文档库 最新最全的文档下载
当前位置:文档库 › VAH气相醛加氢催化剂在8.5万t-a辛醇生产装置的工业应用

VAH气相醛加氢催化剂在8.5万t-a辛醇生产装置的工业应用

第39卷第4期2018年8月能源化工

EnergyChemicalIndustryVol.39No.4Aug.,2018

催化技术

VAH气相醛加氢催化剂在8.5万t/a辛醇

生产装置的工业应用

王 伟,吴宽亮,高常春

(中国石化齐鲁分公司第二化肥厂,山东淄博255400)

摘要:介绍了VAH型气相醛加氢催化剂的开发与应用概况三从催化剂装填二干燥二还原及装置投料等方面详细介绍了该催化剂在8.5万t/a辛醇装置上的工业应用情况三装置投产3个月后进行了标

定,标定结果显示:在要求的工况下,粗辛醇产品辛醇质量分数为98.13%,辛烯醛和异辛醛总质量分数

0.19%,硫酸色号50#;装置运行平稳,产品各项指标与产品分布均达到规定要求三各项数据表明,VAH型气相醛加氢催化剂具有良好的加氢活性与选择性,整体性能达到国外同类催化剂的水平三

关键词:醛加氢 气相法 催化剂 辛醇 工业应用 中图分类号:TQ426.8 文献标志码:A 文章编号:2095-9834(2018)04-0038-05

IndustrialapplicationofVAHtypegas-phasealdehydehydrogenationcatalystat85kt/aoctylalcoholunit

WANGWei,WUKuanliang,GAOChangchun

(TheSecondFertilizerPlantofQiluPetrochemicalCompany,SINOPEC,Zibo255400,China)

Abstract:ThestatusofdevelopmentandapplicationofVAHtypecatalystforgas-phasealdehydehydrogenationispresented.Theindustrialapplicationofthecatalystinan85kt/aoctylalcoholunitisdescribedfromaspectsofcatalystfilling,drying,reductionandunitfeeding.Theunitiscalibratedafter3monthes runningandtheresultsshowthatundertherequiredoperatingconditions,themassfractionofoctylalcoholinthecrudeproductis98.13%,thetotalmassfractionofoctenalandiso-octanalis0.19%,andthesulfuricacidcolornumberis50#.Theoperationoftheunitisstable,andtheproductindexanddistributioncanreachthestipulationrequire-ment.TheoperationdataindicatethattheVAHtypegas-phasealdehydehydrogenationcatalysthasadvantagesofbetterhydrogenation

activityandselectivity,andthewholeperformancescanreachtheadvancedlevelofforeigncatalystofthesamekind. Keywords:aldehydehydrogenation;gas-phasemethod;cayalyst;octylalcohol;industrialapplication收稿日期:2018-04-16三作者简介:王伟(1967 ),男,高级工程师,主要从事丁辛醇生产技术开发及管理三E-mail:wangweixf.qlsh@sinopec.com三 辛醇作为一种重要的化工原料及产品,主要用于制备邻苯二甲酸二辛酯(DOP)二己二酸二辛酯

(DOA)等[1],广泛用于塑料和橡胶制品中三工业辛醇的主要生产方法有丙烯羰基合成法和乙醛醇醛

缩合法,以羰基合成法为主三羰基合成法以丙烯与

合成气为原料,经羰基合成反应生成丁醛,丁醛缩

合脱水得2-乙基己烯醛(辛烯醛),再经加氢制得辛

醇三国内辛醇的生产厂家共有10余家,并已全部实

现了羰基合成法生产[2]三

醛加氢过程是丁辛醇生产过程的重要组成部

分,对丁辛醇的产品质量和生产过程的经济性都有很大的影响三醛加氢工艺因丁辛醇装置所采用的催化剂和进料状态不同而被分为液相法和气相法三液相法采用镍系催化剂和多段绝热固定床反应器,液相热容量较大,可以带走大量的反应热;同时在段间设置换热器移走反应热,防止醛发生缩合反应;液相法加氢工艺的反应压力为4.0 5.0MPa三气相法采用铜基催化剂与固定床列管式反应器,气相热容量小,反应热主要靠反应器壳层的冷凝液带走;气相法加氢工艺的压力为0.4 0.7MPa三气相江苏省地质测绘院 \DZ09\D\王琴\能源化工\第4期 4校样 排版:王琴 时间 2018/10/23

