardcopy窗口,单击“Preview”后弹出“Question”对话框,单击“No”;取消“Options”中“Reverse Foreground/Background”前的“√”,再单击“Preview”,单击“Yes”,即可将背景颜色变为白色。 4.Fluent中Solution XY Plot曲线处理 Fluent中Solution XY Plot可以导入多条XY Plot曲线,其方法是先将每条曲线保存,单击“Load File…”弹出“Select File”对话框,选择需要处理的多条曲线,单击“OK”; 若需要改变曲线类型,则单击“Curves…”弹出“Curves”对话框,左上角“Curve#”下数值为“0”则对应第一条曲线,为“1”对于第二条曲线,依次类推… 若要修改第一条曲线,先将“Curves”下数值调为“0”,则可改变曲线格式(Line Style →Pattern)、颜色(Line Style→Color)、粗细(Line Style→Weight);若要修改曲线上标示符号,可修改符号样式(M arker Style→Symbol)、颜色(M arker Style→Color)、及尺寸大小(Marker Style →Size),最后单击“Apply”。 若要修改第二条曲线,则须先将“Curves”下数值调为“1”,其余操作与上述相同。5.Gambit中网格显示时隐藏实体(面、线及点) 单击“Specify Display Attributes”按钮(即Gambit中右下角最后一排第二个),弹出“Specify Display Attributes”对话框,分别选中“V olumes”(“Face”“Edges”“Vertices”)(单击其前小四方形,选中后为红色),然后单击其后向上的黑色箭头,选择要隐藏的体(面、线及点);然后选中“Visible”及“Off”(同样,选中后前面方形变为红色),最后单击“Apply”即可。

fluent学习心得

1. 分离式求解器和耦合式求解器:都适用于从不可压到高速可压的很大范围的流动,总得来说,计算高速可压时,耦合式求解器更有优势;分离式求解器中有几个模型耦合式求解器中没有,如VOF,多项混合模型等。 2. 对于绝大多数问题,选择1st-Order Implicit就已经足够了。精度要求高时,选择2st-Order Implicit.而Explicit选项只对耦合显式求解器有效。 3. 压力都是相对压力值,相对于参考压力而言。对于不可压流动,若边界条件中不包含有压力边界条件时,用户应设置一个参考压力位置。计算时,fluent强制这一点的相对压力值为0. 4. 选择什么样的求解器后,再选择什么样的计算模型,即通知fluent是否考虑传热,流动是无粘、层流还是湍流,是否多相流,是否包含相变等。默认情况,fluent只进行流场求解,不求解能量方程。 5. 多相流模型:其中vof模型通过单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。 6. 能量方程:选中表示计算过程中要考虑热交换。对于一般流动,如水利工程及水力机械流场分析,可不考虑传热;气流模拟时,往往要考虑。默认状态下,fluent在能量方程中忽略粘性生成热,而耦合式求解器包含有粘性生成热。 7. 粘性模型:inviscid无粘计算;Laminar模型,层流模型;k-epsilon(2 eqn)模型,目前常用模型。 8. 材料定义:比较简单 9. 边界条件:见P210-211 10. 给定湍流参数:在计算区域的进口、出口及远场边界,需给定输运的湍流参数。Turbulence specification Method项目,意为让用户指定使用哪种模型来输入湍流参数。用户可任选其一,然后按公式计算选定的湍流参数,并作为输入。 湍流强度,湍动能k,湍动耗散率e。 11. 常用的边界条件: 压力进口:适用于可压和不可压流动,用于进口的压力一直但流量或速度未知的情况。Fluent 中各种压力都是相对压力值。 速度入口:用于不可压流,如果用于可压流可能导致非物理结果。 质量进口:规定进口的质量。 压力出口:需要在出口边界处设置静压。静压只用于亚音速流动。在fluent求解时,当压力出口边界上流动反向时,就是用这组回流条件。出口回流有三种方式:垂直与边界,给定方向矢量,来自相邻单元。 出流:用于模拟求解前流速和压力未知的出口边界。适用于出流面上的流动情况由区域内外推得到,且对上游没影响。不用于可压流动,也不能与压力进口边界条件一起是用。 压力远场:只适用于可压气体流动,气体的密度通过理想气体定律来计算。 12. 设置求解控制参数:为了更好的控制求解过程,需要在求解器中进行某些设置,内容包括选择离散格式、设置欠松弛因子、初始化场变量及激活监视变量等。 Fluent允许用户对流项选择不同的离散格式。默认情况下,当是用分离式求解器时,所有方程中的对流相一阶迎风格式离散;耦合式求解时,二阶精度格式,其他仍一阶。对于2D三角形和3D四面体网格,注意要是用二阶精度格式。一般,一阶容易收敛,精度差。 欠松弛因子:为了加速收敛,在迭代10次左右后,检查残差是增加还是减小,若增大,则减小欠松弛因子的值;反之,增大它。 Pressure-velocity coupling:包含压力速度耦合方式的列表。该项只在分离式求解器中出现。可选SIMPLE、SIMPLEC、PISO。多数选择simplec,piso算法主要用于瞬态问题的模拟,

