文档库 最新最全的文档下载
当前位置:文档库 › 贪心算法详解(C++版)

贪心算法详解(C++版)

贪心算法详解(C++版)
贪心算法详解(C++版)

【例3-1】删数问题

【问题描述】

键盘输入一个高精度的正整数n(n<=240位),去掉其中任意s个数字后剩下的数字按原左右顺序将组成一个新的正整数。编程对给定的n和s,寻找一种方案,使得剩下的数字组成的数最小。

输入:

N

S

输出:

最后剩下的最小数。

【样例输入】

178543

4

【样例输出】

13

【题解】

由于正整数n的有效位数为240位,所以很自然地采用字符串类型存储n。那么如何解决哪s位被删呢?是不是最大的s个数字呢?为了尽可能的逼近目标,我们选取的贪心策略为:每一步总是选择一个使剩下数最小的数字删去。即按高位到低位的顺序搜索,若各位数字递增,则删去最后一个数字;否则删去第一个递减区间的首字符,这样删一位便形成了一个新数字串。然后回到串首,按上述规则再删下一个数字。重复以上过程s次为止,剩下的字串便是问题的解了。

【标程】

#include

#include

#include

using namespace std;

char a[100001];

int main()

{

int n,i,j,l,k;

gets(a);

cin>>n;

l=strlen(a);

for(i=1;i<=n;i++)

{

for(j=0;ja[j+1])

{

for(k=j;k

break;

}

l--;

}

for(i=0;i

{

if(a[i]!='0')

{

k=i;

break;

}

}

for(j=i;j<=l-1;j++) cout<

cout<

return 0;

}

【例3-2】取数游戏

【问题描述】

给出2n(n<=100)个自然数(数小于等于30000)。游戏双方分别为A方(计算机)和B方(对弈的人)。只允许从数列两头取数。A先取,然后双方一次轮流取数。取完时,谁取得的数字总和最大为取胜方;若双方和相同,属于A胜。试问A方可否有必胜的策略?

输入:4

7 9 3 6 4 2 5 3

R R R R

键盘输入n以及2*n个自然数。

输出:

3

5

2

4

6

3

9

7

36

19

共3n+2行,其中前3*n行为游戏过程。每三行分别为A方所取的数和B方所取的数,及B 方取数前应给与适当的提示,让游戏者选取那一头的数(L/R—左端或右端)。最后两行分别为A方取数之和与B方取数之和。

【标程】

var n,i,j,sa,sb,lp,rp,t:longint;

ch:char;

a:array[1..200]of longint;

begin

readln(n);

for i:=1 to 2*n do

read(a[i]);

sa:=0;

sb:=0;

for i:=1 to n do

begin

sa:=sa+a[2*i-1];

sb:=sb+a[2*i];

end;

if sa>=sb then j:=1

else

begin

j:=0;

t:=sa;

sa:=sb;

sb:=t;

end;

lp:=1;

rp:=2*n;

for i:=1 to n do

begin

if (j=1)and(lp mod 2=1)or((j=0)and(lp mod 2=0)) then

begin

writeln(a[lp]);

inc(lp);

end

else

begin

writeln(a[rp]);

dec(rp);

end;

write('B=L/R?');

repeat

readln(ch);

if ch='L' then

begin

writeln(a[lp]);

inc(lp);

if ch='R' then

begin

writeln(a[rp]);

dec(rp);

end;

until(ch='L')or(ch='R');

end;

writeln(sa);

writeln(sb);

end.

【例3-3】活动选择

【问题描述】

假设有一个需要使用某以资源的n个活动组成的集合S,S={1,…,n}。该资源一次只能被一个活动占用,每一个活动有一个开始时间bi和结束时间ei(bi<=ei)。若bi>=ej或bj>=ei,则活动i和活动j兼容。

你的任务是:选择由相互兼容的活动组成的最大集合。

输入:

输入文件名为:act.in,共n+1行,其中第一行为n,第二行到第n+1行表示n各活动的开始时间和结束时间(中间用用空格隔开),格式为:

n

b1 e1

……

bn en

输出:

