文档库 最新最全的文档下载
当前位置:文档库 › 环境空气臭氧污染来源解析技术试行

环境空气臭氧污染来源解析技术试行

环境空气臭氧污染来源解析技术试行
环境空气臭氧污染来源解析技术试行

大气污染

一、课程性质及其设置目的与要求 (一)课程性质和特点 《大气污染控制工程》课程是培养环境工程专业学生的一门重要专业课程,它的特点是包括了大气科学、环境化学、化工原理和污染控制学等多学科交叉的一门专业课程。本课程系统地介绍了大气污染控制的原理、控制技术与方法和有关设计计算问题。 本课程在内容上共分为8章。第1章是大气污染控制工程绪论,主要介绍了大气与大气污染相关概念、大气污染物及其来源、大气污染的影响、大气污染综合防治以及环境空气质量控制标准。第2章是燃烧与大气污染,主要介绍燃料的性质、影响燃料燃烧过程的因素、燃料燃烧的理论空气量、烟气体积及污染物排放量的计算、燃料燃烧过程中硫氧化物、颗粒物、氮氧化物等污染物的形成过程与形成机理。第3章是颗粒染污物控制技术基础,主要介绍颗粒的粒径及粒径分布、粉尘的物理性质、净化装置的性能等。第4章是除尘装置,主要介绍机械除尘器、电除尘器、湿式除尘器、过滤式除尘器的除尘原理、除尘效率及其影响因素、除尘器的应用及旋风除尘器、电除尘器和袋式除尘器的设计、除尘器的选择和发展。第5 章是硫氧化物污染控制技术,主要介绍硫的循环与排放、燃料燃烧前的脱硫技术、流化床燃烧脱硫、高浓度二氧化硫尾气的回收与净化、低浓度二氧化硫的烟气脱硫技术(干法、半干法和湿法脱硫典型工艺及其应用、烟气脱硫工艺的综合比较)。第6章是固定源氮氧化物污染控制,主要介绍氮氧化物的性质及来源、燃烧过程中氮氧化物的形成机理、低氮氧化物燃烧技术、烟气脱硝技术。第7章是城市机动车污染控制,主要介绍汽油发动机污染物的形成与控制、柴油发动机污染物的形成与控制等。第8章是大气污染和全球气候,主要介绍温室气体和全球气候变化、臭氧层破坏问题、致酸前体物和酸雨。 通过学习能够使应考者了解大气污染物的生产原理及其控制对策,掌握典型大气污染物的控制的基本技术与方法以及相关的设计与计算问题,为今后从事大气污染控制工程的设计和研究打下坚实的理论和实践基础,为环境工程学科的发展培养专业人才。 (二)本课程的基本要求 通过本课程的学习,应考者应达到以下要求: 1、了解大气污染与大气污染物的相关知识; 2、熟悉大气污染控制的基本原理与方法; 3、掌握烟气体积和污染物排放量的计算; 4、掌握颗粒污染物、硫氧化物、氮氧化物污染控制的基本原理与技术方法; 5、熟悉机动车污染控制的对策措施; 6、了解大气污染与全球气候变化的相关知识。 (三)本课程与相关课程的联系 本课程的前修课程是环境化学、化工原理、环境工程概论等课程。上述课程可以帮助应考者理解大气污染物的生成机理,污染物在大气中的迁移转化基本规律,大气污染控制技术的基本原理及反应器的基础知识,大气污染控制的基本对策与措施。通过以上三门课程的学习,可以使应考者更好地掌握大气污染控制工程的技术原理与特点、控制方法及相关的设计计算、大气污染控制工程的实际应用等知识。 二、课程内容与考核目标 第1章大气污染控制工程概论 (一)课程内容 本章主要介绍大气的组成与大气污染、大气污染物及其来源、大气污染的影响、大气污染综合防治以及环境空气质量控制标准等内容。 (二)学习目的与要求 通过本章学习,使学生了解大气污染物及其来源、大气污染的影响、大气污染综合防治、

宜都市环境空气中臭氧污染特性分析

宜都市环境空气中臭氧污染特性分析 随着经济的发展,环境空气问题越发严重,其中的污染物类型和结构也在同步变化。近年来,尤其是夏秋季,臭氧正逐渐取代PM2.5在空气污染物中的地位,成为了引人关注的新型污染物,,弄清臭氧的污染特征,找到对应的防范措施显得尤为重要。本文以宜都市为例,根据最近几年的环境空气质量监测数据,对宜都市的臭氧污染特性进行综合分析,以找到影响宜都市臭氧变化的显著因素,为区域臭氧污染防治提供技术参考。 标签:宜都;环境监测;臭氧污染 根据近几年国内外对臭氧污染特性的研究和分析,影响臭氧产生的因素主要有温度[1]、光照、降水、风力风向等气象条件[2],以及VOCs [3]、氮氧化物[4]等生成臭氧的前体物。臭氧污染受臭氧前体物排放及其复杂的相互转化关系控制,导致臭氧污染问题在治理过程中具有高度的复杂性和反复性。根据宜都市2个省控点位的监测数据和现有条件,本文对2017年至2018年宜都市环境空气质量综合监测数据进行数学统计,主要研究臭氧与环境空气质量其他“六参数”的相关性和变化情况。同时结合气象监测数据,对臭氧随天气状况和温度的变化情况进行了统计分析。本文引用技术参数主要参照《环境空气质量标准》(GB3095-2012)、《环境空气质量评价技术规范(试行)》HJ 663-2012、《环境空气质量指数(AQI)技术规定(试行)》,本文各参数浓度单位除特殊说明外均引用以上技术规范浓度单位(除一氧化碳为毫克每立方米外,其余均为微克每立方米)。 一、宜都市臭氧变化及数据统计情况 如图1所示,宜都市臭氧整体变化在2017年和2018年均近似驼峰型,且每年的6月至10月臭氧浓度都比较高。根据《环境空气质量指数(AQI)技术规定(试行)》(HJ633-2012)及《环境空气质量标准》(GB 3095-2012)的相关技术指标,臭氧浓度超标限值为160微克/立方米,结合统计的监测数据,可以得到2017年臭氧主要在9月、10月和11月出现超标情况,2018年主要在3-4月和6-11月出现超标情况,2017至2018年臭氧共超标48天,且超标天数主要集中在2018年6月和8,且2018年6月臭氧连续超标14天。本文将臭氧污染最严重的6月作为臭氧连续污染的一次污染过程进行小时浓度的统计分析,以下均表述为臭氧一次污染过程,主要通过对2017年至2018年日监测数据的统计分析以及对一次污染过程的统计分析,得到臭氧与宜都市目前开展监测的各监测参数间的相关性程度,找出影响臭氧浓度的显著性因素。 臭氧小时浓度在的变化可参照图2,主要呈单峰形分布,经对臭氧一次污染过程小时浓度的统计分析,臭氧小时浓度浓度最高区间基本上在每日的12时至20时段。 二、臭氧影响因素相关性分析

