文档库 最新最全的文档下载
当前位置:文档库 › 镍磷复合镀层技术

镍磷复合镀层技术

镍磷复合镀层技术
镍磷复合镀层技术

1综述

1.1 镍-磷合金镀覆技术简介

采用化学镀技术从水溶液中沉积镍的方法,通常可按所用还原剂种类加以分类,重要包括三种:以次亚磷酸盐为还原剂,以硼氢化合物为还原剂以及联氨为还原剂,其中尤其以次亚磷酸盐为还原剂的化学镀液最为常用。对于以次亚磷酸盐为还原剂的次亚磷酸钠体系化学镀镍的沉积机理,目前尚无统一的解释。其中,Gut zeit的初生态氢理论被人们广为接受。该理论认为:次磷酸根被氧化时产生初生态氢,镍离子被初生态氢还原为金属镍,部分次磷酸根被初生态氢还原为单质磷,磷与镍共沉积形成化学镍镀层。因此,以次磷酸盐为还原剂形成的化学镀镍层实际上式含有3%-15%(质量分数)磷的镍磷合金,而磷的含量成为影响镀层性能的关键因素。

1.2 镍-磷合金镀覆技术的发展历史

镍-磷合金镀覆技术是20世纪80年代后期展起来的一种新型表面涂层工艺。经过近20年的发展, 该技术在世界上已日益成熟, 以其优秀的均匀性、耐腐蚀性和耐磨性等综合物理、化学性能, 在美国、德国等国家得到了广泛应用。镍-磷合金镀覆技术在我国起步较晚, 目前还是一种新型表面涂层技术, 应用范围不太广泛。但是, 随着该技术的发展, 该技术将会被越来越多的生产企业所采用, 在今后几年内该技术将会进入其发展的成熟期[8]。电镀与化学镀相比有许多优点, 在沉积速度、镀液稳定性、成本、最大厚度等方面, 镍磷合金电镀法具有化学镀法所无法比拟的优越性[9] 镍磷合金镀层经热处理后, 硬度

已接近或超过了硬铬镀层, 在一些场合完全可以取代铬镀层。电镀镍-磷合金与镀硬铬相比较有沉积速度快;电流效率高;镀层分布稍均匀;镀液易调整、较稳定;镀层可以获得较高的含磷量等优点。所以, 研究镍磷合金电镀工艺在目前具有非常重要的实际意义

1.3 镍-磷合金镀覆技术的应用前景

近年来,利用合金镀层特有的性质,发展成为功能性电镀为中心的表面处理工艺。对工业材料性能要求越来越高,单金属镀层越来越不适应,对具有各种特性的合金镀层给予了很大的希望,对功能性电镀进行了大量的、深入的研究。镍磷合金涂覆技术是在20世纪80年代后期发展起来的一种新型表面涂层工艺[8]。经过20年的发展,该技术在世界上日益成熟,以其优秀的均匀性、耐腐蚀性和耐磨性等综合物理、化学性能,在美国、德国得到了广泛应用。镍磷合金技术在我国起步较晚,目前还是一种新型表面涂层技术,应用范围不太广泛。但是随着该技术的发展,在今后的一段时期内该技术会进入其发展的成熟期。

电镀镍磷合金的体系有亚磷酸体系和次磷酸盐体系。其中亚磷酸体系的研究较多, 次磷酸盐体系研究相对较少, 其原因是认为次磷

酸盐体系的镀层质量不稳定。但是, 以亚磷酸进行电镀, 在电沉积生成的过程中, 生成中间产物次亚磷酸根,因此用次亚磷酸盐进行电镀, 可以提高镀层中磷的含量, 由于次亚磷酸根还原为P 原子只需得到

一个电子, 从而镀层中的磷含量更加容易控制[10]。

镍磷合金应用前景广泛,在交通、塑料机械、印刷机械、光学仪器、医疗器械、化工设备等都有很好的发展。

1.4 研究目的、意义及主要内容

1.4.1研究目的和意义

(1)对电镀镍-磷合金新工艺的探究;

(2)在不同实验条件下(磷含量)镍-磷镀层性能和结构的研究。

(3)电镀镍-磷合金的光亮度、耐蚀性、显微硬度、镀层成分分析

以及形貌检测

1.4.2研究内容

本实验采用直流电沉积法制备镍磷合金的工艺制备镍磷合金,拟对一下几个方面进行研究。

(1)电镀镍磷合金新工艺的探究。

(2)不同实验条件下(磷含量)镍磷镀层性能的研究。

(3)电镀镍磷合金的耐蚀性,显微硬度,镀层成分分析以及形貌检

测。

镍基复合材料 57-1

镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合

化学镀沉积镍磷合金:耐腐蚀机理

外文资料译文 化学镀沉积镍磷合金:耐腐蚀机理 Bernhard Elsener/Maura Crobu/Mariano Andrea Scorciapino/Antonella Rossi 摘要 在各种各样的化学基体上可以进行化学镀镍磷合金。他们表现出的耐腐蚀性优于纯镍,但由纯镍形成的氧化镍(钝化膜)除外,已经提出来许多理论来解释这一优越的腐蚀性,但还尚未达成共识。在这一领域的研究中使用了电化学中的XPS表面电化学分析方法,以更深入的了解化学镀镍磷合金的耐腐蚀性,磷的含量在18%到22%。在酸性和近中性溶液中其极化曲线与电流密度有一定的关系。在恒电位极化过程,根据曲线衰减指数大约为-0.5可以推论扩散过程限制了镍的解离。在XPS / XAES后通过测量恒电位极化显示磷在反应过程中存在三种不同的状态。根据钴参与化学反应的不同,磷主要存在于反应合金、磷酸盐和磷的中间化合产物中。通过XPS分析表明,磷元素富集在了合金之间的界面和最外层表面与腐蚀溶液接触面,由此提出以下结论:镍元素在溶液中的扩散机制限制了磷元素在介质表面的富集解释了Ni-P合金的高耐蚀性。一个尚未证实的补充说明是耐高腐蚀性Ni-P合金可能是以镍元素的电离态存在的。

