文档库 最新最全的文档下载
当前位置:文档库 › 建立二叉树二叉链表存储结构实现有关操作

建立二叉树二叉链表存储结构实现有关操作

建立二叉树二叉链表存储结构实现有关操作
建立二叉树二叉链表存储结构实现有关操作

一、实验题目:建立二叉树二叉链表存储结构实现有关操作

二、问题描述:

建立二叉树的二叉链表存储结构实现以下操作(选择其中的两个做)

(1)输出二叉树(2)先序遍历二叉树(3) 中序遍历二叉树

(4)后序遍历二叉树(5)层次遍历二叉树

三、需求分析:

我选做以上的2.3两小问

(1)建立二叉链表树

(2)先序遍历二叉树:

若二叉树为空,则空操作;否则先访问根结点,再先序遍历左子树,最后先序遍历右子树

(3) 中序遍历二叉树:

若二叉树为空,则空操作;否则先访问根结点,再中序遍历左子树,最后中序遍历右子树

(4)测试数据:a,b,c,d,e;测试输出结果为:先根遍历:a,b,d,c,e 中根遍历:b,d,a,e,c

四、概要设计:

(1)结点结构定义:

struct btnode

{

char data; //数据

bitreptr lchild; //左节点指针

bitreptr rchild; //右节点指针

};

(2)二叉树的定义与初始化:

bitreptr CreateTree( )

{

bitreptr a,b,c,d,e;

bitreptr nodes[5];

for(int j=0;j<5;j++)

{

nodes[j]=(bitreptr)malloc(sizeof(btnode));

nodes[j]->lchild=NULL;

nodes[j]->rchild=NULL ;

}

a=nodes[0];

b=nodes[1] ;

c=nodes[2];

d=nodes[3];

e=nodes[4];

a->data='a';

a->lchild=b;

a->rchild=c;

b->data='b';

b->rchild=d;

c->data='c';

c->lchild=e;

d->data='d';

e->data='e';

return a;

}

void visit(const bitreptr node)

{

cout<data<

}

(3)先序遍历:

void preorder(const bitreptr root)

{

bitreptr node=root;

if (node!=NULL)

{

visit(node);

preorder(node->lchild);

preorder(node->rchild);

}

}

(4)中根遍历:

void inorder(const bitreptr root)

{

bitreptr node=root;

if (node!=NULL)

{

inorder(node->lchild);

visit(node);

inorder(node->rchild);

}

}

五、详细设计及模块代码:

#include "malloc.h"

#include "iostream.h"

typedef struct btnode * bitreptr;

struct btnode

{

char data; //数据

bitreptr lchild; //左节点指针

bitreptr rchild; //右节点指针

}; //建立一个树,函数返回一个树的头指针bitreptr CreateTree( )

{

bitreptr a,b,c,d,e;

bitreptr nodes[5];

for(int j=0;j<5;j++)

{

nodes[j]=(bitreptr)malloc(sizeof(btnode));

nodes[j]->lchild=NULL;

nodes[j]->rchild=NULL;

}

a=nodes[0];

b=nodes[1];

c=nodes[2];

d=nodes[3];

e=nodes[4];

a->data='a';

a->lchild=b;

a->rchild=c;

b->data='b';

b->rchild=d;

c->data='c';

c->lchild=e;

d->data='d';

e->data='e';

return a;

}

void visit(const bitreptr node)

{

cout<data<

}//先根遍历

void preorder(const bitreptr root)

{

bitreptr node=root;

if (node!=NULL)

{

visit(node);

preorder(node->lchild);

preorder(node->rchild);

}

} //中根遍历

void inorder(const bitreptr root)

{

bitreptr node=root;

if (node!=NULL)

{

inorder(node->lchild);

visit(node);

inorder(node->rchild);

}

}

int main(int argc, char* argv[])

{

bitreptr root;

root=CreateTree();

cout<<"先根遍历"<

preorder(root);

cout<<"中根遍历"<

inorder(root);

return 0;

}

六、运行结果:

七、经验小结:

运用递归的思想在做二叉树遍历的时候很重要,可以起到化繁为简的作用。

二叉树的存储表示

二叉树的存储表示 1二叉树的顺序存储表示 2二叉树的链式存储表示 3三叉链表 1二叉树的顺序存储表示 二叉树的顺序存储结构的定义如下: #define MAXSIZE = 100; //暂定二叉树中节点数的最大值为100 Typedef struct { ElemType *data ; //存储空间基址(初始化时分配空间) Int nodeNum ; //二叉树中节点数 }SqBiTree ; //二叉树的顺序存储结构 为了能在存储结构中反映出节点之间的逻辑关系,必须将二叉树中节点依照一定规律安排在这组存储单元中。对于完全二叉树,只要从根起按层序存储即可。 显然,这种顺序存储结构仅适用于完全二叉树。因为,在最坏的情况下,一个深度为 k 且只有 k 个结点的单支树(树中不存在度为 2 的结点)却需要长度为2k -1的一维数组。 二叉树的顺序存储图如图1所示: 2 6 320 116 5402 106 543216 (a )满二叉树(b )一般二叉树 图1 顺序存储