万方数据

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

丁辛醇装置铑催化剂的失活与活化

丁辛醇装置铑催化剂的失活与活化 发表时间:2019-05-24T11:07:53.627Z 来源:《防护工程》2019年第3期作者:张金骥[导读] 国内大部分丁辛醇装置采用DA VY/DOW低压法催化剂羰基合成工艺。 大庆石化公司化工二厂丁辛醇造气车间黑龙江省大庆市 163714摘要:国内大部分丁辛醇装置采用DA VY/DOW低压法催化剂羰基合成工艺。该工艺以丙烯、合成气为原料,在铑催化剂作用下反应生成混合丁醛,其中正丁醛经缩合反应后生成辛烯醛(EPA),EPA再通过加氢生成辛醇;混合丁醛加氢生产丁醇。羰基合成单元是丁辛醇生产装置的核心,反应过程中采用均相络合物铑膦催化体系,以铑原子为活性中心,以三苯基膦为配位体,在一定条件下添加过量的三苯基膦时 可使产物的正异构比提高到20∶1以上。但贵重金属铑资源稀少、制作工艺复杂,价格十分昂贵。在正常生产中,少部分催化剂随产品带走,其活性亦随生产周期的延长及毒物的积累逐渐降低,直至完全失活而无法使用,使用寿命设计约为1.5a。 关键词:丁辛醇装置;铑催化剂;失活;活化;分析 引言::2017年之前原料丙烯主要为化工一厂裂解聚合级丙烯和化学级丙烯,随着烯烃裂解工艺改进,化学级丙烯产量越来越少,而聚合级丙烯还要供应异丁醛装置和新上聚丙烯装置,烯烃裂解丙烯产量已不能满足丁辛醇装置生产负荷的要求。因此,2017年初针对将炼油厂气体分离装置所产丙烯用做丁辛醇装置原料进行了可研分析,并在2017年上半年完成了相应的设计与改造。炼油厂丙烯应用于丁辛醇生产在之前尚无先例,无经验可借鉴。目前国内大部分丁辛醇生产装置都是采用英国戴维工艺技术有限公司的低压羰基合成工艺,其中的羰基合成反应是整个工艺的核心。羰基合成反应的铑催化剂是以铑(Rh)原子为中心,三苯基膦和一氧化碳作为配位体的络合物,为淡黄色结晶体,它的主要特点为:异构化能力弱、加氢活性低、选择性高、反应速度快,几乎为钴催化剂的102-103倍。其铑催化剂的活性对整个反应至关重要,影响着整个装置的经济效益。 1.试验部分 1.1铑膦催化剂失活原理 铑膦催化剂是以铑(Rh)原子为中心、三苯基膦(TPP)和一氧化碳作为配位体的络合物,淡黄色结晶体。其主要特点:异构化能力弱、加氢活性低、选择性高、反应速度快,几乎为钴催化剂的100-1000倍。铑膦催化剂母体为乙酰丙酮三苯基膦羰基铑[Rh(CO)(C5H7O2) (TPP)],简称ROPAC,在反应过程中起活性作用的是一组催化剂的复合物,下面3种复合物都以不同的量同时平衡存在。HRh(CO)(TPP)幑幐帯3HRh(CO)2(TPP)幑帯幐2HRh(CO)3(TPP)催化剂复合物中如果主要是HRh(CO)2(TPP)2,那么反应主要生成正构醛,如果催化剂复合物主要是HRh(CO)3(TPP),则反应主要生成异构醛。正常操作中一般保持TPP大量过量,使复合物中HRh(CO)2(TPP)2为主要成分,以保持高的正异比。 1.2化学试验方法 按一定配比将失活铑膦催化剂反应液、羧酸、化学再生试剂加入到反应器中,用氮气置换3次,然后加热升温,在一定温度下反应一定时间。反应结束后,在一定温度下加入适量的碱性溶液,充分搅拌后静置分层,下层为分水层,上层为有机层。再向有机层中加入一定量的蒸馏水,搅拌洗涤,静止分层。上层液即为再生铑膦催化剂反应液。取少量再生样品,按一定配比加入TPP和无铁丁醛溶剂,使反应液中铑含量在300mg/L左右,加入到微型反应器进行羰基化反应,与新鲜催化剂对比,对反应液样品进行活性评价。在微型反应器中,样品活性以样品在同样压力变化条件下进行羰基化反应所用时间来表征,时间越短,则样品活性越高。 1.3分析方法 一是元素分析。反应液中铑、铁等金属元素的分析,采用原子吸收法,参照GB/T 15337—2008,废液(包括废碱液和废水)中的铑含量,采用ICP法分析。其他元素分析采用荧光光谱仪分析。硫、氯定量分析,采用库仑法分析,参照GB/T 6324.4—2008执行。二是有机物分析。采用气相色谱—质谱联用和色谱—红外联用定性,HP6890气相色谱定量分析。 2.铑催化剂失活的原因 导致铑催化剂失活的主要原因是催化剂的中毒和铑催化剂的形式改变。 2.1铑催化剂的毒剂和抑制剂 影响催化剂的物质可以分为抑制剂和毒剂,但二者无严格的界限,一般认为当杂质去掉后催化剂的活性可以恢复的为抑制剂,而不能使催化剂活性恢复的则称为毒剂。 2.1.1催化剂的抑制剂 催化剂的抑制剂与丙烯相互竞争,争取占有催化剂的活性中心达到一动态平衡,而使催化剂活性减退:由于抑制剂的存在,使铑的醛化反应活性降低;当抑制剂从反应液中除去后,铑催化剂的活性可以恢复。 2.1.2催化剂的毒剂 催化剂的毒剂与铑催化剂的活性中心紧密结合,严重影响了醛化反应速度。 2.2铑催化剂的形式改变 随着时间的推移,铑络合物之间相互作用形成了没有催化活性的多核铑簇类化合物Rh3-4(CO)12-n(TPP)n(n=1-4)。若铑原子之间“搭桥”形成螯合物,铑配合物催化剂的颜色将由最初的淡黄色变为深棕色。 3.铑催化剂活化过程 3.1铑催化剂活化步骤 低压羰基合成催化剂的活化即是将聚合态的催化剂分裂成铑催化剂单体形式,从而使催化剂的活性得到再生。活化过程中主要使用的试剂有三乙醇胺、炔丙醇和冰醋酸。加入三乙醇胺、炔丙醇和冰醋酸的目的是破坏催化剂聚合态。将这些药剂加入催化剂溶液中混合搅拌,然后用脱盐水清洗催化剂溶液,清洗后的废水排掉后进行统一处理。被抑制活性的催化剂活化需要一定的时间,这个时间一般为2-7天,即可以让催化剂的活性得到充分再生。在这期间,催化剂溶液会含有比平时多的水分,因此需要花时间将其送丁醇单元的丁醛异构物塔和汽提塔去除多余的水分。