关键词:电位极化扩散,磷,富集, XPS图,衍射参数 §1 简介 对纳米晶体材料的关注增加使人们对于镍磷合金研究加深,尤其是在具有挑战性的技术应用方面[1,2]。这些过去主要用作防腐涂料的合金构成了最早的工业应用是在x射线的非晶和纳米晶体材料上,这项技术可以追溯到1946年[3-5]。现在产生了对三元系镍磷合金的研究[6,7]和共沉积金刚石[8]或聚四氟乙烯颗粒[9],以获得为生产量身定制的功能化表面。 镍磷合金中P元素大约是20%(接近共晶组合)时表现出了比镍更好的耐腐蚀性,同时得到的纯镍在阳极溶液附近镍酸的溶解更加容易[10-22]。这一现象在化学镀[13-16]或电沉积[17-21]镍磷合金的金属熔体[10-12]时常见到。人们还普遍认为只有非晶或纳米晶合金才能具有这种优越的耐腐蚀性,这种具有结晶化的耐高腐蚀性的合金与其生产方式无关[13.30]。 多种不同的理论对于解释镍磷合金的耐腐蚀性中都提到了磷的含量应超过18%: (1)具有保护性的镍磷化合模的形成有效地阻止了合金的扩散性溶解。 (2)次磷酸根离子的吸附形成了阻隔层,防止了合金表面(被称为“化学被动”)镍离子的溶解。 (3)在合金和溶液的表面形成的富磷膜对镍离子具有选择性的溶解,

镍基复合材料

镍 基 复 合 材 料 的 应 用 10级金属(1)班 1007024101

镍基复合材料的应用 镍基复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制造高温下工作的零部件。 镍基复合材料主要用于液体火箭发动机中的全流循环发动机。这种发动机的涡轮部件要求材料在一定温度下具有高强度、抗蠕变、抗疲劳、耐腐蚀、与氧相容。在目前正在研制的系统中这些部件选用镍基高温合金。虽然用SiC 颗粒或纤维增强的复合材料可以达到高强度、高刚度和抗蠕变。但在全流循环发动机的富氧驱动气体环境下,这些材料不能兼顾与氧的相容性。发动机起动瞬变过程的热冲击环境,排除了涡轮叶片采用加涂层的材料系的可能。 因此,用整体材料制作的涡轮叶片,必须经受住富氧燃烧产物所形成的环境。因为涡轮部件和涡轮盘在大约9min 运行中一般不用冷却,所以在短时运行中,整体材料温度达到730℃是正常的。对某些设计,希望密度低于6.5g/cm3 的材料的强度要大于1040MPa。应力、温度和化学环境都十分苛刻,要延长维修平均间隔时间(MTBR)使这些材料性能目标更难达到。其它非旋转部件也必须经受住极端运行环境的考验。喷注器面板、喷注壳体和预燃烧器在高温下都必须抗氧化、耐腐蚀、抗氢脆。喷嘴调节和控制流入主燃烧室的推进剂流量。预燃烧室是个小型燃烧室。在这个燃烧室里,产生涡轮驱动气体。在目前一些系统(其中一些被有效冷却)中,这些部件使用钴合金。未来发动机的这些部件,预计有极端的热环境(气体温度接近918℃)和高达62MPa 的压力。Si3N4 整体材料正在用作喷嘴壳体,但陶瓷壳体与金属推力室的匹配困难还没有解决。由于喷嘴壳体的形状是轴对称的,所以早就有人建议这种壳体采用连续纤维增强的复合材料,但部件的匹配条件向连续纤维增强的复合材料提出挑战。 以下为两种比较典型的镍基复合材料及其主要性能: (一)、镍基变形高温合金 以镍为主要基体成分的变形高温合金。镍基变形高温合金以汉语拼音字母“GH”加序号表示,如GH36、GH49、GH141等。它可采用常规的锻、轧和挤压等冷、热变形手段加工成材。按强化方式可分为固溶强化镍基变形高温合金,弱时效强化镍基变形高温合金和强时效强化镍基变形高温合金3类。