环境空气中臭氧的测定

环境空气中臭氧的测定(HJ 504-2009) —靛蓝二磺酸钠分光光度法 一、实验目的 1、掌握靛蓝二磺酸钠分光光度法测定环境空气中臭氧含量的原理和方法; 2、熟练掌握滴定操作; 3、熟练掌握采样仪器和分光光度计的操作。 二、实验前准备 1、试剂 (1)溴酸钾标准贮备溶液[c(1/6 KBrO3)=0.100 0 mol/L]准确称取1.391 8 g 溴化钾(优级纯,180℃烘 2 h),置烧杯中,加入少量水溶解,移入500ml 容量瓶中,用水稀释至标线。 (2)溴酸钾-溴化钾标准溶液[c(1/6 KBrO5)= 0.010 0 mol/L]吸取10.00 ml溴酸钾标准贮备溶液于100 ml 容量瓶中,加入1.0g溴化钾(KBr),用水稀释至标线。 (3)硫代硫酸钠标准贮备溶液[c(Na2S2O3)= 0.1000 mol/L]。(4)硫代硫酸钠标准工作溶液[c(Na2S2O3)= 0.00500 mol/L]临用前,取硫代硫酸钠标准贮备溶液用新煮沸并冷却到室温的水准确稀释 20 倍。 (5)硫酸溶液,1+6。 (6)淀粉指示剂溶液[ρ =2.0 g/L]称取0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100 ml 沸水,煮沸至溶液澄清。

(7)磷酸盐缓冲溶液,[c(KH2PO4-Na2HPO4)=0.050 mol/L]称取6.8 g磷酸二氢钾(KH2PO4)、7.1 g无水磷酸氢二钠(Na2HPO4),溶于水,稀释至1000 ml。 (8)靛蓝二磺酸钠(C16H8O8Na2S2)(简称 IDS),分析纯、化学纯或生化试剂。 (9)IDS 标准贮备溶液:称取0.25g靛蓝二磺酸钠溶于水,移入500 ml棕色容量瓶内,用水稀释至标线,摇匀,在室温暗处存放24 h后标定。此溶液在20℃以下暗处存放可稳定2周。 标定方法:准确吸取20.00 ml IDS 标准贮备溶液于250 ml碘量瓶中,加入20.00 ml溴酸钾-溴化钾溶液再加入50 ml水,盖好瓶塞,在 16℃±1℃生化培养箱(或水浴中放置至溶液温度与水浴温度平衡时[注1],加入5.0 ml硫酸溶液,立即盖塞、混匀并开始计时,于 16℃±1℃暗处放置35 min±1.0 min后,加入1.0 g碘化钾,立即盖塞,轻轻摇匀至溶解,暗处放置5min,用硫代硫酸钠溶液滴定至棕色刚好褪去呈淡黄色,加入5ml淀粉指示剂溶液,继续滴定至蓝色消退,终点为亮黄色。记录所消耗的硫代硫酸钠标准工作溶液的体积[注2]。注1:达到平衡的时间与温差有关,可以预先用相同体积的水代替溶液,加入碘量瓶中,放入温度计观察达到平衡(HJ 504—2009)所需要的时间。 注2:平行滴定所消耗的硫代硫酸钠标准溶液体积不应大 0.10 ml。每毫升靛蓝二磺酸钠溶液相当于臭氧的质量浓度ρ(μg/ml)计算: ρ =(C?V?-C?V?/V)×12.00×1000

欧美大气污染防治特点分析和经验借鉴

欧美大气污染防治特点分析和经验借鉴 一、我国大气污染防治面临严峻挑战 近年来,随着我国城市化进程的加快以及工业结构的日益复杂,我国环境空气污染状况和特征发生了显著的变化。在二氧化硫和颗粒物污染问题尚未得到根本解决的同时,工业化和机动车导致的氮氧化物、挥发性有机物、汞、黑炭等污染物的排放量居全球前列,以PM2.5和臭氧为代表的二次污染日趋严重,已成为许多城市和地区空气质量进一步改善的主要障碍。现阶段我国大气环境多污染物、高浓度、多尺度、多来源的复杂污染特征,是发达国家历经上百年陆续出现的问题在我国二十几年内集中暴发的典型表现,复杂的大气污染问题使我国大气污染防治决策和管理面临严峻的挑战。本文将通过比较分析的方式,总结发达国家成功经验,为我国大气污染物控制提供借鉴。 二、国内外大气污染防治历程 1、美国大气污染防治历程 1970年美国的《清洁空气法案》颁布并实施,从而构建了美国环境大气质量标准与排放总量控制相结合的大气污染防治策略体系。USEPA在全国设立了247个州内控制区和263个州际控制区,各州对其所管辖区域内的空气质量负有主要责任。这一阶段美国主要通过对电厂和其他重工业废气的净化,以及对汽车尾气排放控制的策略来实现空气质量的改善。1977年《清洁空气法案》修正案颁布,将全美划分为“防止严重恶化区”和非达标区。为了达到国家环境空气质量标准,各州都制定了固定源和移动源相关污染物的排放标准,并以州实施计划的形式给出各州空气质

