文档库 最新最全的文档下载
当前位置:文档库 › 基于空间相移技术的航空复合材料激光散斑无损检测仪的研制

基于空间相移技术的航空复合材料激光散斑无损检测仪的研制

基于空间相移技术的航空复合材料激光散斑无损检测仪的研制
基于空间相移技术的航空复合材料激光散斑无损检测仪的研制

基于空间相移技术的航空复合材料激光散斑无损检测仪

的研制

陈荔新1,颜卫卫1,马铁军1,2,谢雷2,黄嘉兴2,曾启林2

(1.华南理工大学机械与汽车工程学院,广东广州510640;2.广州华工百川科技股份有限公司广东广州510640)摘要:简单介绍了无损检测技术的几种方法,并对激光错位散斑的原理进行了阐述。然后介绍了华工百川公司自行研制的复合材料无损检测仪,以及对缺陷检测效果的进行了分析与改进。关键词:无损检测;激光错位散斑;空间相移;航空复合材料中图分类号:TP-19

文献标识码:A

文章编号:1674-6236(2013)01-0092-04

Research on laser shearography instrument for nondestructive testing of aeronautical

composite based on spatial phase -shifting method

CHEN Li -xin 1,YAN Wei -wei 1,MA Tie -jun 1,2,XIE Lei 2,HUANG Jia -xing 2,ZENG Qi -lin 2

(1.School of Mechanical and Automotive Engineering ,South China University of Technology ,Guangzhou 510640,China ;

2.Guangzhou SCUT Bestry Technology Co.,Ltd ,Guangzhou 510640,China )

Abstract:This article simply introduces several methods of nondestructive testing technology ,and expounds the principle of laser shearography .And then it introduces the instrument for nondestructive testing of composite which researched by the company of SCUT Bestry ,as well as to analyze and improve the detection effect of the defect.

Key words:nondestructive testing ;laser shearography ;spatial phase -shifting ;aeronautical composite

收稿日期:2012-09-12

稿件编号:201209078

作者简介:陈荔新(1987—),男,福建莆田人,硕士研究生。研究方向:聚氨酯实心轮胎项目的温度场的试验研究与有限元软件

的分析模拟。

随着航空制造技术的不断发展,复合材料以其高的比强度、比刚度及良好的抗疲劳性和耐腐蚀性获得广泛的应用。由于影响复合材料结构完整性的因素甚多,许多工艺参数的微小差异都会导致其产生缺陷,使得产品质量呈现明显的离散性,这些缺陷严重影响构件的机械性能和完整性,必须通过无损检测来鉴别产品的内部质量状况,以确保产品质量,满足设计和使用要求。

在复合材料结构的生产过程中,为了确定其技术指标是否达到设计要求,在生产的各个环节中,都会通过不同的无损检测手段来检验产品质量,以确保产品的最终质量。其中有些方法也被移植应用于外场的检测,这些方法包括目视法、敲击法、声阻法、声谐振法、超声检测技术、射线检测技术等。然而这些传统的检测方法都具有一定的局限性,相应发展起来的复合材料结构外场无损检测新技术、新方法有:外场在位检测的便携式超声C 扫描系统、X 射线非胶片成像技术、红外热成像技术、激光错位散斑干涉无损检测技术等[1]。本文正是基于激光错位散斑技术的应用,而进行开发的一个复合材料无损检测仪。

1基本原理

激光错位散斑(Laser Shearography )技术也称剪切散斑技

术,是20世纪80年代兴起的用于表面变形测量的新型光学检测技术。该技术用于无损检测的原理与激光全息干涉类似,都是通过对待测物体加载,观察缺陷表面异常变形所产生的异常光学干涉条纹来判断缺陷特征。与激光全息检测相比,错位散斑技术操作方便、检测效率高。

Shearography 不仅光学干涉装置比较简单,而且对刚体

运动和机械噪声不敏感,对系统的隔震要求也不高,

Shearography 较ESPI 更适合于如生产线上的现场检验。与非

光测技术相比,如C 扫描,Shearography 是非接触式的,不需要任何介质,而且速度快,适合于工程结构,特别是大型结构的现场无损检测,这是C 扫描难以做到的。