重熔处理过程对镍基合金复合涂层的组织变化影响

科技信息SCIENCE&TECHNOLOGYINFORMATION2013年第5期作者简介:刘铎(1980—),男,汉族,工程师,主要从事特种设备型式试验、检测及复合材料制造、电阻焊和堆焊的研究。 0前言磨损是导致工程材料失效的最主要因素之一,如何通过改善材料 的耐磨损性能来降低材料的损耗,一直是材料科学工作者非常关注的 问题。镍基自熔性合金(NiCrBSi )具有较好的力学性能和耐蚀性,是一 种常用的耐滑动磨损材料,其形成的NiCr 、Cr 2B 、Cr 5B 3、CrB 及一些碳 化物有助于提高结合强度和硬度。用其制备的NiCrBSi/WC 复合涂层, 对于汽车气缸摩擦副的耐磨损性提高有很大作用[1-2]。近年来,很多研 究集中在添加元素对镍基合金的性能变化作用,例如Mo 的加入可以 改善涂层的抗咬死性,减少熔覆层的开裂敏感性[3];Ce 或La 2O 3可以促 进硬质相和棒状第二相均匀分布,减少气孔和夹杂[4];Al 2O 3提高复合 材料涂层的整体抗冲蚀性[5];六方BN 具有和石墨一样的润滑机制,具 有更好的热稳定性,对涂层自润滑性的提高有显著影响[6];CrC 促进硬 质相形成,延长涂层在磨损过程中的使用寿命[7]。相应的涂层制备方法 有很多种,常见的有激光熔覆、火焰喷涂、等离子喷涂、高频感应熔覆、 喷焊等等。其中等离子喷涂方法使用较为普遍,其具有参数调整方便 灵活,沉积效率高的优点,在耐磨耐蚀涂层制备方面应用广泛。 本文主要探讨利用超音速等离子喷涂技术制备NiCrBSi/20%WC 复合涂层,并对喷涂后的涂层进行火焰重熔处理,通过对复合涂层火 焰重熔处理前后的显微组织进行检测分析,了解其微观结构变化对复 合涂层机械性能的影响。1试验方法所选用基体材料为碳素结构钢Q235A ,试样尺寸为80×40×5 mm ,表面经喷砂处理后粗糙度达到R a =3.2μm ,并用丙酮清洗。喷涂材 料选用镍基碳化钨粉末(含20%WC ),粒子尺寸在50-150μm ,形貌见 图1,其中不规则块状物质即为碳化钨。 图1NiCrBSi/20%WC 合金粉末形貌 沉积涂层使用美国普莱克斯生产的3710型超音速等离子喷涂设 备,等离子枪为SG-100型。喷涂前利用等离子焰流对基体进行预热 处理,喷涂工艺参数如下所列:电压42V ;电流550A ;氩气45psi ;氢气 15psi ;喷涂距离110mm 。涂层的厚度约0.4mm 。喷涂后涂层经氧-乙炔 火焰重熔后,制备金相试样,用5%的硝酸酒精对界面和涂层部分进行 腐蚀,使用扫描电镜观察涂层的微观结构,能量色散谱(EDS )分析涂 层的成分,X 射线衍射仪的Cu 靶K α线进行相结构研究。用显微硬度 仪分析横截面的显微硬度,测试点选取10个,取平均值,载荷砝码为 100g 。利用滑动摩擦磨损试验机进行磨损试验15分钟,并用扫描电镜 观察磨损区域的表面形貌。2 试验结果与分析2.1涂层的相结构与微观形貌等离子喷涂后的NiCrBSi 涂层,具有典型的热喷涂涂层结构特征,主要是由扁平化的粒子组成,其间夹杂熔化不完全的颗粒,存在部分孔隙。在加入20%WC 后,可以观察到分布于涂层中的WC 颗粒,见图2。这部分WC 颗粒主要来源于喷涂过程中,由于焰流速度过快而未熔化的WC 粉末。通过电镜照片可以观察到,其分布并不均匀,但这种高硬度的材料是提高涂层耐磨性的主要成分。 图2喷涂后NiCrBSi/20%WC 复合涂层形貌 为涂层进行能谱分析,在涂层中有个别区域出现细长针状物质,通过能谱分析可以发现,其主要成分依旧是Ni ,质量百分比占了50%,但Si 、Fe 和Cr 含量相对其他区域有所增加,(Fe ,Cr )7C 3形状大部分为针状,与此结构相似。Cr 和C 的产物很多,但涂层中出现的主要是(Fe ,Cr )7C 3,这与三者之间的反应有关[8]。Fe-C 与Cr-C 产物中都可以溶解Cr 或者Fe ,但在高于1200℃时,Cr-C 反应产物稳定存在,Fe-C 主要是以液态产物存在。由于涂层中的主要元素是Ni ,Ni 与Fe 可以形成γ-Fe ,但由于粉末本身Fe 含量较少,故形成的γ-Fe 并不多。虽然涂层中含有B 元素,但由于能谱对于C 元素只能定性分析而不能定量表示,B 元素比C 元素原子量更低,因此能谱无法检测其存在。但B 和Si 元素可以溶解于γ-Fe 和(Fe ,Cr )7C 3中。氧-乙炔火焰重熔后的涂层,结构产生变化。加入WC 后的涂层,在重熔过程中,主要被γ-Ni 固溶体所包覆。虽然还有块状组织,但经过加热,主要形成W 2C 相,分布于涂层各部分,这在摩擦磨损中起到重要作用。火焰重熔处理对于整个涂层来说,使各种合金元素相互扩散,形成Cr 7C 3,CrB ,Cr 2B 等弥散分布于γ-Ni (主要是Ni-Cr )的硬质相。一般来说,Cr 7C 3维氏硬度可以达到1450HV ,而CrB 可达到1300HV 。经过重熔处理,由于加热充分和元素的扩散效应明显,涂层与基体能够形成冶金结合,较之等离子喷涂形成的主要是机械结合的涂层,其结合强度大幅提高。2.2硬度测试加入20%WC 的等离子喷涂涂层硬度可以由600HV 经过重熔提高到将近1000HV 。这与重熔后硬质相弥散分布,缺陷减少有很大关系。2.3摩擦磨损试验图3a )为等离子喷涂NiCrBSi/20%WC 涂层磨损后的形貌,图3 b )则为经重熔后复合涂层的磨损形貌。通过比较可以发现,NiCrBSi/ 20%WC 涂层的试样磨损表面有明显的犁沟和少量剥落的坑,这是由 重熔处理过程对镍基合金复合涂层的组织变化影响 刘铎王玉刘颖孙大超 (沈阳特种设备检测研究院,辽宁沈阳110035) 【摘要】采用超音速大气等离子喷涂方法,在Q235A 钢基体上制备了含有20%WC 的NiCrBSi 复合涂层,并对涂层进行氧-乙炔火焰重熔处理。利用扫描电子显微镜对重熔前后的涂层进行微观结构分析,并采用X 射线衍射方法研究其相组成。发现重熔处理后涂层中缺陷减少,WC 、CrB 和Cr 7C 3等硬质相被γ-Ni 固溶体所包覆,对提高涂层的显微硬度和耐摩擦磨损性能有显著作用。 【关键词】WC ;NiCrBSi ;重熔处理;复合涂 层 ○科教前沿○72

钢的化学镀镍磷

钢的化学镀镍磷 DC 金属3090****** 材料科学与工程学院 摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论,由此论证了化学镀镍磷的重要作用和这一工艺对钢铁性能改进的重要影响。 关键词:原子氢态理论镀层工艺热处理参数测定 前言:化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材[1]。 一、实验原理 化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。 以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。下面介绍“原子氢态理论”,其过程可分为以下四步: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。 H2PO2-+H2O→HPO3-+2H+H-