量达标和改善的时限和具体措施及可行性分析,EPA批准并对其执行情况进行监督检查。1990年《清洁空气法》第二次修正议案将酸雨、城市空气污染、有毒空气污染物排放三方面的内容纳入到法案中,制定和实施酸雨计划,并规定了二氧化硫排放许可证和排污交易制度。随着近地面O3和细颗粒物污染成为突出问题,2005年美国EPA进一步发布了“清洁空气州际法规”,该法案旨在通过同时削减SO2和NOX帮助各州的近地面O3和细颗粒物达到环境空气质量标准。 2、欧洲大气污染防治历程 19世纪中后期随着煤烟型污染在欧洲愈演愈烈,欧洲多个城市遭受了严重的烟雾事件侵袭,以英国为首的欧洲国家采取了提高烟囱高度,消灭低矮点源和大规模开发应用消烟除尘、脱硫技术的控制策略。直到20世纪40年代,欧洲国家通过燃料替代的方式,将煤炭改为天然气和油,困扰多年的煤烟型污染才得以解决。到70年代,酸雨与污染物跨界传输问题的凸显,促使欧洲开始采取积极的总量削减控制策略,1985年的赫尔辛基公约首次对SO2提出了削减50%的目标,此后在不同的公约中又分别增加了对NOX和VOC的削减目标。为了实现污染物的削减目标,欧盟通过实施大型燃烧装置大气污染物排放限制加强燃煤电厂污染物排放的控制,1987年出台了首部《大型燃煤企业大气污染物排放限制指令》(88/609/EEC),对新建电厂的SO2、NOX和颗粒物排放进行控制。从1994年硫议定书修正案以来,基于不同生态环境,充分考虑地区间差异的临界负荷概念被提出,各缔约国根据自身对酸雨的敏感性程度来制定减排目标和进程,有效地调动了各国的减排积极性,同时也使主要污染物排放在原本已获得较好成效的基础上得到了进一步的控制。1999年发布的哥德堡公约以控制酸化、富营养化和近地面臭氧的排放为目标,分别对

臭氧污染

臭氧污染 臭氧污染是什么?只听过要保护臭氧层,那臭氧为什么又成了污染呢?很多人一定也发出了同款疑问。要弄清这两个概念,就要了解高空平流层的臭氧和近地面对流层的臭氧的区别,简单来说,高空平流层的臭氧,形成的臭氧层可以吸收紫外线,对地面生物提供保护;而近地面的臭氧则是人类活动产生的污染经过一系列复杂的光化学反应而生成的二次污染,是光化学烟雾的主要成分,也是令人闻之色变的污染物质。 臭氧的来源 臭氧的来源分为自然源和人为源:自然源的臭氧主要指平流层的下传;人为源的臭氧主要是由人为排放的NOx、VOCs等污染物的光化学反应生成。人类排放的工业废气及化石燃料的燃烧所排放的尾气中含有大量氮氧化物和挥发性有机物。这些物质在特定的气象条件下,如强烈日光、无风或微风时,经过一系列光化学反应生成了主要含臭氧、醛类以及多种过氧酰基硝酸酯的光化学污染物,其中臭氧含量占90%。此外,臭氧污染还将衍生出光化学污染,也就是说发生了臭氧超标,表明还有其它的光化学污染产物伴随产生,尤其是一些有机气溶胶,这也是细颗粒物中的主要成分之一。 既然挥发性有机化合污染物(VOCs)和氮氧化物(NOx)是臭氧形成的重要前体物,那么控制臭氧污染,就要协同控制好挥发性有机化合物和氮氧化物的排放。 臭氧的危害

臭氧(O?)是氧气(O?)的同素异形体,在常温下,一种有特殊臭味的淡蓝色气体,由于臭氧具有强氧化性,几乎能与任何生物组织反应,对呼吸道的破坏性很强。根据加拿大职业健康与安全中心(CCOHS)的介绍,“臭氧会刺激和损害鼻粘膜和呼吸道,这种刺激,轻则引发胸闷咳嗽、咽喉肿痛,重则引发哮喘,导致上呼吸道疾病恶化,还可能导致肺功能减弱、肺气肿和肺组织损伤,而且这些损伤往往是不可修复的。” 除此之外,如果空气中臭氧浓度过高,还会对皮肤、眼睛产生刺激,同时阻碍血液输氧功能,造成组织缺氧;使甲状腺功能受损、骨骼钙化。 面对这些危害,我们当然不能任由臭氧排放。前不久四川和重庆就围绕整治臭氧问题提出了合作事宜。 关于《深化川渝两地大气污染联合防治协议》 近日,重庆市生态环境局与四川省生态环境厅通过视频方式,签订了《深化川渝两地大气污染联合防治协议》,其中明确将建立完善川渝两地大气污染防治协作机制,协同防控臭氧污染,从而实现成渝地区优良天数的增加。 臭氧污染作为是大气污染中的一大难点,近年来越来越“活跃”,尤其是到了夏季,全国大气中臭氧浓度更是明显升高。此次,川渝两地将从联防城市、重点行业、数据处理和执法四个方面进行合作,继续攻坚克难,共同啃蓝天保卫战的“硬骨头”。 既然臭氧污染是大气污染中的一大难点,想要防治臭氧,必须先摸清臭氧的来源,才能知己知彼,百战不殆。 臭氧的防治

国家环境监测网环境空气臭氧自动监测现场核查技术规定试

国家环境监测网环境空气臭氧自动监测现场核查技术规定 (试行) 1适用范围 本规定规定了开展环境空气臭氧自动监测现场比对的方法和要求。 本规定适用于国家和地方各级环境监测站对辖区内环境空气臭氧自动监测质量进行现场核查。 2规范性引用文件 本规定内容引用了下列文件中的条款,凡是不注明日期的引用文件,其有效版本适用于本规定。 HJ 590 环境空气臭氧的测定紫外光度法 HJ 193-2005 环境空气质量自动监测技术规范 3术语和定义 下列术语和定义适用于本规定。 3.1 臭氧标准参考光度计,Standard Reference Photometer,SRP NIST与EPA于1981年合作开发的标准参考光度计,作为臭氧参考标准。 主要性能指标: 测量范围:0-1000 nmol/mol; 测量不确定度:±1 nmol/mol(0-100 nmol/mol)、±1%(100-1000 nmol/mol)。 3.2 臭氧传递标准 指经过臭氧标准参考光度计(SRP)量值传递(可经过一级或多级传递)后,可用来进行现场环境臭氧分析仪的比对和向现场的环境臭氧分析仪传递准确度的臭氧校准仪。 4方法原理 采用经量值溯源的臭氧传递标准,对正常工作状态的国家网环境空气自动监测子站的臭氧分析仪进行现场比对,以分析仪测定值与传递标准设定值的相对误差评价子站臭氧分析仪的准确度。