2二叉树的链式存储表示 二叉树有不同的链式结构,其中最常用的是二叉链表与三叉链表。二叉链表的结点形式如表1所示: 表1链式存储 date域:称为数据域,用于存储二叉树结点中的数据元素, 1child域:称为左孩子指针域,用于存放指向本结点左孩子的指针(左指针)。 rchild域:称为右孩子指针域,用于存放指向本结点右孩子的指针(右指针)二叉链表中的所有存储结点通过它们的左、右指针的链接而形成一个整体。 根指针:每个二叉链表还必须有一个指向根结点的指针。根指针具有标识二叉链表的作用,对二叉链表的访问能从根指针开始。 图2中(a)(b)表示一棵二叉树及其二叉链表。值得注意的是,二叉链表中每个存储结点的每个指针域必须有一个值,这个值或者是指向该结点的一个孩子的指针,或者是空指针NULL。 二叉链表的类型定义如下: Typedef struct btnode *bitreptr; Struct btnode { Datatype data; Bitreptr lchild,rchild; }; Bitreptr root; 若二叉树为空,则root=NULL。若某结点的某个孩子不存在,则相应的指针为空。具有n个结点的二叉树中,一共有2n个指针域,其中只有n-1个用来指向结点的的左右孩子,其余的n+1个指针域为NULL。 在二叉链表这种存储结构上,二叉树的多数基本运算如求根,求左、右孩子等很容易实现。但求双亲运算PARENT(BT,X)的实现却比较麻烦,而且其时间性能不高。

全国计算机等级考试二级公共基础之树与二叉树1

全国计算机等级考试二级公共基础之树与二叉树 1.6 树与二叉树 1.6.1 树的基本概念 树是一种简单的非线性结构。在树这种结构中,所有元素之间的关系具有明显的层次关系。用图形表示树这种数据结构时,就象自然界中的倒长的树,这种结构就用“树”来命名。如图: 在树结构中,每个结点只有一个前件,称为父结点,没有前件的结点只有一个,称为树的根结点,简称为树的根(如R)。 在树结构中,每一个结点可以有多个后件,它们都称为该结点的子结点。没有后件的结点称为叶子结点(如W,Z,A ,L,B,N,O,T,H,X)。 在树结构中,一个结点拥有的后件个数称为结点的度(如R的度为4,KPQDEC 结点度均为2)。 树的结点是层次结构,一般按如下原则分层:根结点在第1层;同一个层所有结点的所有子结点都在下一层。树的最大层次称为树的深度。如上图中的树深度为4。R结点有4棵子树,KPQDEC结占各有两棵子树;叶子没有子树。 在计算机中,可以用树结构表示算术运算。在算术运算中,一个运算符可以有若干个运算对象。如取正(+)与取负(-)运算符只有一个运算对象,称为单目运算符;加(+)、减(-)、乘(*)、除(/)、乘幂(**)有两个运算对象,称为双目运算符;三元函数f(x,y,z)为 f函数运算符,有三个运算对象,称为三目运算符。多元函数有多个运算对象称多目运算符。 用树表示算术表达式原则是: (1)表达式中的每一个运算符在树中对应一个结点,称为运算符结点

(2)运算符的每一个运算对象在树中为该运算结点的子树(在树中的顺序从 左到右) (3)运算对象中的单变量均为叶子结点 根据上面原则,可将表达式:a*(b+c/d)+c*h-g*f表示如下的树。 树在计算机中通常用多重链表表示,多重链表的每个结点描述了树中对应结点的信息,每个结点中的链域(指针域)个数随树中该结点的度而定。 1.6.2 二叉树及其基本性质 1. 什么是二叉树 二叉树是很有用的非线性结构。它与树结构很相似,树结构的所有术语都可用到二叉树这种结构上。 二叉树具有以下两个特点: (1)非空两叉树只有一个根结点 (2)每个结点最多有两棵子树,且分别称该结点的左子树与右子树。 也就是说,在二叉树中,每一个结点的度最大为2,而且所有子树也均为二叉树。二叉树中的每一个结点可以有左子树没有右子树,也可以有右子树没有左子树,甚至左右子树都没有。