输出文件名为:act.out,第一行为满足要求的活动占用的时间t,第二行为最大集合中的活动序号,每个数据之间用一个空格隔开。

【样例输入】

11

3 5

1 4

12 14

8 12

0 6

8 11

6 10

5 7

3 8

5 9

2 13

14

2 3 6 8

【题解】

我们使用的贪心策略如下。即每一步总是选择这样的活动来占用资源:使得余下的未调度时间最大化,是的兼容的活动尽可能多。为了达到这个目的,我们将n个待选活动按结束时间递增的顺序排序:e1’<=e2’<=…<=en’。

首先将递增序列的活动1进入集合S。然后依次分析递增序列中的活动2,活动3,……,活动n,每次将与S中的活动兼容的活动加入到集合S中。

我们结合问题的样例输入,先将11个活动的活动号、开始时间、结束时间及递增编号表

按照以上这种贪心策略,贪心选择如下:

时间0 1 2 3 4 5 6 7 8 9 11 12 13 14

选择活动|—|—|—|—|—|—|—|—|—|—|—|—|—|

2 ————活动2兼容(持续时间1—4),加入S,S={2},t=4

1 不兼容,放弃

5 不兼容,放弃

8 ————活动8兼容(持续时间5—7),加入S,S={2,8},t=7

9 不兼容,放弃

10 不兼容,放弃

7 不兼容,放弃

6 ————活动6兼容(持续时间8—11),加入S,S={2,8,6},t=11

4 不兼容,放弃

11 不兼容,放弃

3 ————活动3兼容(持续时间12—14),加入S,S={2,8,6,3},t=14

所以问题的解:t=14,S={2,8,6,3}。

【标程】

#include

#include

#include

using namespace std;

struct stu

{

int a;

int b;

int c;

}s[1005];

bool cmp(stu x,stu y)

{

return x.b

}

int d[1005]={0};

int main()

{

int n,i;

scanf("%d",&n);

for(i=0;i

{

scanf("%d %d",&s[i].a,&s[i].b);

s[i].c=i+1;

}

sort(s,s+n,cmp);

int sum=0;

int min=s[0].b;

sum=s[0].b-s[0].a+1;

for(i=1;i

{

if(min

{

min=s[i].b;

sum=sum+s[i].b-s[i].a+1;

}

}

printf("%d\n",sum);

min=s[0].b;

d[s[0].c]=1;

for(i=1;i

{

if(min

{

min=s[i].b;

d[s[i].c]=1;

}

}

for(i=1;i<=1005;i++) if(d[i]!=0) printf("%d ",i);

return 0;

}

【例3-4】雇用计划

【问题描述】

一位管理项目的经理想要确定每个月需要的工人,他当然知道每月所需的最少工人数。当他雇用或解雇一个工人时会有一些额外支出。一旦一个工人被雇佣,即使他不工作,他也将得到工资。这位经理知道雇佣一个人的费用,解雇一个人的费用和一个个工人的工资。现在他在考虑一个问题:为了把项目的费用控制在最低,他将每月雇用或解雇多少个工人。

输入:

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

计算机算法设计与分析习题和答案解析

《计算机算法设计与分析》习题及答案 一.选择题 1、二分搜索算法是利用(A )实现的算法。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 2、下列不是动态规划算法基本步骤的是(A )。 A、找出最优解的性质 B、构造最优解 C、算出最优解 D、定义最优解 3、最大效益优先是( A )的一搜索方式。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 4. 回溯法解旅行售货员问题时的解空间树是( A )。 A、子集树 B、排列树 C、深度优先生成树 D、广度优先生成树 5.下列算法中通常以自底向上的方式求解最优解的是( B )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 6、衡量一个算法好坏的标准是(C )。 A 运行速度快 B 占用空间少 C 时间复杂度低 D 代码短 7、以下不可以使用分治法求解的是(D )。 A 棋盘覆盖问题 B 选择问题 C 归并排序 D 0/1背包问题 8. 实现循环赛日程表利用的算法是( A )。 A、分治策略 B、动态规划法 C、贪心法 D、回溯法 9.下面不是分支界限法搜索方式的是( D )。 A、广度优先 B、最小耗费优先 C、最大效益优先 D、深度优先 10.下列算法中通常以深度优先方式系统搜索问题解的是( D )。 A、备忘录法 B、动态规划法 C、贪心法 D、回溯法 11.备忘录方法是那种算法的变形。(B ) A、分治法 B、动态规划法 C、贪心法 D、回溯法 12.哈夫曼编码的贪心算法所需的计算时间为( B )。 A、O(n2n) B、O(nlogn) C、O(2n) D、O(n) 13.分支限界法解最大团问题时,活结点表的组织形式是( B )。 A、最小堆 B、最大堆 C、栈 D、数组 14.最长公共子序列算法利用的算法是( B )。 A、分支界限法 B、动态规划法 C、贪心法 D、回溯法 15.实现棋盘覆盖算法利用的算法是( A )。 A、分治法 B、动态规划法 C、贪心法 D、回溯法 16.下面是贪心算法的基本要素的是( C )。 A、重叠子问题 B、构造最优解 C、贪心选择性质 D、定义最优解 17.回溯法的效率不依赖于下列哪些因素( D ) A.满足显约束的值的个数 B. 计算约束函数的时间 C.计算限界函数的时间 D. 确定解空间的时间 18.下面哪种函数是回溯法中为避免无效搜索采取的策略( B ) A.递归函数 B.剪枝函数C。随机数函数 D.搜索函数 19. ( D )是贪心算法与动态规划算法的共同点。