5试剂和材料 5.1 采样管线及接头,采样管线采用不与臭氧发生化学反应的聚四氟乙烯材料,接头包括三通、两通等常用接头。 5.2 臭氧传递标准运输箱,减少仪器运输过程中的物理震动、位移等。 6仪器和设备 6.1 臭氧传递标准 可根据比对实施者的实验室条件,选择下列传递标准之一用于现场比对用。 6.1.1 臭氧校准仪 经过臭氧标准参考光度计(SRP)直接校准过的臭氧校准仪。 6.1.2 多种气体校准仪 经过臭氧校准仪校准过的多种气体校准仪。与零气源连接后,能够产生稳定的接近系统上限浓度的臭氧(0.5 μmol/mol或1.0 μmol/mol),能够准确控制进入臭氧发生器的零空气的流量,至少可以对发生的初始臭氧浓度进行4级稀释。 6.2 空气压缩机 可以使用环境空气子站的空气压缩机,也可以使用比对实施者单独携带的空气压缩机,能稳定输出压力为20~30psi的气体。 6.3 零气发生装置 能产生符合分析校准程序要求的零空气。由核查实施者单独携带至现场,用于现场核查时向传递标准和分析仪通入零空气。 注:零空气质量的确认参见HJ 590附录A。 7现场比对 7.1 将臭氧传递标准运输至监测现场,连接好臭氧传递标准与臭氧分析仪之间的电线、气体管路和通讯线路。打开电源,开机预热至少2小时。 7.2打开空气压缩机和零气发生装置,调节压力使其稳定输出20~30psi的零空气。 7.3 在0~500 nmol/mol量程范围内,设置臭氧传递标准产生零点、精密度点(100 nmol/mol)、跨度点(400 nmol/mol)、日常监测浓度点的臭氧,依次通入臭氧分析仪30分钟,仪器自动记录分钟数据。 注:取子站最近一年臭氧小时值的平均值作为日常监测浓度点。

大气污染复习题答案

一.概念题 1,大气污染:大气污染是指由于人类活动或自然过程使得某些物质进入大气中,呈现出足够的浓度,达到了足够的时间,并因此而危害了人体的舒适,健康和人们的福利,甚至危害了生态环境。大气污染主要是人类活动造成的。P3 2,二次污染物:二次污染物是指由一次污染物与大气中已有组分或几种一次污染物之间经过一系列化学或光化学反应而生成的与一次污染物性质不同的污染物质。P5 3,黑烟:黑烟一般系指由燃料燃烧产生的能见气溶胶。P5 4,烟和雾:烟一般系指由冶金过程形成的固体颗粒的气溶胶;雾是气体中液滴悬浮体的总称。P4 5,总悬浮颗粒:指能悬浮在空气中,空气动力学当量直径<=100um的颗粒物。P5 6,辐射逆温:由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。P74 7,燃料型NO x和热(力)型NO x:1)由燃料中固定氮生成的NO x,称为燃料型NO x;2)热力型NO x由大气中氮生成,主要产生于原子氧和氮之间的化学反应,只在高温下形成。P356 8,大气边界层:对流层的下层,厚度为1~2km,其中气流受地面阻滞和摩擦的影响很大,称为大气边界层。P64 9,空气过剩系数:一般把超过理论空气量多供给的空气量称为过剩量,并把实际空气量与理论空气量之比定义为空气过剩系数a。P41 10,地面最大绝对浓度:风速对地面最大浓度有双重影响。从式(4-10)可见,增大时减小;从各种烟气抬升公式看,增大时抬升高度减小,反而增大。这两种相反作用的结果,定会在某一风速下出现地面最大浓度的极大值,称为地面绝对最大浓度,以表示。P109 11,干绝热直减率:干空气块(包括未饱和的湿空气块)绝热上升或下降单位高度时,温度降低或升高的数值。P71 12,云量:云量是指云遮蔽天空的成数。P69 13,能见度:能见度是指视力正常的人在当时的天气条件下,能够从天空背景中看到或辨认出的目标物(黑色,大小适度)的最大水平距离,单位用m或km。P69 14,城市热岛环流:城市热岛环流是由城乡温度差引起的局地风。由于城市温度经常比乡村高,气压比乡村低,所以可以形成一种从周围农村吹向城市的特殊的局地风,称为城市热岛环流或城市风。P82

对流层臭氧污染特征及来源上课讲义

对流层臭氧污染特征 及来源

对流层臭氧污染特征及来源 张圆圆 (兰州大学大气科学学院,甘肃兰州 730000) 摘要:近年来由于人类活动的影响,地面大气中的臭氧浓度不断升高,对流层臭氧污染已成为困扰人类的另一大环境问题。它的生成与氮氧化物和挥发性有机物等大气污染物相关性较大,原因复杂,污染防治难度较高。它对人类健康、农作物和植物的生长都会造成诸多危害。因此,了解对流层臭氧的污染特征、来源及其危害,对做好臭氧污染的防治工作十分重要。本文综合叙述了对流层臭氧的污染特征、来源及防治方法。 关键词:对流层臭氧污染特征来源防治方法 一、对流层臭氧简介 臭氧是地球大气中重要的气体,90%集中在10-30km的平流层,仅有10%分布在对流层中,但这10%的对流层臭氧却与人类活动密切相关。在对流层里存在的臭氧是光化学烟雾的组成部分之一,它浓度在10~100ppb范围内,不同于平流层臭氧对地球生态系统的巨大贡献,对流层臭氧对人类及生物圈是有害的。 二、对流层臭氧的污染特征 1.空间分布特征 对流层从地球表面延伸至10~18千米高度(其厚度与纬度相关),内部又可分为许多层,而臭氧主要集中在混合层(即从对流