顺序存储结构和链式存储结构

第二次作业 1. 试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 2 .描述以下三个概念的区别:头指针、头结点、首元结点(第一个元素结点)。在单链表中设置头结点的作用是什么? 3.已知P结点是双向链表的中间结点,试从下列提供的答案中选择合适的语句序列。 a.在P结点后插入S结点的语句序列是-----------。 b.在P结点前插入S结点的语句序列是-----------。 c.删除P结点的直接后继结点的语句序列是----------。 d.删除P结点的直接前驱结点的语句序列是----------。 e.删除P结点的语句序列是------------。 (1)P->next=P->next->next; (10) P->prior->next=P; (2)P->prior=P->prior->prior; (11) P->next->prior =P; (3) P->next=S; (12)P->next->prior=S; (4) P->prior=S; (13) P->prior->next=S; (5)S->next=P; (14) P->next->prior=P->prior (6)S->prior=P; (15)Q=P->next; (7) S->next= P->next; (16)Q= P->prior; (8) S->prior= P->prior; (17)free(P); (9) P->prior->next=p->next; (18)free(Q); 4. 编写程序,将若干整数从键盘输入,以单链表形式存储起来,然后计算单链表中结点的个数(其中指针P指向该链表的第一个结点)。

数据结构二叉排序树的实现(用顺序和二叉链表作存储结构)课程设计

一、设计题目 1、题目:二叉排序树的实现 (用顺序和二叉链表作存储结构 ) 2、要求(功能): 1) 以回车('\n')为输入结束标志,输入数列L,生成一棵二叉排序树T; 2) 对二叉排序树T作中序遍历,输出结果; 3) 输入元素x,查找二叉排序树T,若存在含x的结点,则删除该结点,并作中序遍历(执行操作2);否则输出信息“无x”; 二、需求分析 建立排序二叉树,主要是建立节点来存储输入的数据,需要建立函数来创造排序二叉树。 该题目包括三方面的容:一个是二叉排序树的建立,而是二叉树的中序遍历,三是二叉树元素的查找并删除。 三、数据结构设计 在写算法之前,应对数据结构进行设计。本体主要会用到指针变量,插入节点函数和建立二叉树,以及中序遍历函数,还有一些输入输出语句。 四、算法设计 算法设计思想

二插链表作存储结构:建立二插排序树采用边查找边插入的方式。查找函数采用递归的方式进行查找。如果查找成功则不应再插入原树,否则返回当前结点的上一个结点。然后利用插入函数将该元素插入原树。 对二叉树进行中序遍历采用递归函数的方式。在根结点不为空的情况下,先访问左子树,再访问根结点,最后访问右子树。 删除结点函数,采用边查找边删除的方式。如果没有查找到,则不对树做任何的修改;如果查找到结点,则分四种情况分别进行讨论:1、该结点左右子树均为空;2、该结点仅左子树为空;3、该结点仅右子树为空;4、该结点左右子树均不为空。 在进行算法设计时,应将题目分为五个函数模块: 1、中序遍历,符合升序输出 void inorder(node *&root) { if(root!=NULL) { inorder(root->left); cout<data<<' '; inorder(root->right); } }

数据结构实验指导书 二叉树两种存储结构的应用

一、实验名称:二叉树两种存储结构的应用 二、实验目的和要求: 1.掌握二叉树的遍历思想及二叉树的存储实现。 2.掌握二叉树的基本操作:建立二叉树、二叉树的遍历 3.选择一种形式完成二叉树的显示 4.掌握二叉树的常见算法的程序实现 5.实验报告中要写出测试数据、错误分析以及收获 三、上机实验内容一:二叉树的建立及相关算法的实现 1.完成的功能包括如下几点: ①编程实现建立一棵二叉树,然后对其进行先序、中序和后序遍历。 分析:将要输入的二叉树按照其对应的完全二叉树的顺序输入,若当前位置不存在结点则输入@ ②显示二叉树 ③求二叉树的高度及二叉树的叶子个数等等 ④在主函数中设计一个简单的菜单,分别调试上述算法 四、上机实验内容二:哈夫曼编码/译码系统 1.要求编写一程序模拟传输过程,实现在发送前将要发送的字符信息进行编码,然后进行发送,接收后将传来的数据进行译码,即将信息还原成发送前的字符信息。 2.设计分析 在本例中的算法主要有:哈夫曼树的建立;哈夫曼编码的生成;对编码信息的翻译。要求设置发送者和接收者两个功能。 发送者的功能包括: ①输入待传送的字符信息;②统计字符信息中出现的字符类数和各字符出现的次数(频率);③根据字符的种类数和各字符出现的次数建立哈夫曼树;④利用以上哈夫曼树求出各字符的哈夫曼编码;⑤将字符信息转换成对应的编码信息进行传送。 接收者的功能包括: ①接收发送者传送来的编码信息;②利用上述哈夫曼树对编码进行翻译,即将编码信息还原成发送前的字符信息。 3.结点的类型定义 ①哈夫曼树的存储结构类型定义为:

typedef struct { char data; /*编码对应的字符*/ int weight; /*结点的权值*/ int lchild,rchild,parent;/*左右孩子及双亲的下标*/ }HTNode; ②哈夫曼编码的存储结构类型定义为: typedef struct { char bits[N]; /*存放哈夫曼编码的字符数组*/ int start; /*记录编码的起始位置,因为每种字符的编码长度不同*/ }HCode; 说明:只占用2个课内学时,学生可利用开放实验室利用课余时间完成本次实验内容。

31构建二叉树的二叉链表存储结构

Computer Education教育与教学研究 文章编号:1672-5913(2008)06-0066-03 构建二叉树的二叉链表存储结构 王岁花,岳冬利 (河南师范大学 计算机与信息技术学院,新乡 453007) 摘要:本文根据笔者多年的教学经验,介绍了四种构建二叉树的二叉链表存储结构的方法。 关键词:二叉树;链表;存储结构;递归 中图分类号:G642 文献标识码:B 1 引言 《高等学校计算机科学与技术专业发展战略研究报告暨专业规范》中将“计算机科学与技术”专业名称下的人才培养规格归纳为三种类型、四个不同的专业方向:科学型(计算机科学专业方向)、工程型(包括计算机工程专业方向和软件工程专业方向)、应用型(信息技术专业方向)。“数据结构”课程出现在四个专业方向的核心课程中,而树型结构同样无一例外的出现在了四个专业方向的核心知识单元中。 树型结构描述的是研究对象之间一对多的关系。在存储树时,如果用指针来描述元素之间的父子关系,则由于对每个元素的孩子数量没有限制(最小可以是0,最多可以是树的度d),若结点的结构定义为一个数据域data和d个指针域,则可以证明,有n个结点、度为d的树的多重链表存储结构中,有n*(d-1)+1个空链域,采用这样的存储将造成很大的浪费。 二叉树是树型结构的一种特殊情况,对于它的操作和存储要比树简单的多,且树和森林可以用二叉链表做媒介同二叉树进行相互转换,所以对二叉树的研究就显得特别重要。 二叉树的二叉链表存储是二叉树的一种重要的存储结构,在每一本“数据结构”教材中都占据了一定的篇幅,但对于怎样建立一棵二叉树的二叉链表存储结构,却很少提及。笔者从事“数据结构”课程教学已二十余年,总结出了以下四种构建方法,希望能对同仁和学数据结构的学生有所帮助。通过本文的学习,学生将会对二叉链表和递归有更深入的理解。 2 二叉树的二叉链表存储结构构建方法 假设有关二叉树的二叉链表存储的类型定义如下: typedef struct BiTNode{ // 结点结构ElemType data ;//数据域 struct BiTNode *Lchild ;//左孩子指针 struct BiTNode *Rchild;//右孩子指针} BiTNode ,*BiTree ; 说明:ElemType为二叉树的元素值类型,根据具体情况进行定义,本文假设为char型;BiTNode为结点类型;BiTree为指向BiTNode的指针类型。下面的算法均用类C 描述。 2.1 利用扩展二叉树的先序序列构建 只根据二叉树的先序序列是不能唯一确定一棵二叉树的。针对这一问题,可做如下处理:对二叉树中每个结点的空指针引出一个虚结点,设其值为#,表示为空,把这样处理后的二叉树称为原二叉树的扩展二叉树。扩展二叉树的先序序列可唯一确定这棵二叉树。如图1所示,给出了一棵二叉树的扩展二叉树,以及该扩展二叉树的先序序列。 收稿日期:2007-12-15 作者简介:王岁花,副教授,主要研究方向是语义Web和课程教学论。 项目资助:河南师范大学教学研究基金资助 66

二叉树的顺序存储结构

#include #include #define VirNode ' ' /* 用空格符描述“虚结点”*/ #define MAXSIZE 64 typedef char ElemType; typedefElemTypeSqBitTree[MAXSIZE]; void crebitree(SqBitTreeBT,int n) /* n为二叉树真实结点数*/ { inti,j,m; i=1; m=0; while(m