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

大学计算机基础mooc习题集整理(含答案解析)

大学计算机考试模拟题(理工类) 一、简答题(本题共6个小题,每小题5分,共30分) 1. 什么是信息社会?信息社会的主要特征是什么?P32 第4题参见P13 P14 2. 什么是CPU,简述CPU的基本组成和功能P108 第18.(1) 参见P77 3. 什么是操作系统?简述操作系统的主要功能。P109 第24题参见P89 4. 人类问题求解的一般思维过程是什么?简要说明参见P112图3-1 描述 5. 什么是枚举法?说明枚举法的优缺点。参见P113第6段, P132穷举法 6. 什么是浏览器/服务器(B/S)三层体系结构,画图并简要说明。P340第10题参见P316 P276 二、单项选择题(本题共20个小题,每小题1分,共20分) 1. 下列容不属于信息素养(Information Literacy)的是 A.信息意识B.信息知识 C.分析能力D.信息道德 2. 阿兰·麦席森·图灵(Alan Mathison Turing)对计算机科学的发展做出了巨大贡献,下列说法不正确的是 A.图灵是著名的数学家、逻辑学家、密码学家,被称为计算机科学之父。 B.图灵最早提出关于机器思维的问题,被称为人工智能之父。 C.图灵创立了二进制。 D.“图灵奖”是为奖励那些对计算机科学研究与推动计算机技术发展有卓越贡献的杰出科学家而设立的。 3. 最早的机械式计算机“加法器”的发明人是 A.帕斯卡B.巴贝奇 C.莱布尼茨D.布尔 4. 巴贝奇的“分析机”到他终生都没有制造出来,下列说确的是()

A.设计原理有错误B.设计精度不够 C.设计图纸不够完善D.机械加工的工艺水平达不到它要求的精度 5. 以集成电路为基本元件的第三代计算机出现的时间为()。A.1965—1969B.1964—1975 C.1960—1969D.1950—1970 6. 在计算机中,引入16进制,主要目的是()。 A.计算机中的数据存储采用16进制 B.计算机中的数据运算采用16进制 C.缩短2进制字串的长度 D.计算机的存地址采用16进制编制 7. 设计算机字长为16位,采用补码表示,可表示的整数的取值围是()。A.0~65535B.-32767~32767 C.-32768~32767D.-32767~32768 8. 下列叙述中,正确的是( )。 A.所有十进制小数都能准确地转换为有限位二进制小数 B.汉字的计算机码就是国标码 C.所有二进制小数都能准确地转换为十进制小数 D.存储器具有记忆能力,其中的信息任何时候都不会丢失 9. 关于微处理器,下列说法错误的是() A、微处理器就是微机的CPU,由控制器运算器和存储器组成。 B、微处理器不包含存储器。 C、微处理器执行CPU控制部件和算术逻辑部件的功能。 D、微处理器与存储器和外围电路芯片组成微型计算机。 10. 关于操作系统,下列叙述中正确的是()。