层到平流层的过渡区)。而在混合层下方,也就是绝大多数生物生活的高度(距地面0~10千米),臭氧的浓度相对很低,但由于它容易对人类健康产生不良影响,因此是一个亟待解决的环保问题。 一些城市的监测情况显示,郊区的臭氧浓度高于市区。对于这一现象,专家说,这是因为生成臭氧的“原料”(氮氧化物和挥发性有机化合物)主要来自机动车尾气等,而氮氧化物等尾气发生光化学反应有一个过程,当“原料”随风飘到郊区时,反应更充分,臭氧浓度就更高。另一方面,在机动车产生的“新鲜”的氮氧化物中,二氧化氮是产生臭氧的“原料”,一氧化氮则有消除臭氧的效果,而等扩散到了郊区,氮氧化物中消耗臭氧的一氧化氮都被氧化成了二氧化氮,如此一来,郊区的臭氧含量高于城区也就不足为奇。 2. 时间变化特征 一年之中,臭氧浓度的最高峰集中在夏季。这期间,对臭氧的形成,可谓是天时地利人和——日照强、云量少、风力弱。对流层臭氧浓度随季节变化趋势明显,春、夏季浓度较高,秋季浓度次之。 一日之中,臭氧浓度在清晨是非常低的,8点之后,随着形成臭氧的废气越来越多,日照时间越来越长,臭氧浓度也逐渐升高,于14点到16点之间达到峰值,之后再缓慢降低,到晚上8点后,臭氧浓度又恢复了最低状态。 臭氧浓度日变化随季节变化明显。与冬季相比,春、夏和秋季臭氧浓度的日变化幅度比较大,臭氧浓度分布比较分散,周末臭氧

室内空气中臭氧的测定方法

空气中臭氧的测定方法主要有靛蓝二磺酸钠分光光度法、紫外光度法和化学发光法。 G.1靛蓝二磺酸的分光光度法 G.1.1 相关标准和依据 本方法主要依据GB/T15437 《环境质量臭氧的测定靛蓝二磺酸的分光光度法》。 G.1.2 原理 空气中的臭氧,在磷酸盐缓冲溶液存在下,与吸收液中蓝色的靛蓝二磺酸钠等摩尔反应,褪色生成靛红二磺酸钠。在610nm处测定吸光度,根据蓝色减褪的程度定量空气中臭氧的浓度。 G.1.3 测定范围 当采样体积为30L时,最低检出浓度为0.01mg/m3。当采样体积为(5~30)L,时,本法测定空气中臭氧的浓度范围为0.030~1.200 mg/m3。 G.1.4 仪器 G.1.4.1 采样导管:用玻璃管或聚四氟乙烯管,内径约为3mm,尽量短些,最长不超过2m,配有朝下的空气入口。 G.1.4.2 多孔玻板吸收管:10mL。 G.1.4.3 空气采样器。 G.1.4.4 分光光度计。 G.1.4.5 恒温水浴或保温瓶。 G.1.4.6 水银温度计:精度为±5℃。 G.1.4.7 双球玻璃管:长10cm,两端内径为6mm,双球直径为15mm。 G.1.5 试剂 除非另有说明,分析时均使用符合国家标准的分析纯试剂和重蒸馏水或同等纯度的水。G.1.5.1 溴酸钾标准贮备溶液C(1/6KBrO3)=0.1000mol/L:称取1.3918g溴酸钾(优级纯,180℃烘2h )溶解于水,移入500mL容量瓶中,用水稀释至标线。 G.1.5.2 溴酸钾—溴化钾标准溶液C(1/6KBrO3)=0.0100mol/L:吸取10.00mL溴酸钾标准贮备溶液于100mL 容量瓶中,加入1.0g溴化钾(KBr),用水稀释至标线。 G.1.5.3 硫代硫酸钠标准贮备溶液C(Na2S2O3)=0.1000mol/L。 G.1.5.4 硫代硫酸钠标准工作溶液C(Na2S2O3)=0.0050mol/L:临用前,准确量取硫代硫酸钠标准贮备溶液用水稀释20倍。 https://www.wendangku.net/doc/e718822365.html, G.1.5.5 硫酸溶液:(1+6)(V/V)。 G.1.5.6 淀粉指示剂溶液,2.0g/L :称取0.20g可溶性淀粉,用少量水调成糊状,慢慢倒入100mL沸水中,煮沸至溶液澄清。 G.1.5.7 磷酸盐缓冲溶液C(KH2PO4—Na2HPO4)=0.050mol/L:称取6.8g磷酸二氢钾(KH2PO4)和7.1g无水磷酸氢二钠(Na2HPO4),溶解于水,稀释至1000mL。 G.1.5.8 靛蓝二磺酸钠(C6H18O8S2Na2 简称IDS),分析纯。 G.1.5.9 IDS标准贮备溶液:称取0.25g靛蓝二磺酸钠(IDS),溶解于水,移入500mL棕色容量瓶中,用水稀释至标线,摇匀,24h后标定。此溶液于20℃以下暗处存放可稳定两周。标定方法:吸取20.00mL IDS标准贮备溶液于250mL碘量瓶中,加入20.00mL溴酸钾—溴化钾标准溶液,再加入50mL水,盖好瓶塞,放入16℃±1℃水浴或保温瓶中,至溶液温度与水温平衡时, 42 加入5.0mL(1+6)硫酸溶液,立即盖好瓶塞,混匀并开始计时,在16℃±1℃水浴中,于暗处放置35min±1min。加入1.0g碘化钾(KI)立即盖好瓶塞摇匀至完全溶解,在暗处放置5min