1.1剪切电子散斑

剪切电子散斑[2]系统的原理如图1所示。

电子设计工程

Electronic Design Engineering

第21卷

Vol.21

第1期No.12013年1月Jan.2013

图1

剪切电子散斑系统原理图

Fig.1The schematic diagram of ESSPI system

-92-

材料缺陷检测技术

材料(构件)缺陷检测技术 摘要:无损检测技术是随着现代工业技术的发展而发展起来的,总得来说,无损检测大致经历了三个阶段早期称作无损探伤,它的作用是在不破坏产品的前提下,检测出人眼无法看见的缺陷,以满足工程中的需要;第二阶段称为无损检测,它不是检测,它不是检测最终产品,而是要测量过程工艺参数;第三阶段称为无损评价,它不仅要检测缺陷是否存在和位置信息,还要测出缺陷的类型、尺寸、形状、取向以及对材料的力学行为的影响。,无损检测的类型有很多,根据美国国家航天局统计分析,大概有六大类,70余种。因为材料(构件)缺陷检验在航空航天,建筑,交通,工业,运输都有广泛的应用,也是这些行业正常运行的必要保障,也为国家和人民提供产品质量和安全保障,所以,现如今人们发明了各种各样的材料缺陷检测设备和装置,如:超声检测、红外检测、电子错位散斑干涉、交变磁场测量法等无损伤检测技术。下面我将对一些现如今主要运用的检测技术对其原理、优缺点做一下介绍。 关键词:无损检测,超声检测;红外检测;电子错位散斑干涉;交变磁场检测 引言:材料或构件在使用中难免会有疲劳损伤、荷载 损伤和被腐蚀,即使是全新加工制作的构件也难免有 缺陷。及时发现材料或构件的缺陷有利于减少损失, 保障安全。如今有很多各种各样的探伤检测设备,可 以根据不同需要选择对应的检测设备和方法。下面将 对比介绍一下现在普遍运用的检测手段和方法。 1.超声探伤检测 超声波进入物体遇到缺陷时,一部分声波会产 生反射,发射和接收器可对反射波进行分析,就能 异常精确地测出缺陷来.并且能显示内部缺陷的位 置和大小,测定材料厚度等。除探伤外,超声波还 可用于测定材料的厚度,使用较广泛的是数字式超 声测厚仪,可用来测定化工管道、船体钢板等易腐 蚀物件的厚度。利用测定超声波在材料中的声速、 衰减或共振频率可测定金属材料的晶粒度、弹性模量(见拉伸试验)、硬度、内应力、钢的淬硬层深度、球墨铸铁的球化程度等。 此外,穿透式超声法在检验纤维增强塑料和蜂窝结构材料方面的应用也已日益广泛。原理: 超声波是频率高于20千赫的机械波。在超声探伤中常用的频率为0.5~10兆赫。这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制超声探伤仪

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

_无损检测技术在复合材料检测中的应用

Vol.49No 12工程与试验EN GIN EERIN G &TEST J une 2009 [收稿日期] 2009-03-30[作者简介] 郁青(1980-),女,硕士研究生,主要研究方向:新型工程材料及应用。 无损检测技术在复合材料检测中的应用 郁 青,何春霞 (南京农业大学工学院,江苏南京210031) 摘 要:介绍了复合材料在制造和使用过程中产生的缺陷和损伤的形式,讨论和分析了复合材料检测中各种无损检测技术的特点及适用范围,并对其优、缺点进行了比较和评价。关键词:无损检测技术;复合材料;应用 中图分类号:TB303 文献标识码:B doi :1013969/j.issn.167423407.2009.02.008 Application of Nondestructive T esting in Composite Materials Yu Qing ,He Chunxia (College of Engi neeri n g ,N anj i n g A g ricult ural U ni versit y ,N anj i ng 210031,J i an gs u ,Chi na )Abstract :This article int roduces t he forms of defect s and damages which are brought during p ro 2cessing and operation of composite materials.The characteristic and applicability of different techniques of nondest ructive testing (ND T )used for compo sites are described and analyzed.Mo 2reover ,t heir merit s and drawbacks are compared and estimated.K eyw ords :no ndest ructive testing ;compo site material ;application 1 概 述 无损检测是不破坏产品原来的形状、不改变其使用性能,对产品进行检测(或抽检),以确保其可靠性和安全性的检测技术。在不损伤被检测对象的条件下,利用材料内部结构异常或缺陷存在所引起的对热、声、光、电、磁等反应的变化,来探测各种工程材料、零部件、结构件等内部和表面缺陷,对缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化做出判断和评价。 随着科学技术的迅速发展,对材料的性能提出了更苛刻的要求,传统的材料因其性能单一而不能满足需要。复合材料是由两种或两种以上异质、异形、异性的材料复合形成的新型材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求,因此被越来越广泛地用于航空航天、汽车工业、化工、纺织、机械制造以及生命科学和医学等各个领 域。复合材料在工艺过程中,由于增强纤维的表面 状态、树脂粘度、低分子物含量、线性高聚物向体型高聚物转化的化学反应速度、树脂与纤维的浸渍性、组分材料热膨胀系数的差异以及工艺参数控制的影响等,使复合材料结构在生产制造和使用过程中不可避免地会存在缺陷和遭受损伤[1]。无损检测技术可对复合材料在不破坏的情况下有效地检测出各种缺陷和损伤形式,因此被广泛地应用于工程中。 2 无损检测技术在复合材料检测中的应用 复合材料的缺陷和损伤检测是复合材料结构修理的基础和前提,也是其性能评估的依据。针对不同的缺陷和损伤形式,可以采用不同的无损检测手段。目前,对于复合材料无损检测的常用方法有X 射线、超声波、计算机层析照相(CT )、红外热成像检测、声发射、微波、激光检测法、中子照相法、敲击法以及声-超声检测法等。211 X 射线无损检测技术 X 射线无损检测中目前常用的是胶片照相法, ? 42?