智能算法30个案例分析

智能算法30个案例分析 【篇一:智能算法30个案例分析】 智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免 疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既 爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我 们的论坛问题,恨是因为智能算法感觉比较“玄乎”,很难理解,更 难用它来解决问题。 因此,我们组织了王辉,史峰,郁磊,胡斐四名高手共同写作 matlab 智能算法,该书包含了遗传算法,免疫算法,粒子群算法, 鱼群算法,多目标pareto 算法,模拟退火算法,蚁群算法,神经网络,svm 等,本书最大的特点在于以案例为导向,每个案例针对一 个实际问题,给出全部程序和求解思路,并配套相关讲解视频,使 读者在读过一个案例之后能够快速掌握这种方法,并且会套用案例 程序来编写自己的程序。本书作者在线,读者和会员可以向作者提问,作者做到有问必答。 本书和目录如下:基于遗传算法的tsp算法(王辉) tsp (旅行商问题—traveling salesman problem),是典型的np 完全问题,即其 最坏情况下的时间复杂性随着问题规模的增大按指数方式增长,到 目前为止不能找到一个多项式时间的有效算法。遗传算法是一种进 化算法,其基本原理是仿效生物界中的“物竞天择、适者生存” 的演 化法则。遗传算法的做法是把问题参数编码为染色体,再利用迭代 的方式进行选择、交叉以及变异等运算来交换种群中染色体的信息,最终生成符合优化目标的染色体。实践证明,遗传算法对于解决 tsp 问题等组合优化问题具有较好的寻优性能。 基于遗传算法和非线性规划的函数寻优算法(史峰)遗传算法提供 了求解非线性规划的通用框架,它不依赖于问题的具体领域。遗传 算法的优点是将问题参数编码成染色体后进行优化,而不针对参数 本身,从而不受函数约束条件的限搜索过程从问题解的一个集合开始,而不是单个个体,具有隐含并行搜索特性,大大减少陷入局部 最小的可能性。而且优化计算时算法不依赖于梯度信息,且不要求 目标函数连续及可导,使其适于求解传统搜索方法难以解决的大规模、非线性组合优化问题。 用于模式分类、模式识别等方面.但 bp 算法收敛速度慢,且很容易 陷入局部极小点,而遗传算法具有并行搜索、效率高、不存在局部

maab图论程序算法大全

图论算法m a t l a b实现求最小费用最大流算法的 MATLAB 程序代码如下: n=5;C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1)

for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;e nd if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量

模式识别习题集答案解析

1、PCA和LDA的区别? PCA是一种无监督的映射方法,LDA是一种有监督的映射方法。PCA只是将整组数据映射到最方便表示这组数据的坐标轴上,映射时没有利用任何数据部的分类信息。因此,虽然做了PCA后,整组数据在表示上更加方便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输入映射到了另外一个坐标轴上,有了这样一个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很大的运算量),它的目标是使得类别的点距离越近越好,类别间的点越远越好。 2、最大似然估计和贝叶斯方法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最大似然估计? 最大似然估计把待估的参数看做是确定性的量,只是其取值未知。利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知)。贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。对样本进行观测的过程,把先验概率密度转化为后验概率密度,利用样本的信息修正了对参数的初始估计值。 当训练样本数量趋于无穷的时候,贝叶斯方法将接近最大似然估计。如果有非常多的训练样本,使得p(x|X)形成一个非常显著的尖峰,而先验概率p(x)又是均匀分布,此时两者的本质是相同的。 3、为什么模拟退火能够逃脱局部极小值? 在解空间随机搜索,遇到较优解就接受,遇到较差解就按一定的概率决定是否接受,这个概率随时间的变化而降低。实际上模拟退火算法也是贪心算法,只不过它在这个基础上增加了随机因素。这个随机因素就是:以一定的概率来接受一个比单前解要差的解。通过这个随机因素使得算法有可能跳出这个局部最优解。 4、最小错误率和最小贝叶斯风险之间的关系? 基于最小风险的贝叶斯决策就是基于最小错误率的贝叶斯决策,换言之,可以把基于最小错误率决策看做是基于最小风险决策的一个特例,基于最小风险决策本质上就是对基于最小错误率公式的加权处理。 5、SOM的主要功能是什么?怎么实现的?是winner-all-take-all 策略吗? SOM是一种可以用于聚类的神经网络模型。 自组织映射(SOM)或自组织特征映射(SOFM)是一种使用非监督式学习来产生训练样本的输入空间的一个低维(通常是二维)离散化的表示的人工神经网络(ANN)。自组织映射与其他人工神经网络的不同之处在于它使用一个邻近函数来保持输入控件的拓扑性质。SOM网络中, 某个输出结点能对某一类模式作出特别的反应以代表该模式类, 输出层上相邻的结点能对实际模式分布中相近的模式类作出特别的反映,当某类数据模式输入时, 对某一输出结点产生最大刺激( 获胜结点) , 同时对获胜结点周围的一些结点产生较大刺激。在训练的过程中, 不断对获胜结点的连接权值作调整, 同时对获胜结点的邻域结点的连接权值作调整; 随着训练的进行, 这个邻域围不断缩小, 直到最后, 只对获胜结点进行细微的连接权值调整。 不是winner-all-take-all 策略。获胜结点产生刺激,其周围的结点也会产生一定程度的兴奋。 6、期望算法需要哪两步?请列出可能的公式并做必要的解释。 E-Step和M-Step。E-Step叫做期望化步骤,M-Step为最大化步骤。 整体算法的步骤如下所示: 1、初始化分布参数。 2、(E-Step)计算期望E,利用对隐藏变量的现有估计值,计算其最大似然估计值,以此实现期望化的过程。 3、(M-Step)最大化在E-步骤上的最大似然估计值来计算参数的值