臭氧浓度检测方法

For personal use only in study and research; not for commercial use 臭氧浓度检测方法大致可分为“化学分析法”、“物理分析法”、“物理化学分析法”三类。 1.化学检测法 1.化学检测法 1.1 碘量法 碘量法是最常用的臭氧测定方法,我国和许多国家均把此法作为测定气体臭氧的标准方法,我国建设部发布的《臭氧发生器臭氧浓度、产量、电耗的测量》标准CJ/T 3028.2 — 94 中即规定使用碘量法。其原理为强氧化剂臭氧(O 3 )与碘化钾(KI )水溶液反应生成游离碘(I 2 )。臭氧还原为氧气。反应式为:O 3 + 2KI + H 2 O → O 2 + I 2 + 2KOH 游离碘显色,依在水中浓度由低至高呈浅黄至深红色。 利用硫代硫酸钠(NaS 2 O 3 )标准液滴定,游离碘变为碘化钠(NaI ),反应终点为完全褪色止。反应式为: I 2 + 2Na 2 S 2 O 3 → 2NaI + NaS 4 O 6 两反应式建立起O 3 反应量与NaS 2 O 3 消耗量的定量关系为1molO 3 :2mol NaS 2 O 3 ,则臭氧浓度 C O3 计算式为: C O3 =40x3x1000/1000 (mg/L ) 式中: C O3 ——臭氧浓度,mg/L ; A Na ——硫代硫酸钠标准液用量,ml ; B ——硫代硫酸钠标准液浓度,mol/L ; V 0 ——臭氧化气体取样体积,ml 。 操作程序及方法参照标准CJ/T3028.2 — 94 。 测定标准型发生器浓度很方便。臭氧化气体积用流量计计数,NaS 2 O 3 浓度一般配制为0.100mol/L ,测定精度可达± 1% 。 测定空气中臭氧浓度时,应用在气采样器抽气定量。为保证测定精度,NaS 2 O 3 配为0.10mol/L 。 测定水溶臭氧浓度亦可用此公式计算,只是V 0 代表采水量,取1000ml 。NaS 2 O 3 浓度为0.10mol/L 。 碘量法优点为显色直观。不需要贵重仪器。缺点是易受其氧化剂如NO 、CI 2 等物质的干扰,在重要检测时应减除其它氧化物质的影响。 1.2 比色法 比色法是根据臭氧与不同化学试剂的显色或脱色反应程度来确定臭氧浓度的方法。按比色手段分为人工色样比色与光度计色 . 此法多用于检测水溶解臭氧浓度 . 国内检测瓶装水臭氧溶解浓度有使用碘化钾、邻联甲胺等比色液的。其方式是利用检测样品显色液管相比较,确定测样臭氧溶解度值(0.05~0.08mg/L ), 要求精确的,则利用分光光度计检测。 国外利用此法做成仪器,配制标准工具与药品作为现场抽检使用,很方便。如美国HACH 公司、日本荏原公司的DPD (二己基对苯二胺)比色盘,范围为0.05~2mg/L 。美国HACH 公司微型比色仪,利用靛蓝染料脱色反应。在600nm 波长比色,0.05~0.75nm/L 浓度数字显示,精度± 0.01nm/L 。受其它氧化剂干扰少。 1.3 检测管 将臭氧氧化可变化试剂浸渍在载体上,作为反应剂封装在标准内径的玻璃管内做成测管,使用时将检测管两端切断,把抽气器接到检测管出气端吸取定量臭氧气体,臭氧浓度与检测管内反应剂柱变色长度成正比,通过刻度值读取浓度值。 德国、日本和我国都生产臭氧检测管,浓度范围分为高(1000ppm )、中(10ppm )、低(3ppm )

臭氧浓度测定方法(精)

臭氧浓度测定方法: A.碘量滴定法: A-1测定原理 利用碘化钾与臭氧反应而析出游离碘,,以硫代硫酸钠标准溶液进行滴定,然后计算出臭氧量,其反应式为: O2+2KI+H2O -> I2+2KOH+O2↑ I2+2Na2S2O2 ->2NaI+Na2S4O4 A-2 测定方法 将1%碘化钾(KI)水溶液盛于吸收瓶中,再将吸收瓶连接在由老化试验箱至取样真空泵之间,吸取一定容积的含臭氧空气后,移入滴定瓶中,并加入0.4%体积(为吸收液体积的百分数)的1N硫酸(或10%之乙酸)进行酸化,然后以0.001N的(硫代硫酸钠)标准液滴定,至溶液呈黄色时,加入2滴1%淀粉液指示剂,继续滴定至溶液蓝色刚消失即为终点 A-3 臭氧浓度的计算 据上述化学反应式,在标准状况下,1克当量硫代硫酸钠(Na2S2O2)的臭气体积当量为11.2,故臭氧量U(单位:L)为: U=(11.2/1000)*N*B 通过碘化钾(KI)吸收液的含臭氧空气量V0(单位:L)在标准状态下为: V0=(27.3/760)*((p*V)/T) 由此可得到臭氧浓度(O2)的计算式为: (O2)=U/ V0=3118000*(N*B*T)/(p*V) 式中: (O2)=试验的臭氧浓度,pphm N =硫化硫酸钠标准溶液的当量浓度 B =硫代硫酸钠标准溶液的消耗量,ml T =试验温度,K(273+试验温度o C) P =吸收瓶中的气压(P大气压-P真空度),mmHg柱 V =通过吸收液的含臭氧空气的总量,L B.紫外线吸收法: 原理为臭氧对波长λ=254nm紫外光具有最大吸收系数,在此波长下紫外光通过臭氧层 会产生衰减,符合兰波特-比尔(Lambert--Beer)定律:I=Io-KLC :Io-无臭氧存在时入射 光强度;I-光束穿透臭氧后的光强度;L-臭氧样品池光程长度;C-臭氧浓度;K-臭氧对光 波长吸收系数。 根据该公式,在K、L值已知条件下,通过检测I/Io值即可测出臭氧浓度C值来。 紫外吸收法已被美国等国家作为臭氧分析的标准方法。 可连续在线检测,数字显示并可记录打印。优点为检测精度高,稳定性好,其它氧化剂干 扰小。缺点为价格较高。 标准件追溯至美国,本公司使用之检测仪追溯至美国NIST实验室。

《典型污染物在环境各圈层中的转归与效应》重点习题及参考答案

《典型污染物在环境各圈层中的转归与效应》 重点习题及参考答案 1.为什么Hg 2+和CH 3Hg +在人体内能长期滞留?举例说明它们可形成哪些化合物? 这是由于汞可以与生物体内的高分子结合,形成稳定的有机汞络合物,就很难排出体外。此外,烷基汞具有高脂溶性,且它在生物体内分解速度缓慢(其分解半衰期约为70d ),因而会在人体内长期滞留。 Hg 2+和CH 3Hg + 可以与羟基、组氨酸、半胱氨酸、白蛋白形成络合物。甲基汞能与许多有机配位体基团结合,如—COOH 、—NH 2、—SH 、 以及—OH 等。 2.砷在环境中存在的主要化学形态有哪些?其主要转化途径有哪些? 砷在环境中存在的主要化学形态有五价无机砷化合物、三价无机砷化合物、一甲基胂酸及其盐、二甲基胂酸及其盐、三甲基胂氧化物、三甲基胂、砷胆碱、砷甜菜碱、砷糖等。