化学知识镀镍及其原理.doc

化学镀镍及其原理 目录: 1化学镀 2化学镀镍 3化学镀镍的化学反应 4化学镀镍的热动力学 5化学镀镍的关键技术 6化学镀镍中应注意的问题 7化学镀镍的应用 一化学镀 概括:化学镀是一种新型的金属表面处理技术,该技术以其工艺简便、节能、环保日益受 到人们的关注。化学镀使用范围很广,镀金层均匀、装饰性好。在防护性能方面,能提高产品的耐蚀性和使用寿命;在功能性方面,能提高加工件的耐磨导电性、润滑性能等特殊功能,因而成为全世界表面处理技术的一个发展。 详解:化学镀[1](Electroless plating)也称无电解镀或者自催化镀(Auto-catalytic plating),是在无外加电流的情况下借助合适的还原剂,使镀液中金属离子还原成金属,并沉积到零件表面的 1 种镀覆方法。 化学镀技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。与电镀相比,化学镀技术具有镀层均匀、针孔小、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点。另外,由于化学镀技术废液排放少,对环境污染小以及成本较低,在许多领域已逐步取代电镀,成为一种环保型的表面处理工艺。目前,化学镀技术已在电子、阀门制造、机械、石油化工、汽车、航空航天等工业中得到广泛的应用。 原理 化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。化学镀常用溶液:化学镀银、镀镍、镀铜、镀钴、镀镍磷液、镀镍磷硼液等。 目前以次亚磷酸盐为还原剂的化学镀镍的自催化沉积反应,已经提出的理论有“原子氢态理论”、“氢化物理论”和“电化学理论”等。在这几种理论中,得到广泛承认的是“原子氢态理论”。

NI基纳米复合电镀镀层的性能研究

辽宁科技大学本科生专业选修课 现代表面分析检测方法 结课论文 论文名称:NI基纳米复合电镀镀层的性能研究学生:郑奇 院系名称:材料与冶金学院 授课教师:金辉 专业班级:材料化学14-1 学号: 联系电话:

NI基纳米复合电镀镀层的性能研究 摘要:采用复合电镀技术通过向电镀溶液中加入平均粒度为90 nm的Al2O3粉, 在Ni基材上制备了Ni-纳米Al2O3复合镀层,应用扫描电镜(SEM)、X射线衍射(EDAX)及透射电镜(TEM)等手段对复合镀层的表面形貌和结构进行了表征,并通过试验考察了镀层的磨损性能。结果表明,纳米Al2O3颗粒均匀分布在Ni纳米晶中;纳米Al2O3颗粒的加入不仅细化了基体Ni的晶粒尺寸,而且还具有弥散强化作用,从而提高了Ni- Al2O3纳米复合镀层的硬度和耐磨性能[1]。 关键词:纳米Al O3;复合电镀;结构;形貌;耐磨性能 2 复合电镀技术具有设备简单、易操作、价格经济等优点,已广泛应用于航空、汽车、电子等行业。复合电镀中常用的第二相固体颗粒有碳化物、氧化物和氮化物如SiC、ZrO2、Ti02、Si3N4等。大量试验结果表明,金属基复合镀层的性能不仅与颗粒性质还与颗粒的含量、尺寸及分布有关。Al2O3颗粒具有特殊的机械和化学特性,如高化学稳定性,高硬度和高温耐磨性等,可作为金属基复合物的增强第二相应用在微器件表面,从而提高器件的耐磨性能。普通微米粒由于颗粒粗大,所得镀层表面粗糙,颗粒与基体金属材料界面结合较弱,镀层质量差。随着纳米粉制备技术的不断发展,性能更优异的纳米复合镀层出现。本工作采用复合电镀技术,通过向普通电镀液中加入平均粒度约为90 nm的Al2O3粒子,在Ni 基材上制备了Ni-纳米Al2O3复合镀层并对其摩擦磨损性能进行了研究[1]。一.试验 选用尺寸为15 mm×10 mm ×2 mm的电解Ni片为基材,同一成分的Ni 片为电镀时的阳极。试样用水砂纸磨至800号后经酒精、超声波清洗。镀液为弱酸性镀液,pH值为,镀液配方为:LNiS04·7H20,L NH4Cl,g/L H3B04,L C12H25OSO3Na。纳米Al2O3粉直接加入镀液,为保证纳米粉颗粒的悬浮,在复合电镀过程中施以磁力搅拌。镀液温度为35℃,电流密度3A/dm2,施镀时间2h,镀层厚约为50μm。显微硬度测量在MHV2000维氏数字显微硬度计上进行,载荷为,加载时间为10S,取10个点的平均值为最终的硬度值。摩擦磨损试验在