图论及其算法

《图论及其算法》 --最短路问题 学院:通信学院 姓名:周旋 学号: S110131133 指导老师:陈六新

摘要 图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这些图形通常用来描述某些事物之间的特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有的关系。通过对《图论及其应用》中最短路问题的深入学习,本文利用Dijkstra算法来解决日常生活中寻找最短路的问题。同时也是对本学期学习知识的巩固。 关键词:最短路径 Dijkstra算法迭代

Abstract Graph theory is a branch of mathematics, it studies the object of picture. Graph theory graph is given by the number of points and lines connecting the two points of the graphic form. These graphics are often used to describe a specific relationship between certain things. And with the point on behalf of things, with the line connecting the two points that have a corresponding relationship between two things. Through the "Graph Theory and Its Applications," in-depth study of the shortest path problem. In this paper, we use The Dijkstra's algorithm not only to solve everyday life to find the shortest path problem, but also for the consolidation of the semester to learn the knowledge. Keyword: shortest path Dijkstra's algorithm Iteration

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

C语言经典算法详解

一分而治之算法 分而治之方法与软件设计的模块化方法非常相似。为了解决一个大的问题,可以: 1) 把它分成两个或多个更小的问题; 2) 分别解决每个小问题; 3) 把各小问题的解答组合起来,即可得到原问题的解答。小问题通常与原问题相似,可以递归地使用分而治之策略来解决。下列通过实例加以说明。 例:利用分而治之算法求一个整数数组中的最大值。

练习:[找出伪币] 给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。

二贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 贪心算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。 贪心算法是一种改进了的分级处理方法。其核心是根据题意选取一种量度标准。然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。这种能够得到某种量度意义下最优解的分级处理方法称为贪婪算法。 对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪

2018软考算法题详解

一、概念 1、分治法 分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同。递归的解这些子问题,然后将各子问题的解合并得到原问题的解。 适用范围: 1) 该问题的规模缩小到一定的程度就可以容易地解决 2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。 3) 利用该问题分解出的子问题的解可以合并为该问题的解; 4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。2、动态规划 和分治法一样,动态规划(dynamic programing)是通过组合子问题的解而解决整个问题的。不过与分治法不一样的地方就是,分解得到的子问题往往不是独立的,也就是说相同的子问题可能会被求解多次。 适用范围: 1) 最优子结构性质:一个最优化策略的子策略总是最优的。 2) 无后效性:每个状态都是过去历史的一个完整总结。 1) 子问题的重叠性:是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。 3、贪心 贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 4、回溯 回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。 二、背包问题 1、贪心思想 背包问题 背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,1≤i≤n。 给定n个物品和一个容量为C的背包,物品i的重量是Wi,其价值为Vi。背包问题是如何选择入背包的物品,使得装入背包的物品的总价值最大,注意和0/1背包的区别,在背包问题中可以将物品的一部分装入背包,但不能重复装入。