{ inti,n=0; for(i=1;i<=BT[0]/2;i++) if(BT[i]!=VirNode&&BT[2*i]==VirNode&&BT[2*i+1]==VirNode) n++; for(;i<=BT[0];i++) if(BT[i]!=VirNode) n++; return n; } int countn1(SqBitTree BT) { inti,n=0; for(i=1;i<=BT[0]/2;i++) if(BT[i]!=VirNode&&(BT[2*i]==VirNode&&BT[2*i+1]!=VirNode|| BT[2*i]!=VirNode&&BT[2*i+1]==VirNode)) n++; return n; } int countn2(SqBitTree BT) { inti,n=0; for(i=1;i<=BT[0]/2;i++) if(BT[i]!=VirNode&&BT[2*i]!=VirNode&&BT[2*i+1]!=VirNode) n++; return n; } //主函数 void main() { SqBitTree T; int n; crebitree(T,5); levellist(T); printf("High=%d\n",high(T)); levellist(T); printf("n2=%d\n",countn2(T)); getch(); }

假设二叉树采用二叉链存储结构存储

假设二叉树采用二叉链存储结构存储,分别实现以下算法,并在程序中完成测试:(1)计算二叉树节点个数; (2)输出所有叶子节点; (3)求二叉树b的叶子节点个数; (4)求二叉树b的宽度 #include<> #include<> #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; //数据元素 struct node *lchild; //指向左孩子 struct node *rchild; //指向右孩子 } BTNode; void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链 BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针 BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针 BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针 int BTNodeDepth(BTNode *b); //求二叉树b的深度 void DispBTNode(BTNode *b); //以括号表示法输出二叉树 void DestroyBTNode(BTNode *&b); //销毁二叉树 void LevelOrder(BTNode *b) { BTNode *p; BTNode *qu[MaxSize]; //定义环形队列,存放节点指针 int front,rear; //定义队头和队尾指针 front=rear=-1; //置队列为空队列 rear++; qu[rear]=b; //根节点指针进入队列 while (front!=rear) //队列不为空 { front=(front+1)%MaxSize; p=qu[front]; //队头出队列 printf("%c ",p->data); //访问节点 if (p->lchild!=NULL) //有左孩子时将其进队 { rear=(rear+1)%MaxSize; qu[rear]=p->lchild;

实验五--二叉树的存储结构和基本操作

实验五二叉树的存储表示和基本操作 实验内容 1. 二叉树的二叉链表的存储结构 —————二叉树的二叉链表存储表示———————— typedef struct node { ElemType data; /*数据元素*/ struct node *lchild; /*指向左孩子*/ struct node *rchild; /*指向右孩子*/ } BTNode; 2. 二叉树的基本操作 (1)创建操作:创建一棵二叉树。 (2)查找操作:查找二叉树中值为x的结点。 (3)查找左孩子操作:查找二叉树中值为x的结点的左孩子。 (4)查找右孩子操作:查找二叉树中值为x的结点的右孩子。 (5)求深度操作:求二叉树的深度。 (6)求宽度操作:求二叉树的宽度。 (7)求结点个数操作:求二叉树的结点个数。 (8)求叶子结点个数操作:求二叉树的叶子结点个数。 (9)输出操作:以括号表示法输出二叉树。 3. 链式队列操作实现的步骤 (1)实现将链式队列的存储结构和基本操作程序代码。 (2)实现main主函数。 4.程序代码完整清单 #include #include #define MaxSize 100 typedef char ElemType; typedef struct node { ElemType data; /*数据元素*/ struct node *lchild; /*指向左孩子*/ struct node *rchild; /*指向右孩子*/ } BTNode; //基本操作函数声明 void CreateBTNode(BTNode *&b,char *str); /*创建一棵二叉树*/ BTNode *FindNode(BTNode *b,ElemType x); /*查找二叉树的结点*/ BTNode *LchildNode(BTNode *p); /*查找二叉树结点的左孩子*/ BTNode *RchildNode(BTNode *p); /*查找二叉树结点的右孩子*/ int BTNodeDepth(BTNode *b); /*求二叉树的深度*/

树和二叉树习题数据结构

习题六树和二叉树一、单项选择题 1.以下说法错误的是 ( ) A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继 C.树形结构可以表达(组织)更复杂的数据 D.树(及一切树形结构)是一种"分支层次"结构 E.任何只含一个结点的集合是一棵树 2.下列说法中正确的是 ( ) A.任何一棵二叉树中至少有一个结点的度为2 B.任何一棵二叉树中每个结点的度都为2 C.任何一棵二叉树中的度肯定等于2 D.任何一棵二叉树中的度可以小于2 3.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储

C.将树、森林转换成二叉树 D.体现一种技巧,没有什么实际意义 4.树最适合用来表示 ( ) A.有序数据元素 B.无序数据元素 C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定 6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。与森林F对应的二叉树根结点的右子树上的结点个数是()。 A.M1 B.M1+M2 C.M3 D.M2+M3 7.一棵完全二叉树上有1001个结点,其中叶子结点的个数是() A. 250 B. 500 C.254 D.505 E.以上答案都不对 8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( ) A.不确定 B.2n C.2n+1 D.2n-1 9.二叉树的第I层上最多含有结点数为() A.2I B. 2I-1-1 C. 2I-1 D.2I -1