丙烯羰基合成生产丁辛醇

丙烯羰基合成生产丁辛醇工艺过程为:①丙烯氢甲酰化反应,粗醛精制得到正丁醛和异丁醛; ②正丁醛和异丁醛加氢得到产品正丁醇和异丁醇; ③正丁醛经缩合、加氢得到产品辛醇。 根据所反应的压力和催化剂的不同,丙烯羰基合成丁辛醇工艺可分高压钴法、改性钴法、高压铑法、改性铑法等工艺,其中改性铑法具有温度低、压力低、速率高、正异构比高、副反应少、铑催化剂用量少、寿命长、催化剂可回收再用以及设备少、投资省、丁醇和辛醇可切换生产等优点。 改性铑法是当代丁辛醇合成技术的主流。改性铑法又分为气相循环和液相循环两种方法。液相循环低压改性铑法是当今世界最先进、最广泛使用的丁辛醇合成技术。 丁辛醇装置主要原料和公用工程消耗 名单先进工 备 称位 艺消耗注 原料消耗 丙烯(聚合级)吨/吨0.649 对丁辛醇总量 合成气吨/吨0.465 对丁辛醇总量 氢气吨/吨0.039 对丁辛醇总量 产品量 辛醇万吨/年11.00 正丁醇万吨/年10.00 异丁醇万吨/年 2.50 公用工程 循环冷却水立方米/ 吨78.30 对丁辛醇总量 供电量千瓦小时/ 吨115.74 对丁辛醇总量 低压蒸汽(0.4MPa)吨/ 吨 1.055 对丁辛醇总量 中压蒸汽(1.6MPa)吨/ 吨0.221 对丁辛醇总量 高压蒸汽(4.2MPa)吨/ 吨0.3745 对丁辛醇总量 利华益集团山东东营DAVY 250KAT ( 140KAT 辛醇85KAT 正丁醇 24.4KAT 异丁醇) 2010 北京化工四厂北京房山三菱50KAT 90 年代 中石化吉林石化吉林DAVY 128KAT 正丁醇2004 中石化齐鲁石化山东DAVY 200KAT ( 171KAT 辛醇28.5KAT 异丁 醇)2004 大庆石化80KAT (55KAT 辛醇25KAT 丁醇) 扬子-巴斯夫公司南京BASF 210KTA (110KAT 辛醇100KAT 丁 醇)2005.6 天津渤海化工公司天津碱厂天津DAVY 250KTA 2009.6 香港润达集团珠海230KTA 2008 国内主要生产企业及产能情况截止到2008 年10 月国内正丁醇总产能约44.7 万吨,主要生产企业仅 6 家,工艺路线多 为丙烯羰基法,技术主要采用英国戴维公司的气相低压铑法,其产能及工艺情况见下表:

丁辛醇生产工艺

丁辛醇生产工艺 丁辛醇的生产工艺有两种路线~一种是以乙醛为原料~巴豆醛缩合加氢法,另一种是以丙烯、合成气为原料的低压羰基合成法~该法是当今国际上最为先进的技术之一~目前世界丁辛醇70%是由丙烯羰基化法生产的。它以丙烯、合成气为原料~经低压羰基合成生产粗丁醛~再经丁醛处理、缩合、加氢反应制得丁辛醇。 低压羰基合成法生产丁辛醇典型的流程包括:原料净化、羰基合成、丁醛精制、缩合、加氢、粗醇精馏等工序。丁醛精制是指粗丁醛除去轻组分后在异构塔内精馏分离得正丁醛和异丁醛。缩合是指正丁醛脱去重组分后进入缩合系统~在NaOH存在、120?和0.4MPa条件下~进行醛醛缩合生成辛烯醛(EPA)。加氢一般是指正、异丁醛或混合丁醛或辛烯醛加氢生产相应的醇。但是不论采用那一种方法~都必须经过丁烯醛/丁醛、辛烯醛加氢来制取丁醇和辛醇。醛加氢是丁辛醇生产过程的重要组成部分~对丁辛醇的产品质量和生产过程的经济性都有很大的影响。 1 丁辛醇加氢工艺路线 丁醛加氢制备丁醇和辛烯醛加氢制备辛醇的工业化工艺路线主要有气相法和液相法两种。 液相加氢反应采用多段绝热固定床反应器~由于液相热容量较大~反应器内不用设置换热器。根据反应条件~段间设置换热器移走反应热~防止醛的缩合反应。BASF公司曾经采用过高压液相加氢~加氢的压力为25.33MPa。高压加氢的唯一优点是氢气耗量较少~所用的液相加氢催化剂为70%Ni、25%Cu、5%Mn~该催化剂要求氢气分压不低于3.5MPa~所以总高压时~尾气的氢气浓度可降低~氢耗少。但采用该高压工艺~原料氢气必须高压压缩~电耗大、设备费用大~目前已经被淘

汰。BASF公司和三菱化成工艺中醛的加氢采用中压液相加氢工艺~加氢压力为 4.0- 5.0MPa~加氢反应器形式采用填充床~反应温度为60-190?。 气相加氢法由于操作压力相对较低~工艺设备简单而被广泛应用。目前~工业上丁辛醇装置上大多采用铜系催化剂气相加氢工艺。如U.D.J联合工艺中采用低压气相加氢~压力为0.59-0.69MPa。气相加氢反应采用等温列管式反应器~反应过程中产生的热量一部分由过量的氢气带走~另一部分由壳程的冷却水产生低压蒸气。反应过程一般采用2台固定床反应器串联加氢。典型的反应条件如下表1所示。和其他过程的固定床反应器一样~加氢催化剂在使用一段时间后~通常9-12个月~由于催化剂表面积炭和其他残渣的沉积~催化剂的有效比表面积降低~活性下降~需要进行催化剂的再生和活化处理。再生时一般采用高温空气和蒸气使催化剂表面的杂物氧化烧掉~再用氢气还原。再生的时间为16-24h~温度为200-350?~压力为0.39MPa。 表1 正/异丁醛气相加氢典型的反应条件 项目丁醛的一级/二级加氢 温度/? 125-195 压力/MPa 0.4-0.6 反应条件 空速/h-1 2200 H2:BD/(摩尔比) 26:1/20:1 转化率(%) 醛 100 正丁醇 98 丁酸丁酯 1.5 选择性(%)

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

异丁醛施工方案(储罐施工方案)