复合材料缺陷激光散斑数字成像无损检测技术

复合材料缺陷激光散斑数字成像无损检测技术 帅家盛 (北京嘉盛国安科技有限公司) 一、应用背景: 复合材料在航空、航天、兵器、船舶、汽车、建筑、医疗、制药、压力容器、橡胶工业等行业中占的比例越来越大,然而复合材料在生产和使用过程易产生开胶、分层、冲击损伤、渗水、蜂窝变形等缺陷,缺陷的扩展给装备带来安全隐患。目前国内复合材料的检测普遍采用落后的敲击法、超声波、声阻检测方法,这些方法普遍存在灵敏度低、对操作者要求高、缺陷难以定量和定位、检测速度慢等问题。国外普遍采用先进的激光错位散斑成像无损检测技术,不仅检测灵敏度高,缺陷可以直观数码成像,还可以精确测量缺陷的尺寸、位置,操作简捷方便、速度快,成为复合材料生产或现场无损检测专门解决方案。 成立于1977年的美国激光技术有限公司(LTI)是世界激光散斑成像无损检测技术的领导者,其激光散斑成像技术克服了其它检测手段和早期激光干涉检测技术的许多瓶颈和局限,广泛应用于飞机、火箭、卫星、导弹、舰船、飞船、装甲等生产或在役检测,在实践中证实了巨大的成本效益和超强的无损检测能力。 二、数字激光散斑成像检测原理和特点: 1、基本检测原理: 激光错位散斑无损检测系统利用共路径干涉计对工件表面对加载变化的离面变形一次导数进行成像,原理如下图所示: 上图左为用LTI迈克逊错位散斑成像干涉仪检测带有一个120mm直径平底孔平板结构试件的原理示意图,平板中部被加载后表面产生变形,被激光错位镜头和高端摄像头进行实时采集和数字相移处理,输出到计算机处理器操作系统,检测结果可以在电脑屏幕上实时成像显示,如右图所示。 图中激光错位探头通常使用经过两个重要改进的迈克逊干涉计:其一、一个镜片被精确的倾斜,从而得到了一个相对于工件第二张图像的一个剪切偏移量(或错位图像)。剪切量是一个矢量,它包括一个角度和一个位移量。剪切量决定了干涉计对表面位移导数的灵敏度。在检测视野内,剪切矢量偏置的两幅激光散斑图像的对应点在工件表面上方发生干涉。两张剪切图像的单频激光聚焦在CCD摄像头的感光像素阵列上。剪切图像对应点发出的光发生干涉。接着,从一张存储参考图像中减去 149

飞机用复合材料的低成本制造设备及工艺

FORUM 论坛 航空制造技术年第期 飞机用复合材料的低成本制造 设备及工艺 中国航空工业发展研究中心 陈亚莉 本文分析了复合材料低成本制造工艺及设备。指出在 降低复合材料成本方面,制造技术有着广泛机遇,其关键是自动化设备。在低成本工艺方面,非热压罐技术潜力巨大,代表着未来的发展方向。 Low -Cost M anuf act ur i ng Equi pm ent and Pr ocess of Com posi t es f or A i r cr af t 波音787已开始交付用户,A 350的格局已定,A320和波音737将重新换发,F-35正进入20年生产初期。飞机将成为下一个10年制造的主角,且将不再是以金属为主要结构的装备。材料系统的选择以及结构设计业已确定,金属及复合材料之间的平衡也已肯定下来。在这种情况下,制造技术将进一步提高生产效率和降仍有待改进。例如花大量时间来置 入紧固件,由于紧固件类别不同,需要一方面看图纸,在蒙皮上做标记,然后再将紧固件置入蒙皮。 飞机复合材料结构正在开发一系列缩短周期、降低成本的先进技术。例如,从三维设计数据库中自动取出零件的几何尺寸数据是飞机制造商的优先项目。当飞机产量大或要求制造精度高时,需要自动化设备进入生产车间进行铺层、切削加工、钻孔及在生产线上进行检验。 铺层自动化 对于复合材料制造来说,自动化是关键。碳纤维可提供所需的性能改进,但产量必须提高,成本才能降低。波音787、A 350以及F -35投产时就必须提高生产率。随着从手工铺层到自动化铺层,碳纤维在模具上的铺层就成了关键性的推手。 低成本,即使材料及结构方面大的决策已定,在制造方面仍有充分的改进空间。 由于空客及波音已将下一代窄体飞机推迟到2020年以后,复合材料与金属材料之争已冷却下来,即使 这样,先进材料及制造技术的发展仍 有机遇,只是不同飞机的机遇不同罢了。 例如,对于A 320neo 和波音737MAX 这样的飞机,要改变材料的 机遇有限,而结构及技术仍将采用标准形式。但对于A 350-1000以及787-10仍有更多的机遇采用新的制造技术。目前仍处在设计中的波音777X 有可能做更多的变化,例如,采用碳纤维复合材料机翼。这些飞机 在结构及材料决定之后,仍有大量降低及减重以及工艺改进工作。又如,F-35仍在开发中,重点放在制造改进上, 大量的手工劳动以及质量问题 陈亚莉中国航空工业发展研究中心研究员。长期从事航空材料情报研究工作, 曾获先进国防科技情报工作者等称 号。 44 201219