二叉树的存储与实现

实验课程名称数据结构与算法 实验项目名称二叉树的存储与实现 年级 08 级 专业数学类 学生姓名 学号 理学院 实验时间:年月日

学生实验室守则 一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。 二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。 三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。 四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。 五、实验中要节约水、电、气及其它消耗材料。 六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。 七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。 八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。 九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。 十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。 十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。 学生所在学院:理学院专业:数学类班级:08级

比较顺序存储结构和链式存储结构

比较顺序存储结构和链 式存储结构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

1、试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 答:① 顺序存储时,相邻数据元素的存放地址也相邻(逻辑与物理统一);要求内存中可用存储单元的地址必须是连续的。 优点:存储密度大(=1),存储空间利用率高。缺点:插入或删除元素时不方便。 ②链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针 优点:插入或删除元素时很方便,使用灵活。缺点:存储密度小(<1),存储空间利用率低。 顺序表适宜于做查找这样的静态操作;链表宜于做插入、删除这样的动态操作。若线性表的长度变化不大,且其主要操作是查找,则采用顺序表; 若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。 顺序表与链表的比较 基于空间的比较 存储分配的方式 顺序表的存储空间是静态分配的 链表的存储空间是动态分配的 存储密度 = 结点数据本身所占的存储量/结点结构所占的存储总量 顺序表的存储密度 = 1 链表的存储密度 < 1

基于时间的比较 存取方式 顺序表可以随机存取,也可以顺序存取 链表是顺序存取的 插入/删除时移动元素个数 顺序表平均需要移动近一半元素 链表不需要移动元素,只需要修改指针 顺序表和链表的比较 顺序表和链表各有短长。在实际应用中究竟选用哪一种存储结构呢?这要根据具体问题的要求和性质来决定。通常有以下几方面的考虑: ┌───┬───────────────┬───────────────┐ │ │ 顺序表│链表 │ ├─┬─┼───────────────┼───────────────┤ │基│分│静态分配。程序执行之前必须明确│动态分配只要内存空间尚有空闲,│ │于│配│规定存储规模。若线性表长度n变│就不会产生溢出。因此,当线性表│

实验二叉树及其应用(严选材料)

实验6:二叉树及其应用 一、实验目的 树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。 二、问题描述 首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。 如算术表达式:a+b*(c-d)-e/f 三、实验要求 1、 如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算 a) 统计叶子结点的个数。 b) 求二叉树的深度。 2、 十进制的四则运算的计算器可以接收用户来自键盘的输入。 3、 由输入的表达式字符串动态生成算术表达式所对应的二叉树。 4、 自动完成求值运算和输出结果。 四、实验环境 PC 微机 DOS 操作系统或 Windows 操作系统 Turbo C 程序集成环境或 Visual C++ 程序集成环境 五、实验步骤 1、根据二叉树的各种存储结构建立二叉树; 2、设计求叶子结点个数算法和树的深度算法; 3、根据表达式建立相应的二叉树,生成表达式树的模块; - + / a * b - e f C d

4、根据表达式树,求出表达式值,生成求值模块; 5、程序运行效果,测试数据分析算法。 六、功能分析 存储结构 typedef union{ int Operator; // 操作符 float Operand; // 操作数 }Int_Float; //表达式树 typedef struct BinaryTreeNode{ Int_Float Data; //数据域 int IsOperator; //判断是不是操作数的标志位 struct BinaryTreeNode *RChild;//左子树 struct BinaryTreeNode *LChild;//右子树 }BiTreeNode, *lpBiTreeNode; //栈的定义 typedef struct { lpBiTreeNode *base; lpBiTreeNode *top; int stacksize; }SqStack; 函数一览表 lpBiTreeNode GetTop( SqStack s );//取栈顶结点函数 int IsEmpty( SqStack s );//判空函数 int InitStack( SqStack &s );//初始化栈函数 int Pop( SqStack &s, lpBiTreeNode &e );//出栈函数 int Push( SqStack &s, lpBiTreeNode e );//入栈函数 int In( int c, int* op );// 判断c是否在op中 int Precede( int theta1, int theta2 );//比较运算符号的优先级 int isNum( int c );//判断是不是数 int GetInput(Int_Float *Result);//读入输入的数 lpBiTreeNode CreateBiTree();//创建二叉树 bool calculate(lpBiTreeNode Root, float *result);//计算二叉树化表达式的值int getLeafNum(lpBiTreeNode Root);//计算二叉树的叶子结点数