1、工程概况: 1.1.工程名称及相关单位 工程名称:丁辛醇中间罐区增建异丁醛储罐工程 方案名称:1000m3异丁醛储罐制作安装施工方案 建设单位:北京东方石油化工有限公司化工四厂 设计单位:北京燕山玉龙石化工程有限公司 施工单位:中国化学工程第三建设公司 1.2.工程内容 北京东方石油化工有限公司化工四厂在丁辛醇中间罐区增建一台异丁醛储罐,一台容积为1000 m3的甲醇储罐需现场进行制作安装,此罐相关技术参数详见下表:工作压力(Pa) 常压材质06Cr19Ni10 设计压力(Pa) 2200/-490 空罐质量39920Kg 工作温度常温试验正/负压力24500/-1750 设计温度70 充水试验高度9700mm 介质异丁醛罐底检测真空度≥53 Kpa 内径11500mm 罐体高度11244mm 2、编制依据: 2.1. 《立式圆筒形钢制焊接储罐施工及验收规范》 GB50128-2005 2.2 《立式圆筒形钢制焊接油罐设计规范》 GB50341-2003 2.3. 《钢制焊接常压容器》 JB/T4735-1997 2.4. 《钢结构工程施工质量验收规范》 GB50205-2001 2.5. 北京燕山玉龙石化工程有限公司提供装配图及其它配套图纸 3、施工程序: 3.1.

3.2.关键工序 关键工序一览表 序号关键工序名称 工序特点、难点、主要实物量及主要技术 参数(材质、规格等) 备注 1 基础验收按照规范、设计要求验收基础 2 底板的组装及焊接 排版的规范、设计要求,注意搭接的顺序与方法 3 顶板的组装及焊接排版的规范、设计要求, 4 壁板的组装及焊接 排版的规范、设计要求与开孔的方位,弧形与垂直度的检查 5 检验 底板的真空度与无损检测、壁板的无损检测等,按照规范、设计要求 6 沉降试验/充水/充压 试验 试验方法按照规范、设计要求 4、施工方法及施工技术措施 甲醇储罐总体施工工艺为倒装法,根据贮罐外形尺寸,利用20t汽车吊配合围带板、铺底板、地面预制顶盖。焊接方法采用手工电弧焊,制造和安装执行GB50128-2005《立式圆筒型钢制焊接油罐施工及验收规范》的相关规定。 4.1. 材料验收 对于工程材料及附件在投用前均应进行验收,包括质量证明书,合格证的验收以及数量规格、型号等检验。钢板和附件应有清晰的产品标识,当发现问题时,报告供货方进行检验,确认合格后方可使用。钢板表面局部减薄量、划痕深度与钢板实际负偏差之和,不应大于相应钢板标准允许负偏差值 4.2.基础检查验收 4.2.1.储罐安装前,必须按土建基础设计文件及对基础表面尺寸进行检查。基础中心标高允许 偏差为±20mm,每10m弧长内任意两点的高差不得大于6mm,任意两点高差不得大于12mm。 4.2.2.基础沥青表面应平整密实,无突出隆起,凹陷及贯穿裂纹等缺陷。 4.2.3.基础表面测点不得小于10点,凹凸面允许偏差≤20mm 4.3.样板制作 罐在预制组装及检验过程中所使用的样板要求如下: 4.3.1. 弧形样板弦长不得小于1.5m,分别制作2组。

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

丁辛醇装置选择题

1. 丙烯净化系统气体浸泡时应控制压力在(B)。 A. 0.5MPa(g) B. 1.0MPa(g) C. 1.5MPa(g) D. 2.2MPa(g) 2. 异构物塔引丁醛前应氮气置换合格,氧含量小于(A)。 A. 0.2%(v) B. 5%(v) C. 2%(v) D. 1%(v) 3. 缩合系统进料时,原料中正丁醛的纯度应(C)%(mol)。 A. ≥99 B. ≥99.4 C. ≥99.5 D. ≥99.7 4. 原始开车时,羰基合成反应器催化剂溶液升温到(C)℃。 A. 80 B. 90 C. 85 D. 100 5. 原始开车过程中,OXO反应器升温至反应温度后投丙烯的目的是(D)。 A. 加快开车速度 B. 提高丙烯利用率 C. 饱和铑催化剂 D. 保护铑催化剂 6. 在丁辛醇装置中,丙烯引入前,应将系统充氮气升压到0.5MPa(g),这是因为(A)。 A. 丙烯减压汽化吸收大量热量 B. 丙烯爆炸范围大 C. 丙烯的饱和蒸汽压为0.5MPa(g) D. 丙烯的闪点低 7. 当羰基合成反应器气相丙烯分压达0.23MPa(g)时,或(B)可判断催化剂已经被丙烯饱和。 A. 反应器压力突然下降 B. 反应器压力突然上升 C. 反应器温度突然下降