激光散斑和激光多普勒测量

激光散斑和激光多普勒测量 从图1.3 可知,激光散斑主要应用于微循环的血流监测,这是因为激光散斑测量 法相对于放射性微球技术 [25] 、荧光示踪检测法 [26] 和氢离子稀释 [27] 等方法,具有非接触、 无创伤、能对血流分布快速成像等优点。具有相同优点的另外一种光学检测技术——激光多普勒速度测量技术,是利用粒子散射光的强度波动引起的多普勒频移来测量散射子的速度,它可用于监控血流以及人体其它组织或器官的运动。激光多普勒技术用于测量血流速度的研究始于20 世纪70 年代,至今已经发展为成熟的医疗诊断工具。与激光多普勒技术不同的是,激光散斑是受激光照射物体产生的随机干涉效应的颗粒状图案。如果物体由单个移动散射体(如血细胞)组成,散射图案会有波动。这些波动包含了散射体运动变化的信息。尽管激光散斑技术看起来和激光多普勒技术大相径庭,一个是多普勒现象,一个是干涉现象,但是通过数学分析,这两种方法在最终的数学表达上是可以统一的 (1.1 a)描述的是频率变化引起的强度变化,(1.1 b)是相位变化引起的强度变化。可以 看出激光散斑和激光多普勒是观察同一现象的两种不同途径,却各有自身的发展。 相干光照射的运动散射粒子会引起光强的随机波动,其物理基础可以通过两种方 式来表示:随机相干图案的波动(时间积分和微分的时变散斑或动态散斑)和不同频率之间产生的拍频和混频(多普勒频移)。图1.4 展示了运动散射粒子引起的随机光强波动的测量方法。 .2 激光散斑测量与统计特性 5 固体或流体的散射粒子运动时,会产生多普勒频移。对同向运动的散射体,其所 有的或大部分的散射光具有相同的频移,这时需要加入参考光源来产生频率差。不移动的参考光源与运动散射粒子频移的频率差与散射粒子的运动速度相关,这就是典型的激光多普勒测速仪的外差测量法。当散射粒子运动产生的多普勒频移具有一定的范围,即产生了多普勒频移谱,这时频移之间会发生相互的自拍频,在零频附近展开,此为频率的零差,可以使用光子相干光谱测量 [14,15] 。

航空航天领域先进复合材料制造技术进展

专题研究 Feature 72 纺织导报 China Textile Leader · 2018 产业用纺织品专刊 参考文献 [1] 李俊宁,胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术 研究进展[J]. 宇航材料工艺,2011,41(6):10-13. [2] GRITSEVICH I V, DOMBROVSKII L A, NENAROKOMOV A V. Heat transfer by radiation in vacuum shield insulation of spacecrafts [J]. Thermal Processes in Engineering, 2013, 5(1): 12-21. [3] 沈学霖,朱光明,杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程,2016,32(10):164-169. [4] KIM J, LEE J H, SONG T H. Vacuum insulation properties of phe-nolic foam[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5343-5349. [5] BHEEKHUN N, ABU TALIB A R, HASSAN M R. Aerogels in aerospace: An overview[J]. Advances in Materials Science and En-gineering, 2013, 406065. [6] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A stra-tegy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.[7] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Com-munications, 2014, 5: 5802. [8] GBEWONYO S, CARPENTER A W, GAUSE C B, et al. Low th-ermal conductivity carbon fibrous composite nanomaterial enab-led by multi-scale porous structure[J]. Materials & Design, 2017, 134: 218-225. [9] ZHENG H, SHAN H, BAI Y, et al. Assembly of silica aerogels wi-thin silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015, 5(111): 91813-91820. [10] SHAN H, WANG X, SHI F, et al. Hierarchical porous structured SiO 2/SnO 2 nanofibrous membrane with superb flexibility for mole-cular filtration[J]. Acs Applied Materials & Interfaces, 2017, 9(22): 18966-18976. [11] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angew Chem-Int Edit, 2014, 53(39): 10394-10397. [12] SI Y, WANG X, DOU L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4(4): eaas8925. 机梯度隔热、舱室隔热保暖等领域。 纳米纤维材料虽然具有良好的隔热性能和弹性,但其拉伸、剪切性能仍需大幅提升以满足实际应用需求。同时,现有纳米纤维气凝胶的孔径较大,导致其热对流效应明显,特别是在高温环境下,因此需在保证其力学性能未大幅下降的前提下进一步减小纳米纤维气凝胶的孔径,提升材料的隔热性能,最终实现其在航空航天热防护领域的特效应用。 图 1 民用飞机结构复合材料用量的变化 1970年 1980年 1990年 2000年 2010年 空客A350:52% 波音787:50%空客A380:25%空客A340:13%波音777:11%波音757:4%波音767:4% 复合材料用量/% 尾翼应用复合材料 外翼、机身应用复合材料 A350 A380 A340中央翼应用复合材料 次承力结构应用复合材料 50403020100 波音787 波音777 波音757/767 复合材料自20世纪60年代问世以来迅速发展,由于具有高比刚度、高比强度、性能可设计、抗疲劳性和耐腐蚀性等优点,越来越广泛地应用于各类航空航天飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。同时,复合材料的应用部位已由飞机的非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量成为航空器先进性的重要标志。本文重点阐述航空航天领域最为广泛应用的碳纤维增强树脂基先进复合材料的应用概况、制造技术及未来发展方向。 1 先进复合材料在航空航天领域的应用概况 先进复合材料在航空航天领域的应用始于军用飞 机,是为满足其对高机动性、超音速巡航及隐身等要求而不惜成本开始采用的。近年来由于结构轻量化的要求,民用飞机在复合材料用量方面也呈现增长的趋势。图 1 为商用飞机中复合材料用量占结构重量比例的增加趋势。以1990年研制的波音777为例,在其机体结构中,复合材料仅占11%,而且主要用于飞机辅件,如尾翼和操纵面等。到了2009年波音787首飞时,复合材料的使用出现了质的飞跃,其用量已占到结构重量的50%(图 2),而空客A350的复合材料用量更是达到了52%(图 3),不仅复合材料占比激增,而且复合材料大量应用于 碳纤维复合材料层压板碳纤维夹芯复合材料玻璃纤维复合材料铝 铝/钢/钛复合材料 其他5% 钢10% 钛15%铝20% 复合材料50% 图 2 波音787的复合材料用量