镍磷镀

镍磷镀 化学镀镍,镍磷镀ENP(Electroless Nickel plating)工艺是一种用非电镀(化学)的方法,在零部件表面沉镀出十分均匀、光亮、坚硬的镍磷硼合金镀层的先进表面处理工艺。它兼有高匀性、高结合强度、高耐磨性、高耐腐蚀性和无漏镀缺陷及仿真性极好六大优点,其综合性能优于电镀铬。在很多环境介质中甚至比不锈钢更耐腐蚀,用来代替不锈钢可以降低工件成本。在工艺方面,化学镀镍是靠化学方法形成镀层,不受零件形状和尺寸的限制,任何复杂形状的零件各部位镀层厚度均匀一致,施镀过程中厚度精度为±2μm,能够满足各种复杂精密部件的尺寸要求,而且镍合金镀层质密光滑,镀后无需任何加工,还可以反复修镀。该技术是目前发达国家重点推广的表面处理新技术。 {化学镀合金技术是在金属的催化作用下,通过可控制的氧化还原反应产生金属合金的沉积过程。该工艺不需外加电流,不受镀件的几何形状影响,与电镀相比,化学镀合金膜层均匀、致密、硬度高、耐磨,并经过特殊的后处理工序,Hv硬度可达1000以上,膜层外观似不锈钢。该工艺具有槽液可循环使用,环境污染小,设备投资少等特点。在许多领域逐步取代电镀,成为一种环保型的表面处理工艺,化学镀合金技术已在电子、阀门制造、机械、石油化工、汽车、航天航空等领域得到广泛的使用。 流程:金属表面砂纸抛光---金属表面碱液化学除油---金属表面活化—Ni-P 合金化学镀—清洁—干燥} 一、化学镀镍,镍磷镀ENP的基本原理 化学镀镍,镍磷镀ENP的基本原理是以次亚磷酸盐为还原剂,将镍盐还原成镍,同时使金属层中含有一定的磷,沉淀的镍膜具有催化性,可使反应继续进行下去。关于ENP的具体反应机理,目前尚无统一认识,现为大多数人所接受的原子氢态理论是:1、镀液在加热时,通过次亚磷酸根在水溶液中脱氢,而形成亚磷酸根,同时放出生态原子氢,即:H2PO2-+H2O→H2PO32-+H++2[H] 2、初生态的原子氢吸附催化金属表面而使之活化,使镀液中的镍离子还原,在催化金属表面上沉积金属镍: Ni2++2[H]→Nio+2H+ 3、随着次亚磷酸根的分解,还原成磷: H2PO2-+[H]→H2O+OH-+Po 镍原子和磷原子共同沉积而形成Ni-P合金,因此,ENP的基本原理也就是通过镀液中离子还原,同时伴随着次亚磷酸盐的分解而产生磷原子进入镀层,形成过饱和的Ni-P固溶体。 二、化学镀镍,镍磷镀ENP工艺特点 1、该工艺从原料到操作对环境无毒无污染,属于环保型表面处理工艺。 2、属于热化学镀,靠化学反应在零件表面生成镀层。 3、工艺独特,对任何复杂形状的零件,只要浸到镀液,就能获得各个部位完全均匀一致的镀层(彻底弥补了电镀工艺的漏镀缺陷)。 4、镀层十分光滑均匀,并且厚度能够得到精确控制,镀后无需任何加工处理。 三、镀层性能特点 1、镀层成分:镀层合金(镍磷硼合金),其中镍86-97%,合金成分3-14% 2、结合力:镀层合金与基体之间是金属键结合,连结坚固,结合力超强。钢或铝合金300-400Mpa,铜140-160Mpa,是电镀的6-8倍,能承受很大的剪切应力而不脱皮

化学镀镍磷合金加工

化学镀镍磷合金加工 作者:上传日期: 业务范围:专业从事化学镀镍磷合金加工业务 加工技术:金属表面化学镀NI--P工艺,全面取代电镀处理本公司加工工艺可在钢、铸铁、铝合金、铜合金等材料表面形成光亮如镜的镍 磷合金 镀层,硬度可高达HV1000,相当HRC69,具有很高的耐磨性和耐腐蚀性,镀层结合 力好、厚 度均匀。镀速快,可达20μm/小时。 一、技术特性: 1、耐腐蚀性强:该工艺处理后的金属表面为非晶态镀层,抗腐蚀性特别优良,经硫 酸、盐 酸、烧碱、盐水同比试验,其腐蚀速率低于1cr18Ni9Ti不锈钢。 2、耐磨性好:由于催化处理后的表面为非晶态,即处于基本平面状态,有自润滑性。 因 此,磨擦系数小,非粘着性好,耐磨性能高,在润滑情况下,可替代硬铬使用。 3、光泽度高:催化后的镀件表面光泽度为LZ或▽8-10可与不锈钢制品媲美,呈白 亮不锈钢 颜色。工件镀膜后,表面光洁度不受影响,无需再加工和抛光 4、表面硬度高:经本技术处理后,金属表面硬度可提高一倍以上,在钢铁及铜表面 可达 Hv 570。镀层经热处理后硬度达Hv 1000,工模具镀膜后一般寿命提高3倍以上。

5、结合强度大:本技术处理后的合金层与金属基件结合强度增大,一般在 350-400Mpa条件 下不起皮、不脱落、无气泡,与铝的结合强度可达102-241Mpa。 6、仿型性好:在尖角或边缘突出部分,没有过份明显的增厚,即有很好的仿型性, 镀后不 需磨削加工,沉积层的厚度和成份均匀。 7、工艺技术高适应性强:在盲孔、深孔、管件、拐角、缝隙的内表面可得到均匀镀 层,所 以无论您的产品结构有多么复杂,本技术处理起来均能得心应手,绝无漏镀之处。 8、低电阻,可焊性好。 9、耐高温:该催化合金层熔点为850-890度 二.适镀基材:铸铁、钢铁、铜及铜合金、铝及铝合金,模具钢、不锈钢。 三.化学镀镍磷合金层的性能(国家钢铁产品质量监督检验中心检测) 按GB10125-1997标准规定进行测试,时间为96小时,Nacl浓度50g/l,ph值: 6.5- 7.2,温度:35,按GB6464-86规定评定防护等级,可达9级。 磷含量(质量百分数):6%-12% 电阻率:60-75μΩ.cm 密度:7.9g/cm3 熔点:860-880℃ 硬度:镀态:Hv500-550(45-48RCH) 热处理后:Hv1000 结合力:400MPa,远高于电镀 内应力:钢上内应力低于7Mpa 本单位生产销售化学镀镍浓缩液、添加剂,光亮剂、浸锌剂、钝化封闭剂等,设计 制作化学镀镍生产线,承揽化学镀镍加工 我厂为客户服务的方式有以下几种: 一、镀覆加工各种工件。

制备镍基涂层

镍基涂层是以镍为基体,复合其他金属、非金属或硬质相颗粒的合金体系。镍基涂层由于其优异的耐腐蚀性能可应用在超大规模集成设备、微机电系统、模内镶件、磁头、内燃机汽缸、钟表机芯和石油容器涂层等方面。在实际应用中,需要根据主要性能要求和材料属性优化选择制备方式。 一、电子束焊接法 电子束焊接法将高能电子束作为加工热源,用高能量密度的电子束轰击焊件接头处的金属,使其快速熔融,然后迅速冷却。这种方法可以形成高密度的表面合金膜,改善一些材料的表面敏感特性。低能量的强流电子束在可靠性,高效率,低成本,低X射线辐射等方面优于脉冲激光器和高功率离子束源。美国NASA采用强流脉冲电子束对热障涂层多层系统中的NiCoCrAlY涂层进行改性,使其结构致密,保护基体抗氧化,对热障涂层的稳定性起着关键作用。 二、激光表面合金化 激光表面合金化利用高能密度的激光束快速加热熔化,使基材表层和添加的合金元素熔化混合,从而形成以原基材为基的新表面合金层。激光表面合金化广泛适用于材料的表面改性,提高金属合金的腐蚀性能和耐磨性。激光加工可以在合金的表面掺入硬质颗粒,使这些颗粒在熔融基底溶解,改变其冶金结构和性质。实验表明,经过激光处理的涂层表面光滑平整、无裂纹,硬度高,且耐腐蚀性能获得大幅提升。 三、物理气相沉积。 物理气相沉积技术是在真空条件下,将材料源气化成气态原子、分