(完整word版)图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=U , 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v -L 是从1v 到 n v 的最短路径,则 121 n v v v -L 也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

华工人工智能ID3算法问题详解-基于信息熵的ID3算法

华工人工智能ID3算法问题详解基于信息熵的ID3算法 ID3算法是一个典型的决策树学习算法,其核心是在决策树的各级节点上,使用信息增益方法作为属性的选择标准,来帮助确定生成每个节点时所应采用的合适属性。这样就可以选择具有最高信息增益属性作为当前节点的测试属性,以便使用该属性所划分获得的训练样本子集进行分类所需信息最小。 定义1 设U 是论域,{}n X X ,...,1是U 的一个划分,其上有概率分布)(i i X P p =,则称: ∑=-=n i i i p p X H 1log )( 为信源X 的信息熵,其中对数取以2为底,而当某个i p 为零时,则可以理解为00log 0=?。 定义2 设? ???????=n n q q q Y Y Y Y 2121是一个信息源,即{}n Y Y Y ,,,21?是U 的另一个划分,j j q Y P =)(,∑==n j j q 1 1,则已知信息源X 是信息源Y 的条件熵H(Y|X) 定义为: ∑==n i i i X Y H X P X Y H 1)|()()|( 其中∑=-=n j i j i j i X Y P X Y P X Y H 1)|(log )|()|(为事件i X 发生时信息源Y 的条件 熵。 在ID3算法分类问题中,每个实体用多个特征来描述,每个特征限于在一个离散集中取互斥的值。ID3算法的基本原理如下:设n F F F E ????=21是n 维有穷向量空间,其中i F 是有穷离散符号集。E 中的元素>?=

计算机算法设计五大常用算法的分析及实例

摘要 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。 其中最常见的五中基本算法是递归与分治法、动态规划、贪心算法、回溯法、分支限界法。本文通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识 关键词:算法,递归与分治法、动态规划、贪心算法、回溯法、分支限界法

Abstract Algorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different. There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply. Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method

贪心算法

有人说贪心算法是最简单的算法,原因很简单:你我其实都很贪,根本不用学就知道怎么贪。有人说贪心算法是最复杂的算法,原因也很简单:这世上会贪的人太多了,那轮到你我的份? 贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法:

图论中的概念及重要算法

图论中的概念及重要算法 常州一中林厚从 chi、图论中的基本概念 一、图的概念 简单讲,一个图是由一些点和这些点之间的连线组成的。严格意义讲,图是一种数据结构,定义为:graph= (V,E), V是点(称为"顶点”)的非空有限集合,E是线(称为"边”)的集合,边一般用(V x,V y)表示,其中V x,V y属于V。 图(A)共有 4 个顶点、5 条边,表示为:V={v i, V2, V3, V4},E={(V i,V2),(V i,V3), (V i,V4),(V2,V3),(V2,V4)} 二、无向图和有向图 如果边是没有方向的,称此图为“无向图” ,如图(A)和图(C),用一对圆括号表示无向边,如图(A)中的边(V i,V2),显然(V x,▼『)和(V y,V x)是两条等价的边,所以在上面E 的集合中没有再出现边(V2,V i)。 如果边是有方向(带箭头)的,则称此图为“有向图”,如图(B),用一对尖括号表示有向边,如图(B)中的边<V i,V2>。把边<v x,v y>中V称为起点,v y称为终点。显然此时边w,V y>与边<V y,V x>是不同的两条边。有向图中的边又称为弧,起点称为弧头,终点称为弧尾。 图(B)表示为:V={V i,V2,V3},E={<V i,V2>,<V i,V3>,< V2,V3>,<V3,V2>} 如果两个顶点U V之间有一条边相连,则称U V这两个顶点是关联的。 三、带权图 一个图中的两顶点间不仅是关联的,而且在边上还标明了数量关系,如图(C),这种数量关系可能是距离、费用、时间、电阻等等,这些数值称为相应边的权。边上带有权的图称为带权图,也称为网(络)。 四、阶 图中顶点的个数称为图的阶。图(A)、图(B)、图(C)的阶分别为4、3、5。 五、度 图中与某个顶点相关联的边的数目,称为该顶点的度。度为奇数的顶点称为奇点,度为偶数的顶点称为偶点。图(A)中顶点V i,V2是奇点,V3,V4是偶点。