D. 反应器温度突然上升 8.在OXO反应时,一氧化碳分压增加,正异比(B)。 A. 上升 B. 下降 C. 不变 D. 变化不明显 9.在羰基合成反应中,对正异比影响程度最大的工艺参数是(C)。 A. 反应温度 B. TPP浓度 C. CO分压 D. H2分压 10. 在OXO反应中,氢气分压过高会造成(B)。 A. 铑催化剂不稳定 B. 驰放气排放量大 C. 反应速度减慢 D. 正异比降低 11. 辛醇装置由10:1(正异比)转为7:1(正异比)生产时,主要调整(B)。 A. 氢气含量 B. 一氧化碳含量 C. 丙烯含量 D. 铑催化剂 12. 丙烯净化系统停车时间少于2小时,系统应(B)。 A. 卸压 B. 保压低流量运行 C. 充N2置换 D. 充N2保压 13. 在正常生产中,OXO反应器搅拌器突然停车,OXO反应器压力会(A)。 A. 突增 B. 突减 C. 无变化 D. 大幅波动 14. 合成气净化系统向火炬卸压时的降压速率应小于(A)。 A. 0.6MPa/h B. 0.2MPa/h C. 0.4MPa/h

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

浅析丁辛醇装置的工艺与技术改造 王琪

浅析丁辛醇装置的工艺与技术改造王琪 发表时间:2019-03-25T16:38:23.120Z 来源:《防护工程》2018年第34期作者:王琪 [导读] 众所周知,我国近代工业发展相对缓慢,大多数的生产工艺技术都来源于国外,对于丁辛醇产品的生产制造也是如此。大庆石化公司化工二厂丁辛醇车间大庆 163714 摘要:本文主要分析了我国现阶段丁辛醇的制造工艺以及制造装置,并提出了相关的改进措施,希望在未来的发展过程中,我国丁辛醇的制造工艺能够更进一步,同时也能够为我国的化学行业做出更大的贡献。 关键词:丁辛醇;装置;工艺制造;工艺技术 引言 众所周知,我国近代工业发展相对缓慢,大多数的生产工艺技术都来源于国外,对于丁辛醇产品的生产制造也是如此。丁辛醇装置的工艺技术起源于西方,近年来,我国大力引进外国的先进技术,不断学习先进知识,对于丁辛醇的制造方法以及使用丁辛醇的制造装置都有一定的心得,也能够为我国的化学行业发展做出更大的贡献。 1、丁辛醇工艺制造装置概述 1.1丁辛醇工艺制造装置来源 丁辛醇产品的生产原料是纯度在95%以上的聚合级丙烯和以一氧化碳、氢气为主要成分的合成气体,以铑和三苯基膦作为催化剂,在一定温度和压力下合成粗制丁辛醇产品。早在上世纪20年代初期,我国就已经全面引进了丁辛醇产品的制造方式,而那个时期我国工业发展比较缓慢,大多数都源于西方,西方国家丁辛醇的制造工艺较为先进,能够充分满足化学工业的发展要求。丁辛醇产品的相关制造装置要求是比较严格的,如果温度、压力等工艺参数出现偏差,就易导致丁辛醇产品的纯度降低、硫酸显色度增大,而且容易引发一系列的化学现象,给正常实验带来影响。因此,丁辛醇产品对制造工艺和制造装置的要求比较严格,尤其是近些年来我国化学工业发展比较迅速,丁辛醇产品应用十分广泛,因此如何提高丁辛醇装置的工艺技术显得尤为重要,在引进西方技术的同时,也要加大工艺技术创新力度,才能够提高我国的丁辛醇装置生产技术水平,从而更好地促进我国化学工业的长远发展。 1.2丁辛醇制造装置发展分析 在上世纪初期,我国丁辛醇产品的制造工艺完全采用外国技术,不能实现自主制造,还需要雇用外国技术人才帮助进行丁辛醇产品的生产,而丁辛醇制造装置的工艺技术也是通过购买国外装置工艺包实现,无法独立自主实现丁辛醇工业生产,导致我国化学工业的发展比较缓慢,也极大程度上影响了我国的经济发展。