毕业设计论文——激光散斑测物体位移

武汉轻工大学 毕业设计(论文) 论文题目:基于激光散斑进行位移测量 院系: 电气与电子工程学院 学号: 101204222 姓名: 王斌 专业: 电子信息科学与技术 指导老师: 李丹 二零一四年五月

摘要 用散斑法测量无题的位移、应变、振动、等是散斑法在实验力学中的主要应用之一。这种测量方法不但有非接触的优点,而且可以测量面内及离面的位移。物体表面以及内部的应变、比较圆满地解决振动与瞬变的问题。本文主要介绍了散斑测量技术的发展情况,对激光散斑的特性进行了系统的分析。 激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。 关键词:激光散斑;位移测量;数字图像处理;位移散斑图

Abstract One main application of the speckle measurement method in experimental mechanics is to measure the displacement, strain, vibration and so on. This method can not only processed non-contact measurement, but also can measure the in-plane or out-plane displacement and transient. In this paper, we introduced the development of speckle measurement technique, and systemically analyzed the characters of speckle. The laser speckle based on holography is of great practical value and can measure micro-displacement. In surface micro-displacement is focused on in this paper. The two laser speckle patterns are respectively shot before and after the object is moved. Digital speckle correlation method and speckle photography are used to measure a small displacement moved along x or y axle. The above two methods are compared at the end of the paper. Keywords:laser speckle; displacement measurement; digital image process; displacement of speckle pattern

复合材料无损检测技术的现状与展望

复合材料无损检测技术的现状与展望 Present Situ ation and Prospects of Nondestructive T esting and Evalu ation T echnology for Composites 中国航空工业制造工程研究所 研究员 刘松平 郭恩明 [摘要] 回顾了复合材料无损检测技术的发展, 从材料、结构和服役3个方面介绍了复合材料无损检测技术的现状及今后的发展趋势。 关键词:复合材料 无损检测 超声 [ABSTRACT] The development of nondestruc 2tive testing and evaluation (ND T &E )technology for composites is reviewed in this paper.The present situa 2tion and the development trends of this technology are introduced in aspects of composite material ,structure and service. K eyw ords :Composites N DT &E U ltrasonic 1 概述 复合材料之所以能够成为20世纪迅速地在工业部门推广应用的新材料、新结构,无损检测技术发挥了十分重要的推动作用,反过来,复合材料也为无损检测技术的迅速发展带来了更多的研究空间。一些过去在金属材料无损检测中因技术障碍而面临困境的检测技术,在复合材料对无损检测技术的需求牵引下,得到了新的飞速发展。如针对初期基于金属材料及其结构在负载作用下产生应力波的物理现象的声发射检测技术、基于物理波相干原理的激光全息干涉检测技术、激光超声检测技术等,几乎都是70年代问世,80年代在应用中由于物理信号特征解释困难、环境条件要求苛刻或技术上有待进一步突破等原因,难以在工程上找到用武之地,自90年代后则得到了迅速的应用发展。 由于复合材料的先进性与其质量的离散性和高成本并存,在实际应用中,即使是经过研究和试验制订的合理工艺,在结构件的制造过程中还可能会产生缺陷,引起质量问题,严重时还会导致整个结构件的报废,造成重大经济损失。因此,国外自70年代以来,就针对复合材料的研究、应用开展了全方位的无损检测技术研究。早期主要是沿用金属材料所采取的一些检测方法,进行复合材料的无损检测技术探索,随着研究工作的深入,人们对复合材料的内部规律和缺陷特征有了更深的认识,发现完全采用常规金属材料无损检测的方法不能解决复合材料的无损检测问题。因此,进入80年代后,才真正走向复合材料无损检测,研究出了许多适应复合材料特点的无损检测新技术、新方法,从而为解决复合材料的无损检测、促进复合材料的推广应用发挥了重要作用。 目前复合材料无损检测已经应用于材料、结构件和服役无损检测3个方面。技术上已从初期的检测方法探索发展到目前的检测方法研究、信号处理技术、传感器技术、缺陷识别技术、成像显示技术、仪器设备技术、结构件检测技术、定量检测与评估、服役结构寿命评估、强度评估和性能测试等。无损检测技术已经成为复合材料研究和应用中的一项关键技术,融入复合材料从研究到最终装机应用的全过程,如图1所示 。 图1 复合材料与无损检测Fig.1 Composites and ND T &E 2 复合材料无损检测技术的应用范围 复合材料无损检测主要应用于以下3个方面:(1) 材料无损检测;(2)结构无损检测;(3)服役无损检测,如图2所示 。 图2 复合材料无损检测的应用Fig.2 Applications of ND T &E for composites 3第十三届国际复合材料学术会议专辑 2001年第3期