二叉树的二叉链表存储结构上得基本操作

一、二叉树的二叉链表存储结构 typedef struct btnode{ elemtype data; struct btnode *lchild,*rchild; }bitnode,*bitree; 二、基本操作的算法实现 1.建立二叉树 #define maxnum 20 void creat(bitnode *t){ bitnode *p[maxnum+1],*s; int i,j,; char ch; scanf(“%d,%c”,&i,&ch); while(i!=0&&ch!=’#’){ s=(bitnode *)malloc(sizeof(bitnode)); s->data=ch; s->lchild=s->rchild=NULL; p[i]=s; if(i==1) t=s; else{ j=i/2; if(i%2==0) p[j]->lchild=s; else p[j]->rchild=s;} scanf(“%d,%c”,&i,&ch); } }

2.先序遍历 void preorder(bitnode *t){ if(t){ printf(t->data); preorder(t->lchild); preorder(t->rchild);} } 3.中序遍历 void inorder(bitnode *t){ if(t){ inorder(t->lchild); printf(t->data); inorder(t->rchild);} } 4.后序遍历 void posrorder(bitnode *t){ if (t){ postorder(t->lchild); postorder(t->rchild); printf(t->data);} }

各类型二叉树例题说明

5.1树的概念 树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树 1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。 2.树的深度——组成该树各结点的最大层次,如上图,其深度为4; 3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林; 4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。 5.树的表示 树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如上图可写成如下形式: (A(B(E(K,L),F),C(G),D(H(M),I,J))) 5. 2 二叉树 1.二叉树的基本形态: 二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态: (1)空二叉树——(a); (2)只有一个根结点的二叉树——(b); (3)右子树为空的二叉树——(c); (4)左子树为空的二叉树——(d); (5)完全二叉树——(e) 注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。 2.两个重要的概念: (1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树; (2)满二叉树——除了叶结点外每一个结点都有左右子女且叶结点都处在最底层的二叉树,。 如下图: 完全二叉树 1页

比较顺序存储结构和链式存储结构 (1)

1、试比较顺序存储结构和链式存储结构的优缺点。在什么情况下用顺序表比链表好? 答:① 顺序存储时,相邻数据元素的存放地址也相邻(逻辑与物理统一);要求内存中可用 存储单元的地址必须是连续的。 优点:存储密度大(=1),存储空间利用率高。缺点:插入或删除元素时不方便。 ②链式存储时,相邻数据元素可随意存放,但所占存储空间分两部分,一部分存放结点值, 另一部分存放表示结点间关系的指针 优点:插入或删除元素时很方便,使用灵活。缺点:存储密度小(<1),存储空间利用率低。顺序表适宜于做查找这样的静态操作;链表宜于做插入、删除这样的动态操作。 若线性表的长度变化不大,且其主要操作是查找,则采用顺序表; 若线性表的长度变化较大,且其主要操作是插入、删除操作,则采用链表。 顺序表与链表的比较 基于空间的比较 存储分配的方式 顺序表的存储空间是静态分配的 链表的存储空间是动态分配的 存储密度= 结点数据本身所占的存储量/结点结构所占的存储总量 顺序表的存储密度= 1 链表的存储密度< 1 基于时间的比较 存取方式 顺序表可以随机存取,也可以顺序存取 链表是顺序存取的 插入/删除时移动元素个数 顺序表平均需要移动近一半元素 链表不需要移动元素,只需要修改指针 顺序表和链表的比较顺序表和链表各有短长。在实际应用中究竟选用哪一种存储结构呢?这要根据具体问题的要求和性质来决定。通常有以下几方面的考虑:┌───┬───────────────┬───────────────┐││ 顺序表│链表│├─┬─┼───────────────┼───────────────┤│基│分│静态分配。程序执行之前必须明确│动态分配只要内存空间尚有空闲,││于│配│规定存储规模。若线性表长度n变│就不会产生溢出。因此,当线性表││空│方│化较大,则存储规模难于预先确定│的长度变化较大,难以估计其存储││间│式│估计过大将造成空间浪费,估计太│规模时,以采用动态链表作为存储││考││小又将使空间溢出机会增多。│结构为好。 ││虑├─┼───────────────┼───────────────┤││存│为1。当线性表的长

数据结构习题 树 数据机构c语言版

1.设二叉树bt 的存储结构如下,其中bt为树根结点指针,left,right分别为结 点的左、右孩子指针,dada为结点的数据域。请完成下列各题: 1)画出二叉树bt的逻辑结构 2)写出按先序、中序、后序遍历二叉树所得到的结点序列 3)画出二叉树bt的后序线索化树 1 2 3 4 5 6 7 8 9 10 2.二叉树结点数值采用顺序存储结构,如图所示, 1)画出二叉树表示 2)写出前序遍历,中序遍历和后序遍历的结果 3)写出结点值c的父结点,其左、右孩子。 4)画出将此二叉树还原成森林的图