由于丁辛醇的制造装置在外国发展的比较快,也有较为成熟的技术,所以说我国目前丁辛醇制造大多都是国外比较先进的高压羟基合成技术。早在上世纪末就基本已经可以建成并且投入使用。制造丁辛醇的主要原料以丙烯及一氧化碳,催化剂等等为主,压力主要在1.85兆帕左右,而且正丁醛和异丁醛的比例约3:1,经过一系列的分离处理,再经过缩合反应,基本可以生成辛烯醛,并在催化剂的催化作用下可以和氢气生成辛醇。在近些年来,我国在引进国外的先进技术的同时,也在不断提高国内各丁辛醇装置的制造水平,已经能够独立地生产丁辛醇产品,而且能够不断优化丁辛醇制造装置及工艺技术。虽然技术先进程度仍然不高,在国际上占有一定的地位,但还需大力创新才能全面提高我国丁辛醇的产量,也能够促进经济发展和化学行业的迅速发展。在未来的发展过程中,丁辛醇的制造一定要摆脱国外技术限制,独立自主加大创新,才能够实现我国化学工业的繁荣发展。 1.3丁辛醇制造工艺简介 丁辛醇的制造工艺主要有以下几点需要注意,首先是起车时的升温时间,然后是蒸汽冷凝液的回收与利用,另外还包括丁辛醇制造过程中所产生尾气的一系列处理。这几点工艺要求不仅仅是丁辛醇制造过程中的重要影响因素,同时也是我国丁辛醇制造业发展的难关。近些年,我国的丁辛醇制造工艺突飞猛进,虽然发展时间较短,但是发展十分迅速,已经基本实现丁辛醇产品的自主生产,也能够对工业相关装置进行良性改造,确保能够获得更多的经济效益。但是因为丁辛醇在制造的过程中对精度要求比较高,而且排放的气体、液体对环境易产生污染,因此在整个丁辛醇制造的过程中仍然存在着一定的缺陷,由于羰基合成技术存在的副产物较多,排放量较大,也就造成了一定的能源损失,不仅降低了生产效率,同时也影响了环境。这也是我国丁辛醇产品在制造过程中的一大问题,目前国内丁辛醇装置也均处于瓶颈期,要大力创新才能够实现我国化学制造行业的迅速发展,而丁辛醇制造装置改造也是改善此类问题的重要措施之一。丁辛醇装置的工艺改造仍然有着很大的发展空间,在以后的发展过程中不断的实验、不断的开拓制造技术,对于我国化学行业的发展有着十分重要的意义。 2、丁辛醇装置的工艺与技术改造 2.1升温处理 化学反应需要在一定的温度条件下,同样,在丁辛醇产品的生产过程中,温度也是以重要的工艺考量指标。尤其是装置开工期间反应器升温时间过长,会对整个工艺产生一定的影响,加以改造才能够实现丁辛醇的高效生产,也能够避免其排放物对环境造成影响。首先在化学反应进行之前就应该使得其达到相应温度,符合丁辛醇制造的基本要求,在加入各原料之前,充分考虑原料的反应环境及最大反应效率,如何才能够实现丁辛醇高效率合成,需要通过科学的分析,并对丁辛醇制造装置进行改造,才能更好地适应反应温度,实现丁辛醇的高效生产。因此,如何降低开车时升温时间,首先应该从装置上进行改造,通过内循环的方式避免温度流失,从而降低开车升温时间,从而提高装置的经济效益。 2.2扩大生产 我们制造丁辛醇的目的就是使用丁辛醇来进行其他行业的生产,所以说丁辛醇的生产量也影响着我国众多工业的发展。为了提高丁辛醇的产量,我们可以从丁辛醇装置的工艺技术改造方面下手。不仅能够节约能源,同时对于提升丁辛醇的生产效率与生产量都有重要的意义。扩大生产我们首先要做的就是节约能源,如何提高反应物的转化率,值得人们深入探讨,对于丁辛醇的装置而言,在工艺和技术改造的过程中,对于扩大丁辛醇的生产有着十分重要的意义。充分利用氢气和一氧化碳等材料,这对于我国丁辛醇制造业的发展有着十分重要的意义。同时对丁辛醇的制造工艺加以改进,考量相关反应温度和催化剂等等,并改变丁辛醇装置的形状,对于扩大丁辛醇的生产都有着十分重要的意义,提升丁辛醇的制造效率以及生产量,才能够保证我国丁辛醇制造行业的快速发展。