先进树脂基复合材料制造技术综述

先进树脂基复合材料制造技术综述单位:西北工业大学机电学院作者:阎龙史耀耀段继豪 树脂基复合材料以其比强度和比刚度高、可设计性强、抗疲劳断裂性能好、耐腐蚀、结构尺寸稳定性好以及便于大面积整体成型的独特优点在飞机上得到了大量应用,可实现飞机结构相应减重25%~30%[1-2]。此外,通过复合材料结构/ 材料/ 工艺综合研究和材料/ 工艺/ 设计/ 电子/ 气动等学科交叉,深层次开发复合材料结构与功能可设计性潜力,可进一步提高飞机的综合性能。早在20世纪80 年代,人们就预测到2000 年飞机的绝大部分结构将采用复合材料,甚至出现全复合材料飞机。然而,到目前为止,这一预言尚未实现,其主要原因是复合材料构件的成本还远远高于铝合金构件,高成本阻碍了复合材料技术在航空航天等领域的更广泛应用[1]。因此,在已有主要材料体系基础上开发先进的低成本制造技术成为当今复合材料界的共识。目前可降低复合材料制造成本的主要技术途径有:复合材料低温固化技术、复合材料RTM 成型技术、自动缠绕与铺放技术、复合材料电子束固化技术、复合材料结构修理技术[1]。 复合材料低温固化技术 复合材料低温固化技术通常指固化温度小于100℃,可以在自由状态下进行高温后处理的复合材料相关制造技术[1]。发展复合材料构件的低温固化技术,可以大大降低由昂贵模具、高能耗设备以及高性能工艺辅料等带来的高费用。此外,低温固化复合材料构件的尺寸精度高,固化残余应力低,适于制备大型和形状复杂的复合材料构件,也可用于复合材料工装材料以及复合材料结构件的修补等。复合材料低温固化技术是低成本制造技术的重要组成部分。 复合材料低温固化技术的研究始于20 世纪70 年代,ACG 公司于1975 首先发展了第一个低温固化树脂体系LTM10。到20 世纪80 年代中期,低温固化复合材料开始应用于工装领域。20 世纪90 年代早期,低温固化复合材料首次用于航空结构件,如1985 年洛克希德·马丁公司采用LTM45 低温固化体系制备了UAV构件;1986 年NASA 和McDonel-Douglas 公司使用LTM10 体系/ 真空袋成型技术制造了X36 无人战斗机和UAV 的外蒙皮。国内关于低温固化复合材料研究的起步较晚,北京航空材料研究所成功研制出70℃固化,80~100℃使用的LT-01 碳纤维增强复合材料树脂体系,并用于制造大型运输机复合材料腹鳍。表1 所示为碳纤维增强LT-01 复合材料体系力学性能[1]。

浅论复合材料无损检测技术的现状与发展论文【最新版】

浅论复合材料无损检测技术的现状与发展论文 1 概述 复合材料之所以能够成为20 世纪迅速地在工业部门推广应用的新材料、新结构, 无损检测技术发挥了十分重要的推动作用, 反过来, 复合材料也为无损检测技术的迅速发展带来了更多的研究空间。一些过去在金属材料无损检测中因技术障碍而面临困境的检测技术, 在复合材料对无损检测技术的需求牵引下, 得到了新的飞速发展。如针对初期基于金属材料及其结构在负载作用下产生应力波的物理现象的声发射检测技术、基于物理波相干原理的激光全息干涉检测技术、激光超声检测技术等, 几乎都是70 年代问世, 80 年代在应用中由于物理信号特征解释困难、环境条件要求苛刻或技术上有待进一步突破等原因, 难以在工程上找到用武之地, 自90 年代后则得到了迅速的应用发展。 由于复合材料的先进性与其质量的离散性和高成本并存, 在实际应用中, 即使是经过研究和试验制订的合理工艺, 在结构件的制造过程中还可能会产生缺陷,引起质量问题, 严重时还会导致整个结构件的报废, 造成重大经济损失。因此, 国外自70 年代以来, 就针对复合材料的研究、应用开展了全方位的无损检测技术研究。早期主要是沿用金属材料所采取的一些检测方法, 进行复合材料的无损检测技