砷的生物甲基化反应和生物还原反应是砷在环境中转化的重要过程。主要转化途经如下: 3.试述PCDD是一类具有什么化学结构的化合物?并说明其主要污染来源。 (1)PCDD这类化合物的母核为二苯并一对二噁英,具有经两个氧原子联结的二苯环结构。在两个苯环上的1,2,3,4,6,7,8,9位置上可有1-8个取 代氯原子,由氯原子数和所在位置的不同可能组合成75 种异构体,总称多氯联苯并一对二噁英。其结构式如右: (2)来源:①在焚烧炉内焚烧城市固体废物或野外焚 烧垃圾是PCDD的主要大气污染源。例如存在于垃圾中 某些含氯有机物,如聚氯乙烯类塑料废物在焚烧过程中可能产生酚类化合物和强反应性的氯、氯化氢等,从而进一步生产PCDD类化合物的前驱物。除生活垃圾外,燃料(煤,石油)、枯草败叶(含除草剂)、氯苯类化合物等燃烧过程及森林火灾也会产生PCDD类化合物。②在苯氧酸除草剂,氯酚,多氯联苯产品和化学废弃物的生产、冶炼、燃烧及使用和处理过程中进入环境。③另外,还可能来源于一些意外事故和战争。

我国城市大气污染特点及综合防治

我国城市大气污染特点及综合防治 【摘要】本文首先介绍了我国城市大气污染的现状,然后分析我国城市大气污染的主要特点和成因。最后针对目前城市大气污染现状,提出全面规划、合理布局、植树选林、绿化环境,改善能源结构和提高能源利用率的综合防治措施。 【关键词】城市;大气污染;综合防治;特点 1.我国城市大气污染概况 2012年,地级以上城市环境空气质量达标(达到或优于二级标准)城市比例为91.4%。其中,海口、三亚、兴安、梅州、河源、阳江、阿坝、甘孜、普洱、大理、阿勒泰等11个城市空气质量达到一级。超标(超过二级标准)城市比例为8.6%。环保重点城市环境空气质量达标城市比例为88.5%。空气中二氧化硫、二氧化氮和可吸入颗粒物年均浓度分别为0.037毫克/立方米、0.035毫克/立方米和0.083毫克/立方米。 地级以上城市中,4个城市二氧化硫年均浓度超标,占1.2%;43个城市二氧化氮年均浓度超标,占13.2%;186个城市可吸入颗粒物年均浓度超标,占57.2%。环保重点城市中,2个城市二氧化硫年均浓度超标,占1.8%;31个城市二氧化氮年均浓度超标,占27.4%;83个城市可吸入颗粒物年均浓度超标,占73.4%。 2.我国城市大气污染特点 2.1煤烟型污染占重要地位 燃煤是形成我国大气污染的根本原因。我国能源结构中煤炭占76.12%,工业能源结构中燃煤占73.9%,在工业燃煤的设备中又以中小型为主。预测表明,我国国内生产总值每增加1%,废气排放量增长0.55%。 2.2具有时空分布规律 我国城市大气污染时空分布特征明显。从季节变化来看,冬季污染最严重,其次是春季和秋季,夏季空气最好。从空间区域来看,总体呈现出北方污染高于南方的趋势。 2.3新兴城市和小城市大气污染也日益严重 由于前几年一些小城市和新兴城市在追求经济增长速度的同时,没有把环境保护放在同等重要的地位。搞粗放经营,浪费资源,耗能过大,污染严重。尤其是二氧化硫和悬浮颗粒物严重超标,甚至出现了酸雨情况。