子或部分电离成离子,在基体表面沉积成具有某种特殊功能的薄膜。物理气相沉积涂层具有低摩擦、高耐磨和耐氧化性能,可以有效提高合金的耐磨损和抗腐蚀特性。例如,采用物理气相沉积在Ni-P涂层上复合CrN,既降低了磨损率,又兼顾涂层的耐蚀性能。 四、化学气相沉积 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面。化学气相沉积被应用于Ni基超合金的制备,例如,在Ni基上制备β-NiAl金属粘结涂层。 五、电镀 电镀已经成功利用电镀法生产了众多的纳米结构金属、合金以及金属基复合涂层。常规方法难以制备的低熔点挥发性金属与高熔点金属的合金,可以通过电镀来实现。电镀能使本身不能从水溶液还原的金属,与铁族元素以共沉积方式获得镍基三元合金涂层。 总的来说,对于不同的应用场合应采用不同的制备工艺:电子束焊接法适用于高密度的镍基涂层;激光表面合金化适用于镍基复合硬质第二相颗粒的涂层,提高耐磨性;物理气相沉积适用于功能性薄膜的制备,无污染;化学气相沉积适用于形状复杂结构的涂层制备,覆盖性好,纯度高,控制精准;电镀使用于大面积涂层制备,操作容易,能耗较低。

化学镀镍磷合金技术 NI-p 简介

化学镀镍磷合金技术 NI-p 简介 高性能的镍磷合金化学镀工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对其镀层特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,并且得到了许多用户的认可。经实际应用,能显著提高设备的耐磨、耐蚀性能,延长其寿命3倍以上,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材。 1、化学镀镍磷合金的原理 其主要反应为次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P 合金镀层。 2、镀层的特性及技术指标 (1)镀层均匀性好 非晶态Ni-P合金镀层是通过化学沉积的方法获得,凡是镀液能浸到的部位,任何形态复杂的零件,都能得到均匀的镀层。不需外加电流,是非晶态均一单相组织,不存在晶界、位错,也无化学成份偏析,且避免了电镀形成的边角效应等缺陷。另外,镀层十分致密还具有较高的光洁度。 (2)镀层附着力好 镀层在钢铁基体上产生压应力(4MPa),而镀层与钢的热膨胀系数相当,所以具有优良的附着力,一般为300-400MPa。 (3)镀层硬度高,抗磨性能优良 镀层具有高硬度,低韧性和较低热导率、电导率,它的抗拉强度超过700MPa,与很多合金钢相似,镀层硬度和延伸率都超过了电镀铬,弯曲无裂纹,但不适合反复弯折和拉抻等剧烈变形的部件,经热处理硬度可达HV1100,但在320℃时开始发生晶型转变,耐磨性能增强,耐蚀性能减弱。 (4)优良的抗腐蚀性能 由于镀层为非晶态,不存在晶界、位错等晶体缺陷,是单一均匀组织,不易形成电偶腐蚀,决定其有较高的耐蚀性,Ni-P镀层均匀性好,拉应力小,致密性好,为防止介质的腐蚀提供了理想的阻挡层。在碱、盐、高温油测、有机介质和溶剂、酸性气体中有抗蚀能力,经实际应用证明,特别对石油炼制、石油化工中的Cl-应力腐蚀,高低温H2S和环烷酸的腐蚀具有超凡的抗蚀能力。

脉冲电镀镍磷合金

摘要 随着人们对汽车耐蚀性要求的提高,纯锌镀层已不能满足要求,经研究发现,锌钴合金镀层由于有钴的加入,耐蚀性大大提高,镀层耐蚀性好,外观光亮,不易褪色,易于钝化,其应用越来越广。 本论文研究了脉冲电镀锌钴合金的最佳工艺条件,探讨了电流密度、频率、通断比、工作时间、光亮剂用量和主盐比例等六个因素对镀层性能的影响。通过对其光亮度、耐蚀性、附着力的测试,以及通过XRD、SE(M)和tafel曲线的检测,对镀层的成分及表面现象进行了分析,最终筛选出最佳的工艺条件。结果表明:电流密度大于2.0 A/dm2时,得到的镀层平整且均匀,附着力好,小于2.0 A/dm2时,沉积速度减慢,镀层不均匀,颗粒较大且附着性差;施镀时间越长,锌镀层越厚。综上所述该工艺的最佳工艺条件是:电流密度为2.0 A/dm2,频率为1000Hz,通断比为5:5,时间为10min,光亮剂用量为为30ml/L,主盐比例为CoSO4 0.02M,ZnSO4 0.4M。 关键词:脉冲电镀,锌钴合金,镀层性能,影响因素

Abstract As people for car corrosion resistance requirements of the improved, pure zinc plating already cannot satisfy requirements, the study found that, zinc-cobalt alloy coatings with cobalt to join, corrosion resistance greatly improved, coating corrosion resistance, good appearance light, not easy to fade away, easy to passivation, its used more and more widely. This paper studies the pulse electric galvanizing the optimum process conditions of cobalt alloys, discusses the current density, frequency, hige ratio, working hours, brightener dosage and lord salt proportion of six factors on the influence of coating performance. Through its brightness, corrosion resistance and adhesion tests, and through the XRD, SE (M) and Tafel curve of the testing, analyzes the composition of the surface coating and phenomenon, eventually selected the best technological conditions. Results show that: Current density is greater than 2.0 A/dm2, get on the flat and uniform, good adhesion, less than 2.0 A/dm2, sedimentary speed slow down, not even,coating grain larger and adhesion poor; With the more time the plating,zinc plating is thicker. To sum up the process the optimum technological conditions are: Current density is 2.0 A/dm2, Frequency is 1000Hz, Hige than 50, Time is 10min, potency of Brightener is 30ml / L, The ratio of the main salt 0.02M CoSO4, 0.4M ZnSO4. Keywords: Pulse electroplating, zinc-cobalt alloy, coating performance, influencing factors