3.已知一棵二叉树的中序序列为cbedahgijk,后序序列为cedbhjifa,画出该二叉 树的先序线索二叉树。 4.有一份电文中共使用五个字符:a、b、c、d、e,它们的出现频率依次为4、7、5、 2、9,试画出对应的Huffman树(请按左子树根结点的权小于等于右子树根结点 的权的次序构造),求出每个字符的Huffman编码。 5.设给定权集w={2,3,4,8,9},试构造关于w的一棵哈夫曼树,并求其加权路 径长度WPL。 6.假设二叉树采用链接存储方式存储,编写一个中序遍历二叉树的非递归过程。 7.假设二叉树采用链接存储方式存储,root指向根结点,p所指结点为任一给定的 结点。编写一个求出从根结点到p所指结点之间路径的函数。 8.在二叉树中查找值为x的结点,试设计打印值为x的结点的所有祖先的算法,假 设值为x的结点不多于1个。 9.假设二叉树采用链接存储方式存储,试设计一个算法计算一棵给定二叉树的所有 结点数。 10.假设二叉树采用链接存储方式存储,试设计一个算法计算一棵给定二叉树的单孩 子结点数。

实验2 树的二叉链表表示及其遍历

实验2 树的二叉链表表示及其遍历 实验目的:掌握二叉树的链式存储结构及其遍历 实验重点:二叉树的链式存储实现方法 实验内容:用二叉链表存储结构表示下图所示二叉树的,并用递归方法输出三种遍历结果。 实验提示: 1,二叉树的链式存储结构表示 typedef struct BiTNode{ TElemType data; struct BitNode *lchild,*rchild; }BiTNode,*BiTree; 2,二叉树的链式存储算法实现 CreateBiTree(&T,definition); InsertChild(T,p,LR,c); 3, 二叉树的递归法遍历 PreOrderTraverse(T,Visit());

InOrderTraverse(T,Visit()); PostOrderTraverse(T,Visit()); 示例源程序 #include #define ERROR 0; #define OK 1; typedef int ElemType; typedef struct BinaryTree { ElemType data; struct BinaryTree *l; struct BinaryTree *r; }*BiTree,BiNode; BiNode * new() { return( (BiNode *)malloc(sizeof(BiNode)) ); } int CreateSubTree(BiTree *T,ElemType *all,int i) { if ((all[i]==0)||i>16) { *T=NULL; return OK; } *T=new(); if(*T==NULL) return ERROR; (*T)->data=all[i]; CreateSubTree(&((*T)->l),all,2*i); CreateSubTree(&((*T)->r),all,2*i+1); } int CreateBiTree(BiTree *T) {

线性表的链式存储结构和实现

经济学院 实验报告 学院: 专业: 计算机 班级: 学号: 姓名: 信息工程学院计算机实验中心制

实验题目:线性表的链式存储结构和实现 实验室:机房4 设备编号: 09 完成日期: 2012.04.09 一、实验容 1.会定义线性表的链式存储结构。 2.熟悉对单链表的一些基本操作(建表、插入、删除等)和具体的函数定义。 二、实验目的 掌握链式存储结构的特点,掌握并实现单链表的常用的基本算法。 三、实验的容及完成情况 1. 需求分析 (1)线性表的抽象数据类型ADT的描述及实现。 本实验实现使用Visual c++6.0实现线性表链式存储结构的表示及操作。具体实现要求: (2)完成对线性表链式存储结构的表示和实现。 (3)实现对单链表的创建。 (4)实现对单链表的插入和删除操作。 2.概要设计 抽象数据类型线性表的定义:ADT LIST{ 抽象对象:D={ai|ai<-Elemset,i=1,2,…,n,n>=0} 数据关系:R1={

数据结构二叉树习题含答案

第6章树和二叉树 1.选择题 (1)把一棵树转换为二叉树后,这棵二叉树的形态是()。 A.唯一的B.有多种 C.有多种,但根结点都没有左孩子D.有多种,但根结点都没有右孩子 (2)由3 个结点可以构造出多少种不同的二叉树?() A.2 B.3 C.4 D.5 (3)一棵完全二叉树上有1001个结点,其中叶子结点的个数是()。 A.250 B. 500 C.254 D.501 (4)一个具有1025个结点的二叉树的高h为()。 A.11 B.10 C.11至1025之间 D.10至1024之间(5)深度为h的满m叉树的第k层有()个结点。(1=

相关文档
相关文档 最新文档