算法设计教学大纲详解

安徽科技学院理学院教学大纲 课程名称:算法设计 适用专业:计算机科学与技术 (本科) 计算机科学技术专业教研室制 2006.6

《算法设计》理论课教学大纲 课程名称:算法设计(Algrithm Design) 课程编号: 课程类别:选修课 学时:36 学时(理论36学时) 学分:2学分 考核方式:考试 适用专业:计算机科学与技术本科专业 前修课程:高等数学离散数学线形代数 C语言程序设计数据结构 建设开课学期:第6学期 一、课程性质、目的任务 随着计算机的广泛应用,对计算机算法的研究变得日益重要。《算法设计》是计算机科学与技术专业的一门选修课,本课程将覆盖计算机软件实现中的大部分算法,并具有一定的深度和广度,使学生对计算机常用算法有一个全盘的了解;本课程的任务是:培养学生具有针对给定问题设计和实现高效算法的能力。 二、教学基本要求 通过本课程教学,应使学生: 1)熟悉、掌握课堂教学中所学的大部分算法设计思想; 2)具有针对所给的问题设计和实现高效算法的能力。

四、参考教材及图书资料 1.王晓东.计算机算法设计与分析.北京:电子工业出版社 2.卢开澄.计算机算法导引——设计与分析. 北京:清华大学出版社 3.顾立尧.霍义兴.算法设计分析的理论与方法.上海:上海交通大学出版社 4.霍红卫.分布式算法导论. 北京:机械工业出版社 五、教学方法与考核 1.教学方法 为充分发挥学生的积极性、主动性,启发引导、培养学生具有自我开拓和获得知识的能力,在内容的讲授上本着“少而精”的原则,突出重点,分解难点,深入浅出,举一反三,着重培养学生分析问题和解决问题能力。并就课程的各部分内容,分别采用细讲法,培养学生的基本功;采用精讲法,培养学生主动获取知识的能力;采用引导启发式,培养学生分析问题、解决问题的能力。另不同程度采取课堂讨论式、自学提问式。 2.课程考核方法 主要有:理论课考查、作业评定。 ①平时占20%:理论课考查、作业评定; ②期末考试占80%:综合笔试。 六、大纲正文 第一章算法基础 [目的要求] 1.了解算法与程序的概念; 2.掌握算法复杂性分析及其有关的概念; [基本内容] 1.算法的定义、特征,算法与程序; 2.冒泡排序; 3.伪代码使用约定; 4.算法复杂度分析; 5.算法的运行时间; [重点难点] 1.重点: 算法的定义与特征、冒泡排序、算法复杂度分析

图论算法-最大流算法和最大匹配算法

图论算法-最大流算法和最大匹配算法

clc,clear,M=1000; c(1,2)=3;c(1,4)=3; c(2,3)=1;c(2,4)=20; c(3,6)=3; c(4,5)=10; c(5,1)=4;c(5,3)=2;c(5,6)=13; n=length(u); list=[]; maxf=zeros(1:n);maxf(n)=1; while maxf(n)>0 maxf=zeros(1,n);pred=zeros(1,n); list=1;record=list;maxf(1)=M; while (~isempty(list))&(maxf(n)==0) flag=list(1);list(1)=[]; index1=(find(u(flag,:)~=0)); label1=index1(find(u(flag,index1)... -f(flag,index1)~=0)); label1=setdiff(label1,record); list=union(list,label1); pred(label1(find(pred(label1)==0)))=flag; maxf(label1)=min(maxf(flag),u(flag,label1)... -f(flag,label1)); record=union(record,label1); label2=find(f(:,flag)~=0); label2=label2'; label2=setdiff(label2,record); list=union(list,label2); pred(label2(find(pred(label2)==0)))=-flag; maxf(label2)=min(maxf(flag),f(label2,flag)); record=union(record,label2); end if maxf(n)>0 v2=n; v1=pred(v2); while v2~=1 if v1>0 f(v1,v2)=f(v1,v2)+maxf(n); else v1=abs(v1); f(v2,v1)=f(v2,v1)-maxf(n); end v2=v1; v1=pred(v2);

相关文档
相关文档 最新文档