铝合金化学镀镍

铝合金化学镀镍 前言:所谓化学镀就是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化—还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀液组成一般包括金属盐、还原剂、络合剂、pH 缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化和还原反应的催化作用保证了金属离子的还原沉积得以在镀件上继续进行下去。目前已能用化学镀方法得到镍、铜、钴、钯、铂、金、银、锡等金属或合金的镀层。化学镀既可以作为单独的加工工艺,用来改善材料的表面性能,也可以用来获得非金属材料电镀前的导电层。化学镀在电子、石油化工、航空航天、汽车制造、机械等领域有着广泛的应用。化学镀具有以下优点:表面硬度高,耐磨性能好;硬化层的厚度及其均匀,处理部件不受形状限制,不变形,特别是适用于形状复杂,深盲孔及精度要求高的细小及大型部件的表面强化处理;具有优良的抗耐蚀性能,在许多酸、碱、盐、氨和海水中具有良好的耐蚀性,其耐蚀性要比不锈钢优越的多;处理后的部件,表面光洁度高,表面光亮,不需要重新的机械加工和抛光,可直接装机使用;镀层与基体的结合力高,不易剥落,其结合力比电镀硬铬和离子镀要高;可处理的基体材料广泛。〔1〕化学镀分类(广义分类): 1. 置换镀(离子交换或电荷交换沉积):一种金属浸在第二种金属的金属盐溶液中,第一种金属的表面上发生局部溶解,同时在其表面自发沉积上第二种金属上。在离子交换的情况下,基体金属本身就是还原剂。 2. 接触镀:将欲镀的金属与另一种或另一块相同的金属接触,并沉浸在沉积金属的盐溶液中的沉积法。当欲镀的导电基体底表面与比溶液中待沉积的金属更为活泼的金属接触时,便构成接触沉积。 3. 真正的化学镀:从含有还原剂的溶液中沉积金属〔1 〕。 日前工业上应用最多的是化学镀镍和化学镀铜。可以使用化学镀进行表面加工的金属及合金有很多,下面以铝合金镀镍为例进行说明,而铝合金化学镀镍属于化学镀的第三种即真正的化学镀。铝合金简介铝合金具有机械强度高、密度小、导热导电性好、韧性好、易加工等特点,因而在工业部门,特别是航空航天、国防工业,乃至人们的日常生活中,都有较广泛的应用。铝合金表面覆盖一层致密的氧化膜,它可将铝合金与周围环境隔离开来,避免被氧化。但是这层氧化膜易受到强酸和强碱的腐蚀,同时铝合金易产生晶间腐蚀,表面硬度低,不耐磨。化学镀是赋予铝合金表面良好性能的新型工艺手段之一,它不仅是其抗蚀性、耐磨性、可焊性、和电接触能得到提高,镀层与铝合金机体间结合力好,镀层外观漂亮, 而且通过镀覆不同的镍基合金,可以赋予铝合金各种新性能,如磁性能、润滑性等。〔2〕 铝合金化学镀镍原理: 化学镀镍是利用镍盐溶液在强还原剂次亚磷酸钠的作用下,使镍离子还原成金属镍,同时次磷酸钠分解析出磷,因而在具有催化表面的镀件上,获得镍磷合金镀层。 对于次磷酸钠还原镍离子的总反应可以写成: 3NaH2PO2 +3H2 O+NiSO4 3 NaH 2PO3+H2SO4+2H2+Ni 同样的反应可写成如下离子式: 2 H2PO2-+ Ni 2++2H2O ---- 2 H 2PO3- + H2+2H++ Ni 或写成另一种形式:Ni2++H2PO2-+H2O -------- H 2PO3-+Ni +2H+ 所有这些反应都发生在催化活性表面上,需要外界提供能量,即在较高温度(60w T W 95C )下,除了金属镍之外,还形成分子氢。此外,形成的氢离子使镀液变得更加酸性,同 - 〔 1 〕 时还生成亚磷酸离子HL PO3。 化学镀镍溶液的组成及作用: (1) 镍盐通常采用的镍盐为硫酸镍,但也可以是氯化镍、碳酸镍等。提高镀液中镍盐的浓度可以提高沉积速度,但镀液的稳定性下降。 (2) 还原剂次亚磷酸钠,镀液中次磷酸钠的用量主要取决于镍盐浓度,镍盐与次磷酸钠含量比过低时,镀层发暗,镀液稳定性下降,比值过高时沉积速度很慢。这一比值还直接影响镀层中的磷含量,比