术探索, 随着研究工作的深入, 人们对复合材料的内部规律和缺陷特征有了更深的认识, 发现完全采用常规金属材料无损检测的方法不能解决复合材料的无损检测问题。因此, 进入80 年代后, 才真正走向复合材料无损检测, 研究出了许多适应复合材料特点的无损检测新技术、新方法, 从而为解决复合材料的无损检测、促进复合材料的推广应用发挥了重要作用。 目前复合材料无损检测已经应用于材料、结构件和服役无损检测3 个方面。技术上已从初期的检测方法探索发展到目前的检测方法研究、信号处理技术、传感器技术、缺陷识别技术、成像显示技术、仪器设备技术、结构件检测技术、定量检测与评估、服役结构寿命评估、强度评估和性能测试等。无损检测技术已经成为复合材料研究和应用中的一项关键技术, 融入复合材料从研究到最终装机应用的全过程。 2 复合材料无损检测技术的应用范围 复合材料无损检测主要应用于以下3 个方面:(1)材料无损检测;(2)结构无损检测;(3)服役无损检测。 2.1 材料无损检测 材料无损检测主要解决材料研究中面临的问题,进行诸如材料内

航空级树脂基复合材料的低成本制造技术

航空级树脂基复合材料的低成本制造技术 发表时间:2018-11-21T11:14:26.433Z 来源:《新材料·新装饰》2018年6月上作者:刘杰 [导读] 复合材料液体成型工艺是一种近年来出现的先进复合材料低成本制造技术。本文介绍了树脂传递模塑成型RTM和RTM的衍生工艺 V ARTM、SCRIMP、RFI等几种复合材料液体成型工艺(LCM)的特点,并分析了几种不同LCM工艺的优缺点及应用领域。关键词 (航空工业哈尔滨飞机工业集团有限责任公司,黑龙江哈尔滨 150060) 摘要:复合材料液体成型工艺是一种近年来出现的先进复合材料低成本制造技术。本文介绍了树脂传递模塑成型RTM和RTM的衍生工艺 V ARTM、SCRIMP、RFI等几种复合材料液体成型工艺(LCM)的特点,并分析了几种不同LCM工艺的优缺点及应用领域。 关键词:复合材料;液态成型工艺;RTM;RTM衍生工艺 1 树脂传递模塑(RTM)成型工艺 树脂传递模塑成型简称RTM(Resin Transfer Molding),是一种闭模成型技术,可以生产出两面光的制品。它的基本原理是先在模腔内预先铺放增强材料预成型体、芯材和预埋件,然后在压力或真空作用下将树脂注入闭合模腔,浸润纤维,经固化、脱模、后加工而成制品的工艺。RTM在航空航天和军事领域的应用主要体现大型结构部件的整体成型方面,国外RTM成型技术在航空航天领域的应用主要有雷达罩、螺旋桨、隔舱门、直升机的方向舵、整体机舱、飞机的机翼等。 RTM技术是一种非常具有竞争力的复合材料成型技术,可以作为预浸料/热压罐技术的补充或替代技术。热压罐成型的最大缺点是其体积大,结构复杂,且是压力容器。因此建设投资费用高。同时对于较大体积的热压罐。其升温和加压的速度比较慢。场内温度控制不均匀。与预浸料模压工艺相比,RTM工艺无须制备、运输、贮藏冷冻的预浸料,无须繁杂的手工铺层和真空袋压过程,也无须热处理时间,操作简单,技术开发和应用灵活。 RTM技术存在的难点是由于在成型阶段树脂和纤维通过浸渍过程实现赋形,纤维在模腔中的流动、纤维浸渍过程以及树脂的固化过程都对最终产品的性能有很大的影响,因而导致了工艺的复杂性和不可控性增大。主要问题有:①树脂对纤维的浸渍不够理想,制品里存在空隙率较高、干纤维的现象;②制品的纤维含量较低;③大面积、结构复杂的模具型腔内,模塑过程中树脂的流动不均衡,不能进行预测和控制。 2 RTIM的衍生工艺 2.1V ARTM(真空辅助RTM)工艺 真空辅助树脂传递模塑(V ARTM)是在RTM的基础上开发得到的。V ARTM是在真空状态下排除纤维增强体中的气体,通过树脂的流动、渗透,实现对纤维及其织物的浸渍,并在室温下进行固化,形成一定树脂与纤维比例的工艺方法。 V ARTM是一种吸出空气的闭模工艺,与常规的RTM工艺相比:①RTM工艺在树脂注入时,模具型腔内可积起几吨压力,通过抽真空V ARTM 工艺可减少这种压力,因而增加了使用更轻模具的可能性;②真空的使用也可提高玻璃纤维对树脂的比率,使制品纤维含量更高;③真空还有助于树脂对纤维的浸渍,使纤维浸渍更充分;④真空还起到排除纤维束内空气的作用,使纤维的浸润更充分,从而减少了微观空隙的形成,得到空隙率更低的制品;⑤V ARTM工艺生产的构件机械性能更好。 V ARTM工艺制造的复合材料制件具有成本低、空隙含量小、成型过程中产生的挥发气体少、产品的性能好等优点,并且工艺具有很大的灵活性。 2.2Light-RTM成型工艺 Light-RTM通常称为轻质RTM,该工艺是在真空辅助RTM工艺的基础上发展而来的,适用于制造大面积的薄壁产品。Light-RTM典型特征是下模为刚性的模具,而上模采用轻质、半刚性的模具,通常厚度为6mm~8mm。工艺过程使用双重密封结构,外圈真空用来锁紧模具,内圈真空导入树脂。注射口通常为带有流道的线性注射方式,有利于快速充模。由于上模采用了半刚性的模具,模具成本大大降低,同时在制造大面积的薄壁产品时,模具锁紧力由大气压提供,保证了模具的加压均匀性,模制产品的壁厚均匀性非常好。 2.3树脂浸渍模塑成型工艺(SCRIMP) SCRIMP是一种新型的真空辅助注射技术(V ARTM),是1990年美国Seemann Composites(西曼复合材料公司)在美国获得专利权的真空树脂注入技术。SCRIMP工艺的基本原理是在真空状态下排除纤维增强体中的气体,通过树脂的流动、渗 透,实现对纤维的浸渍。在模具型面上铺放增强材料和各种辅助材料,用真空袋将型腔边缘密封严密,在型腔内抽真空,再将树脂通过精心设计的树脂分配系统在真空作用下注入模腔内,最后固化成型。 SCRIMP工艺的树脂分配系统改善了浸渍效果,减少了缺陷发生,使模塑部件具有很好的一致性和重复性,同时也克服了V ARTM在生产大型平面、曲面的层合结构以及加筋异型构件等制品时,纤维浸渍速度慢、成形周期长等不足。与传统的RTM工艺相比,SCRIMP工艺只需一半模具和一个弹性真空袋,这样可以省去一半的模具成本,成型设备简单。由于真空袋的作用,在纤维周围形成真空,可提高树脂的浸湿速度和浸透程度。同时它只需在大气压下浸渍,固化;真空压力与大气压之差为树脂注入提供动力,从而缩短成型时间。SCRIMP工艺适用于中、大型复合材料构件,施工安全、成本较低。SCRIMP工艺制造的部件性能与航空航天领域广泛采用的热压罐工艺相媲美。随着SCRIMP技术从军事应用向民用工业的转移,在建筑、汽车行业将有很大的拓展空间,如大尺寸的屋面、建筑平台等公用工程构件。 2.4树脂膜渗透成型工艺(RFI) RFI工艺是在RTM的基础上发展起来的树脂膜渗透成型工艺。它是一种树脂融渗和纤维预成型坯相结合的技术。RFI采用单模和真空袋来驱动浸渍过程,工艺过程是:将预制好的树脂膜铺放在模具上,再铺放纤维预成型体并用真空袋封闭模具;将模具置于烘箱或热压下加热并抽真空,达到一定温度后,树脂膜熔融成为黏度很低的液体,在真空或外加压力的作用下树脂沿厚度方向逐步浸润预成型体,完成树脂的转移;继续升温使树脂固化,最终获得复合材料制品。 RFI工艺加热时树脂流动是厚度方向的流动,大大缩短了流程,使纤维更容易被树脂浸润。相对于RTM工艺,RFI工艺能制造出纤维含量高、孔隙率极低、力学性能优异、制品重现性好、壁厚可随意调节的大型复合材料制件和复杂形状的制件,并可根据性能要求进行结构设计。RFI工艺采用真空袋压成型方法,免去了RTM工艺所需的树脂计量注射设备及双面模具加工无需制备预浸料,挥发物少,成型压力低,生产周