fluent中的小技巧

[转帖]等值线图、矢量图、流线图、云图、直方图和XY散点图 等值线是在所指定的表面上通过若干个点的连线,在这条线上的变量(如压力)为定值。在二维或三维空间上,将横坐标取为空间长度或时间历程,将纵坐标取为某一物理量,然后用光滑曲线获取面在坐标系内绘制出某一物理量沿空间或时间的变化情况。等值线图是在物理区域上由同一变量的多条等值线组成的图形,即用不同颜色的线条表示相等物理量。等值线图包含线条图形和云图两种,云图是使用渲染的方式,将流场某个截面上的物理量用连续变化的颜色块表示其分布。 用户可以确定要显示哪个变量的等值线,可确定显示哪个面上的值,还可以指定要显示的等值线的取值范围。 矢量图:矢量图是直接给出二维或三维空间里矢量(如速度)的方向和大小。速度矢量图是反映速度变化、旋涡、回流等的有效手段,是流场分析最常用的图谱之一。在默认情况下,矢量在每个网格单元的中心绘制,用箭头表示矢量的方向,用箭头的长度和颜色表示矢量的大小。 用户可以选择指定要显示哪个表面的速度矢量,可以决定显示哪种速度(绝对速度或相对速度),也可以决定根据什么变量(如温度值、湍动能等)的值来决定颜色。 流线图:是用不同颜色线条表示质点运动轨迹,将计算域内无质量粒子的流动情况可视化。用户可指定粒子从哪个表面上释放出来。 Fluent允许用户从解的结果、data文件、残差数据中提取数据,来生成直方图与XY散点图。并且允许用户虚拟地定义任何变量或函数。 直方图是由数据条所组成的图形。直方图的横坐标是所希望的解的量(如密度),纵坐标是单元总数的百分比。使用Plot/Histogram命令,打开Solution Histogram对话框,设置直方图的内容及坐标轴。 XY散点图是由一系列离散的数据构成的线或符号图表。可以根据当前流场的解创建XY散点图,也可以从外部数据文件中取数据来创建XY散点图。 如何将fluent计算出的图形导入到tecplot中? 在fluent菜单中 点击File-Export : 在File Type 列表中选中Tecplot; 在surface列表中选中所有部分; Function to Write列表中选中所需要的 然后单击Write 命名 单击OK;数据文件输出了。 然后双击Tecplot快捷方式打开。 选择File-LOad data file 打开文件导入即可。

cfd学习报告

CFD学习报告 姓名段蒙 学号 M201370932 完成日期 2014 年4月17日 华中科技大学

CFD学习报告 一、几何建模 以《计算流体动力学及其应用》课本上166页处例子为参考,利用GAMBIT 进行三维建模,具体问题为:冷水和热水分别自混合器两侧沿水平切方向流入,在容器内混合后经过下部渐缩通道流入等径的出流管,最后流入大气。混合器如图1.1所示, 图 1.1 混合器示意 具体绘图过程为: 1.创建混合器主体:高度为8,半径为10; 2.创建混合器的切向入流官:半径为1,长度为10,并对创建好的入流官进行180度关于Z轴对称复制; 3.将三个圆柱体合并为一个整体; 4.创建混合器主体下的圆锥:高度为5,小端半径为1,大端半径为10,方向Z 轴反向; 5.创建出流小管:高度为5,半径为1; 6.将混合器的上部、圆锥部分以及下部出流小管合并为一个整体; 上述步骤完成后所得的图如图1.2所示。

二、网格划分: 1.对混合器内部流动区域划分网格:Spacing 选择Interval size ,并填入0.5,所得如图 2.1所示 2.检查网格划分情况:利用Examine Mesh 功能查看底部圆锥面的网格划分情况 图1.2 混合器整体配置图 图 2.1 混合器内部流动区域的网格