化学镀镍磷合金技术

化学镀镍磷合金技术 化学镀镍的历史与电镀相比比较短暂,国外真正在工业中广泛应用仅仅是七十年代末八十年代初的事.从美国的A.Brenner和héG.Riddell两位科学家的发现至今已有 五十年的历史.. 化学镀镍,又称无电解镀镍.它是以溶液形式进行化学反应,使金属沉积于零件表面上,镀层为非晶态镍磷合金,甚有超级防腐,金属玻璃之称.在大多数介质中,其耐腐蚀性能远优于不锈钢,因而在发达国家各工业部门都得到了极其广泛的应用.在我国大规模应用该技术仅仅处于刚起步阶段. 中国电镀协会学术委员会副主任胡信国教授,从航天工业上的应用开始,致力于该技术实际应用的研究,使我国化学镀镍应用技术得到了突破性进展,他的高稳定快速化学镀镍新工艺HERCEN-92,HKBEN-93已正式通过国家级鉴定,结论为:”国内领先,并且达到了国际先进水平,为我国化学镀镍的实际应用作出了突出贡献”.他先后到新加坡,印尼等国家与多家生产厂合作,使该技术应用成熟,得到了国外客商的赞誉,其中计算机配件已被美国IBM公司采用. 化学镀镍镀层的性能,特点及用途: 一.优异的耐腐蚀性能.即耐酸又耐碱,盐(除硝酸,浓硫酸).在许多介质中,耐蚀性优于不锈钢十几乃至几十倍.镀层的这一特性使其使用意义十分巨大,如在食品,医药包装机械等行业中,采用普通钢铁材料制作的零件,再辅以化学镀工艺,镀后完全可以取代不锈钢,铜制品,这不仅可大幅度地降低材料费用,且可提高产品质量和性能. 二,耐磨性好.镀层硬度高,一般镀态硬度可达到HV500-1100度(HRC65-70),若特殊机体不允许高温处理也可在较低温度下经较长地时间热处理同样可获得所需硬度.且摩擦系数小,因而耐磨性好.常用于活塞杆,缸套,泵轴,模具,工具等耐磨损地零件表面. 三.镀层厚度均匀性好.由于化学镀是在溶液中进行化学反应,不用电,勿需复杂地阳极挂具.因此,只要零件表面能通过溶液,均能获得均匀的镀层.一般厚度差不超过3-5μm,尤其对于沟槽,罗纹,盲孔,内孔及形状复杂的内腔及外表面效果更突出,这是电镀工艺所无法比拟的. 四.镀层结合力高.可达300-400MPa,是电镀铬的3-4倍.不易出现脱皮现象. 五.镀层尺寸精度和表面精度高.对修复性的尺寸镀,尺寸准确,无论零件端头或其它部位同样精确,镀后勿需再进行机械加工. 六.钎焊性好.可广泛用于电子工业. 七.无毒,无害.适用于食品,医药工业.美国食品检测部门同意化学镀镍技术用于灌装机械,烘烤食品盘,模具,混料筒等直接接触食品的零件上. 八.适用温度范围广,工作温度可在-80-800℃之间. 九.适用面广.对钢铁,铜铝及其合金材料均可镀,特别对铝合金材料,电镀困难,而采用化学镀则效果非常好. 由于这些独一无二的特点,使化学镀在许多工业中都很有应用价值.如:电子和计算机工业,航空航天工业,纺织工业,汽车工业,化学工业,医药及食品工业,印刷工业,石油和天然气工业,采矿工业,军事工业等,化学镀镍,工艺简单,质量稳定,操作方便,加工过程无铬雾等毒害,废水稍加处理即可回收或排放.无环境污染,为绿色工业技术,因而被越来越多的工业部门所采用.

镍磷复合镀层技术

1综述 1.1 镍-磷合金镀覆技术简介 采用化学镀技术从水溶液中沉积镍的方法,通常可按所用还原剂种类加以分类,重要包括三种:以次亚磷酸盐为还原剂,以硼氢化合物为还原剂以及联氨为还原剂,其中尤其以次亚磷酸盐为还原剂的化学镀液最为常用。对于以次亚磷酸盐为还原剂的次亚磷酸钠体系化学镀镍的沉积机理,目前尚无统一的解释。其中,Gut zeit的初生态氢理论被人们广为接受。该理论认为:次磷酸根被氧化时产生初生态氢,镍离子被初生态氢还原为金属镍,部分次磷酸根被初生态氢还原为单质磷,磷与镍共沉积形成化学镍镀层。因此,以次磷酸盐为还原剂形成的化学镀镍层实际上式含有3%-15%(质量分数)磷的镍磷合金,而磷的含量成为影响镀层性能的关键因素。 1.2 镍-磷合金镀覆技术的发展历史 镍-磷合金镀覆技术是20世纪80年代后期展起来的一种新型表面涂层工艺。经过近20年的发展, 该技术在世界上已日益成熟, 以其优秀的均匀性、耐腐蚀性和耐磨性等综合物理、化学性能, 在美国、德国等国家得到了广泛应用。镍-磷合金镀覆技术在我国起步较晚, 目前还是一种新型表面涂层技术, 应用范围不太广泛。但是, 随着该技术的发展, 该技术将会被越来越多的生产企业所采用, 在今后几年内该技术将会进入其发展的成熟期[8]。电镀与化学镀相比有许多优点, 在沉积速度、镀液稳定性、成本、最大厚度等方面, 镍磷合金电镀法具有化学镀法所无法比拟的优越性[9] 镍磷合金镀层经热处理后, 硬度

已接近或超过了硬铬镀层, 在一些场合完全可以取代铬镀层。电镀镍-磷合金与镀硬铬相比较有沉积速度快;电流效率高;镀层分布稍均匀;镀液易调整、较稳定;镀层可以获得较高的含磷量等优点。所以, 研究镍磷合金电镀工艺在目前具有非常重要的实际意义 1.3 镍-磷合金镀覆技术的应用前景 近年来,利用合金镀层特有的性质,发展成为功能性电镀为中心的表面处理工艺。对工业材料性能要求越来越高,单金属镀层越来越不适应,对具有各种特性的合金镀层给予了很大的希望,对功能性电镀进行了大量的、深入的研究。镍磷合金涂覆技术是在20世纪80年代后期发展起来的一种新型表面涂层工艺[8]。经过20年的发展,该技术在世界上日益成熟,以其优秀的均匀性、耐腐蚀性和耐磨性等综合物理、化学性能,在美国、德国得到了广泛应用。镍磷合金技术在我国起步较晚,目前还是一种新型表面涂层技术,应用范围不太广泛。但是随着该技术的发展,在今后的一段时期内该技术会进入其发展的成熟期。 电镀镍磷合金的体系有亚磷酸体系和次磷酸盐体系。其中亚磷酸体系的研究较多, 次磷酸盐体系研究相对较少, 其原因是认为次磷 酸盐体系的镀层质量不稳定。但是, 以亚磷酸进行电镀, 在电沉积生成的过程中, 生成中间产物次亚磷酸根,因此用次亚磷酸盐进行电镀, 可以提高镀层中磷的含量, 由于次亚磷酸根还原为P 原子只需得到 一个电子, 从而镀层中的磷含量更加容易控制[10]。

相关文档