激光散斑检测与三维激光检测

激光散斑检测与三维激光检测 专业:测控技术与仪器 学号:12081403 姓名:黄春萍

引言 激光的发现进一步扩大了光学技术的应用范围,提高了光学技术在国民经济中的地位。激光的引入不仅使经典干涉技术开拓了测试范围,也提高了测量精度,而且激光技术大大带动了全息、散斑技术在工程应用方面的进展。传统的干涉仪只能检测透明介质的性能和检测光学表面的缺陷,而全息、散斑干涉的功能扩展到检测任何粗糙表面的形变、位移等力学特性。从而为无损检测技术开拓了一条宽阔的发展之路,并大大提高了检测精度、检出率和可信度。 当激光甚至白光自物体表面漫反射,或通过透明散射体时,在散射体附近或表面广场中,可以观察到或照相记录下一种无规则分布的明暗颗粒状斑纹,成为散斑。近年来发展起来的散斑摄影术和散斑干涉度量术,正是应用了激光的散斑形成一种崭新的光学测量方法,有广泛的应用前景。 一、激光散斑 1.激光散斑特性 (1)经透镜成像形成的散斑为主观散斑,在自由空间传播形成的散斑是客观散斑 (2)散斑的大小,位移及运动是有规律的,它可以反映激光照明区域内物体及传播介质的物理性质和动态变化。 (3)随机过程,统计方法研究散斑的强度分布,对比度和大小分布等。

2.散斑的概念及研究方法 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(laser Speckles)或斑纹。 激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。3. 散斑的成因及散斑的类型 在光场通过自由空间传播的条件下,从可见光波长这个尺度看,物体的表面一般都很粗糙,这样的表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。对比较粗糙的表面来说,不同衍射单元给入射光引入的附加位相之差可达2π的若干倍。经由表面上不同面元透射或反射的光振动在空间相遇时将发生干涉。由于诸面元无规分布而且数量很大,随着观察点的改变,干涉效果将急剧而无规地变化,从而形成具有无规分布的颗粒

相关文档
相关文档 最新文档