有关环境工程大气污染的处理措施的探讨

有关环境工程大气污染的处理措施的探讨 发表时间:2020-04-03T06:07:06.283Z 来源:《建筑学研究前沿》2019年24期作者:刘婷 [导读] 基于此,本文主要论述在环境工程中对于大气污染的相关处理措施。 中大宇辰项目管理有限公司河北石家庄 050000 摘要:人类在生产生活之中,大气环境对于人类的身体健康产生直接的影响作用,但是当前我国的大气污染问题不断加重,严重威胁着我们人类的健康,且对于整个生态环境的长久发展,也是十分不利的,因此,重视环保,加强生态建设,更好的应对大气污染是当务之急。基于此,本文主要论述在环境工程中对于大气污染的相关处理措施。 关键词:环境工程;大气污染;处理措施 0引言 经济发展的不断推进,我国经济高速发展,尤其是工业的发展进步,更是在我国的发展中有着重要的地位,但是,在经济发展的同时,生态环境也遭受到了前所未有的伤害。水资源、大气环境、土壤环境等,都经受了很大的打击,污染现状日益严重。在环境工程中,大气污染排放大量的污染物,对整个生态环境造成严重的污染,大气污染问题形势严峻。 1大气污染现状、特点及危害 (1)现状。当前阶段,大气污染问题成为各国的一大通病,在我国这种问题表现尤为明显,尤其是我国的首都北京污染较为严重,一些大城市或者是重工业较为发达的地区,污染更为严重,由于工业生产会进行大范围的污染物的排放,例如烟尘、氮氧化物以及有机化合物等,其中烟尘或者气体表现较为明显。公路工程的不断建设,汽车的使用量不断的增加,大气污染中汽车尾气是污染物的主要来源,很多推动城市发展的工业建筑以及厂房,在当前已经是污染的主要来源,因此需要加以整改,以保护当前环境。 (2)特点。现阶段,大气污染特点主要表现为:1)污染范围大。流动性气体传播,使得大气污染扩散性突出,集中控制难度大。如果产生污染就会快速扩散,大面积受到污染,对居民生活造成影响,加大了治理难度。2)复杂的污染成分。大气污染有复杂的成分且种类多,根本原因在于污染源不同。常见污染源以工业废气与汽车尾气为主,还有雾霾,这是大气主要污染源,复杂的成分对人们呼吸造成了严重的影响。3)后期治理困难。基于污染源控制,后期治理效果差强人意。 (3)危害。大气污染有很大的污染,对人们健康造成影响,甚至对地球生物生存产生危害。污染空气中包含一氧化碳、二氧化硫、氮氧化物及灰尘等,如果人们呼吸了,就会产生慢性中毒或各类疾病,不利于身体健康。此种情况下,生态平衡被打破,频繁形成酸雨,对植被生长与动物食物源造成影响。同时,大气污染也会加剧臭氧层空洞问题,地面紫外线照射多,使得人类与动植物健康受到伤害。 2大气污染有效处理措施分析 (1)政府部门提高大气污染认识。秋冬季节,大气污染进入高发季节,政府部门要重视大气污染问题,根据地区大气污染设计情况,有效整治环境工程,增强大气污染治理紧迫意识,还要采用相关管理与预警措施,在秋冬季节制定有效措施治理大气污染,有效防控治理的同时,对大气污染问题做好有效应对。同时,严格构建工作问责机制,明确规定各单位管理职责,参考《大气污染防治法》规定,在法律范围内处理大气污染问题,环境治理中,严厉追究违法犯罪人个体及政府单位等人员责任,以此在大气污染治理中,体现政府坚定的治理决心,以威严的法律增强社会各界重视大气污染问题。 (2)对环境新能源进行合理开发。工业生产中,为了预防能源燃烧影响大气环境,各地区可结合发展需求对新能源进行合理开发,应用适宜地清洁性能源,缓解大气污染问题。比如,结合能源使用需求,对太阳及燃气能源加大开发力度,并将其作为日常生产生活的主要能源。大气环境中,清洁能源影响小,因而广泛应用于日常生活生产中,降低了废气排放量,大气环境更加稳定,人类能源构成获得完善。对新能源进行合理开发,降低旧能源使用量,改善废气排放量,为大气环境污染问题的解决创造条件。 (3)环保部门有效监控大气污染问题。环境工程建设中,大气污染治理是一项长期而艰巨的任务,实际工作中,环保部门要承担相应的治理责任。首先,转变传统治理理念,从源头上做好污染源控制。对于大气污染主要问题,探索有效的解决办法,详细检查城市环境中存在的主要污染物并认真分析相关数据,与其它部门配合,制定相应的处理措施并落实到各行业,增强全民环保意识。此外,大气污染实际处理中,严格监控大气质量,及时排查并处理各类超标或新型污染物,有效制定治理方案。 (4)对工业污染加大控制与减排管理力度。我国大气污染中,工业与煤烟污染是主要污染源,所以严格控制工业污染降低废气排放量是十分必要的。实际工作中,可从以下几方面入手:1)对电力及相关工业企业加大检查力度,加强检查电力企业脱氮与脱硫力度,在合理范围内严格控制大气污染物排放量,创新节能减排,尽可能降低工业生产大气污染物排放浓度。2)供暖季节,加强控制大气污染物,或在供暖设备上安装污染物控制设备,以此减小大气污染排放量。3)对于排污许可制度进行制定与完善。参考相应标准,企业要严格申请许可制度,污染物达标后才能排放到大气中,如果污染物不符合排放标准,要进行降污处理后才能排放,并加大惩处违规行为。

环境空气中臭氧的测定

环境空气中臭氧的测定(HJ 504-2009 ) —靛蓝二磺酸钠分光光度法 一、实验目的 1、掌握靛蓝二磺酸钠分光光度法测定环境空气中臭氧含量的原 理和方法; 2、熟练掌握滴定操作; 3、熟练掌握采样仪器和分光光度计的操作。 二、实验前准备 1、试剂 (1)溴酸钾标准贮备 溶液[c(1/6 KBr03)=0.100 0 mol/L]准确称取 1.391 8 g溴化钾(优级纯,180C烘2 h ),置烧杯中,加入少量水溶解,移入 500ml容量瓶中,用水稀释至标线。 (2)溴酸钾-溴化钾标准溶液[c(1/6 KBrO5)= 0.010 0 mol/L]吸取 10.00 ml溴酸钾标准贮备溶液于100 ml容量瓶中,加入1.0g溴化钾(KBr),用 水稀释至标线。 (3)硫代硫酸钠标准贮备溶液[c(Na2S2O3)= 0.1000 mol/L]。 (4)硫代硫酸钠标准工作溶液[c(Na2S2O3)= 0.00500 mol/L]临用前,取硫代硫酸钠标准贮备溶液用新煮沸并冷却到室温的水准确稀释 20 倍。 (5)硫酸溶液,1+6。 (6)淀粉指示剂溶液[p =2.0 g/L]称取0.20g可溶性淀粉,用少量

水调成糊状,慢慢倒入100 ml沸水,煮沸至溶液澄清。 (7)磷酸盐缓冲溶液,[c(KH2PO4-Na2HPO4)=O.O50riol/L]称取 6.8 g 磷酸二氢钾(KH2PO)7.1 g无水磷酸氢二钠(Na2HPC)溶于水,稀释至1000 ml。 (8)靛蓝二磺酸钠(C16H8O8Na2S2(简称IDS),分析纯、化学纯或生化试剂。 (9) IDS标准贮备溶液:称取0.25g靛蓝二磺酸钠溶于水,移入500 ml棕色容量瓶,用水稀释至标线,摇匀,在室温暗处存放 24 h后标定。此溶液在20C以下暗处存放可稳定2周。 标定方法:准确吸取 20.00 ml IDS 标准贮备溶液于250 ml碘量瓶中,加入20.00 ml溴酸钾-溴化钾溶液再加入50 ml水,盖好瓶塞,在16 C 士 1 C生化培养箱(或水浴中放置至溶液温度与水浴温度平衡时[注1],加入5.0 ml 硫酸溶液,立即盖塞、混匀并开始计时,于16 C 士 1C暗处放置35 min 士1.0 min后,加入1.0 g碘化钾,立即盖塞,轻轻摇匀至溶解,暗处放置 5 min,用硫代硫酸钠溶液滴定至棕色刚好褪去呈淡黄色,加入5 ml淀粉指示剂溶液,继续滴定至蓝色消退,终点为亮黄色。记录所消耗的硫代硫酸钠标准工作溶液的体积[注2]。注1:达到平衡的时间与温差有关,可以预先用相同体积的水代替溶液,加入碘量瓶中,放入温度计观察达到平衡(HJ 504—2009)所需要的时间。 注2:平行滴定所消耗的硫代硫酸钠标准溶液体积不应大0.10 ml。 每毫升靛蓝二磺酸钠溶液相当于臭氧的质量浓度P(血/ml)计算:

相关文档
相关文档 最新文档