如图2.2所示 图2.2 混合器底部圆锥面的网格划分情况 3.设置边界条件:①指定边界类型:将两个入流管分别命名为inlet-1和inlet-2,类型为VELOCITY_INLET;出流管命名为outlet,类型设为PRESSURE_OUTLET;②指定区域类型:Action设为Add,Name中输入FLUID,选择所有体。 4.输出网格文件:输出网格文件为1.mesh 三、求解计算 启动fluent软件,选择3d,进行三维计算,步骤如下: 1.检查网格并定义长度单位:①导入网格文件1.mesh;②选择Grid/Check命令,结果反馈如图3.1所示;③光顺网格;④确定长度单位:选择Grid/Scale命令,单位选择cm;⑤显示网格:如图3.2所示

EFCodeFirst学习笔记

EF Code First 学习笔记:约定配置 要更改EF中的默认配置有两个方法,一个是用Data Annotations(在命名空间https://www.wendangku.net/doc/e715724092.html,ponentModel.DataAnnotations;),直接作用于类的属性上面;还有一个就是Fluent API,通过新增相应的配置类来覆盖默认配置。现在我们用这两个来对比了解EF中的约定配置。 主键:KEY Data Annotations:通过Key关键字来标识一个主键 [Key] public int DestinationId { get; set; } Fluent API: public class BreakAwayContext : DbContext { public DbSet Destinations { get; set; } public DbSet Lodgings { get; set; } protected override void OnModelCreating(DbModelBuilder modelBuilder) { //Fluent API modelBuilder.Entity().HasKey(d => d.DestinationId); base.OnModelCreating(modelBuilder); } } 外键 Data Annotations: public int DestinationId { get; set; } [ForeignKey("DestinationId")] public Destination Destination { get; set; } 注意,指定列名存在,如上面的DestinationId,则类中必须存在名称为DestinationId的属性。 Fluent API: modelBuilder.Entity().HasRequired(p => p.Destination).WithMany(p=>p.Lodgings).HasForeignKey(p => p.DestinationId); 长度

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得 1 有限元分析方法原理 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。由于其方法的有效性,迅速被推广应用于机械结构分析中。随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。 随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。 ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。 有限元分析一般由以下基本步骤组成: ①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点; ②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解; ③建立单元刚度方程; ④组装单元,构造总刚度矩阵; ⑤应用边界条件和初值条件,施加载荷; ⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移; ⑦通过后处理获得最大应力、应变等信息。 结构的离散化是有限元的基础。所谓离散化就是将分析的结构分割成为有限

fluent图形后处理技巧

在图的图的标题栏上右键,先在page setup中选择color,然后选copy to clipboard 就可以了,不用截图。 你可以这样子,没必要colormap一定非得在左边,是吧?如果你的模型是扁长型的话,你可以这样子:在fluent中display>options ,在option panel中的右下角,在colormap alignment 中选bottom。然后在显示的图形界面中将图放大,并将其拖到靠近colormap的地方,再继续我之前帖子中的操作就可以了。 数据可以在显示图形时调整好,然后不要关闭调整好的窗口,连续导入不同的数据进行显示就可以了..或者可以采用tecplot来进行后处理,图片会漂亮些.... File-hardcopy-调整一下即可 不用改,复制到word里背景直接就变成白色了 生成图片使用file下的hardcopy命令,有一个选项是背景色翻转,你虽然看到的是黑色,输出图片背景是白色 的。还有一种方式就是显示也希望是白色背景,使用命令display>set>colors>background 把gambit的背景变成白色 在edit的default的graphic的windows-background-color中把black修改成white,然后modify f luent中默认的图形背景颜色为黑色,这对于要发表的图形很不利,因此很多人希望背景为白色,那么可以使用如下命令:Lf ile-》hardcopy设置格式选择为jpg,color选项之后save那么图形就是希望的白色背景。我发现似乎转化成jpg之后没有运行时候显示的清晰,略微模糊一些,大家可以实验其他设置选择,以求得最好的效果zV>3}D另外可以在控制台命令行输入display/set/color回车之后就显示哪些可以设置的选择,敲进比如background之后就可以改变了,提醒一下单纯改变背景为黑色会使得legnd变成一个梯子,其数字会消失。you should change foreground from white to black .this can be done at he same dislay/set/colors> as the background.p<> 好怎么去掉FLUENT图形显示的黑色背景,一般都建议用抓图后反色背景。另外还有数据显示范围比较小,数据显示相同,色轴没有差别的情况。 本人通过摸索,发现这两个问题可以直接在FLUENT里设置。

相关文档