丁辛醇生产技术及市场

丁辛醇生产技术及市场 丁醇和辛醇(2-乙基己醇)都是有机化工原料,用途广泛。丁醇主要用于生产邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁苄酯(BBP)、脂肪族二元酸酯类等增塑剂和醋酸丁酯、丙烯酸丁酯、甲基丙烯酸丁酯等,还是生产丁醛、丁酸以及醚类、胺类等的原料。辛醇主要用于生产邻苯二甲酸二辛酯(DOP)、对苯二甲酸二辛酯(DOTP)、己二酸二辛酯(DOA)等增塑剂和丙烯酸辛酯、表面活性剂等,可用作照相造纸涂料和纺织等行业的溶剂,柴油和润滑油的添加剂,陶瓷行业釉浆分散剂、矿石浮选剂、消泡剂、清净剂等。据统计,2004年全球丁醇产能323.7万t/a,辛醇产能318.7万t/a。全球丁辛醇主要生产装置采用丙烯羰基合成法,可根据市场需要调整丁醇辛醇的产量。 生产技术现状和进展 随着石化工业和羰基合成技术的发展,早期淀粉质农副产品发酵路线和乙醛缩合路线相继淘汰,羰基合成法(即丙烯氢甲酰化法)生产丁辛醇迅速发展起来,其生产过程为丙烯和合成气(一氧化碳和氢气)羰基合成粗醛,精制得到正丁醛和异丁醛;分别加氢得到产品正丁醇和异丁醇;两分子正丁醛缩合脱水生成辛烯醛,加氢得到产品辛醇。根据羰基化反应压力和催化剂的不同,羰基合成法可分为高压钴法、中压法(改进钴法、改良铑法)、低压法(低压铑法、改进铑法)等工艺。其中低压铑法具有温度低、压力低、速度高、正异构比高、副反应少、铑催化剂用量少、寿命长、催化剂可回收再用以及设备少、投资省、丁醇和辛醇可切换生产等优点,现已取代高压法成为丁辛醇

合成技术的主流。低压丙烯羰基合成法的主要专利商有戴维(Davy)、三菱化成(MCC)、巴斯夫(BASF)及伊士曼(Eastman)等。 低压改进铑法分为气相循环和液相循环两种方法。液相循环低压改性铑法是当今世界最先进、最广泛使用的丁辛醇合成技术。对液相循环改性铑法技术加以改进,发展形成各有特色的具有竞争力的专有技术,目前有Davy工艺、三菱化成工艺和BASF工艺。这些工艺的催化剂活性都高,催化剂循环方式均为蒸发分离、液相循环,反应器也不需要特殊材质。自1976年在波多黎各新建装置成功投产以来,Davy 工艺迅速发展,先后许可给9个国家建设了25套装置,占羰基合成丁辛醇总产能的63%,在全球羰基合成行业中占据领先地位。 Davy在上世纪末开发了一种高活性双亚磷酸盐为配体的改性铑催化剂,丙烯单程转化率达98.7%以上,可以"单程"运行(少量未反应物料不必循环),正异比高达30:1,在美国Taft新建了装置。该装置不仅投资少,而且适用于较高的烯烃,若以正丁烯为原料可生产戊醛及2-丙基庚醇。其开发的"LPOXO-MK-IV"工艺第四代催化剂尚未广泛工业使用,主要原因是亚磷酸配位体不太稳定,其降解生成的烷基羟基磷酸会凝胶化,堵塞液体循环设备,有待进一步完善。 Celanese公司开发了一种膦系水溶性钴族双配位体催化剂,可使烯烃在聚乙二醇作极性两相溶剂体系中有效地进行羰基化反应。高碳烯烃对聚乙二醇的亲和力比水好,可提高反应速率。BASF开发了以丁二烯为原料制辛醇的工艺,可利用低成本的丁二烯。 2005年Sangi公司研究开发了一种高活性羟磷灰石催化剂,据称

临氢装置催化剂器外再生技术规范

临氢装置催化剂器外再生技术规范 目录 1. 总则 2. 器外再生基本原则 3. 器外再生的工艺技术要求 4. 器外再生装置的技术标准 5. 器外再生的环保要求 6. 器外再生企业技术质量管理标准 7. 再生后临氢催化剂质量指标及分析方法 8. 临氢催化剂卸剂技术要求 9. 再生后催化剂的运输、包装 10. 附则

第一章总则 第一条为了规范炼油企业临氢装置催化剂器外再生的技术管理、保证再生质量,充分发挥催化剂在优化装置运行、实现清洁生产等方面的作用,特制定本标准。 第二条本标准适用于公司炼油企业临氢装置固定床催化剂的器外烧焦再生过程技术管理,并作为再生后催化剂的检验、包装、运输和验收的标准。 第三条临氢装置是指加氢裂化、加氢精制、加氢改质、加氢处理、临氢降凝、催化重整、歧化、异构化等装置。 第二章器外再生基本原则 第四条催化剂是加氢技术的核心,对失活加氢催化剂的再生并重复使用,符合节约资源,降低生产成本的循环经济理念。 催化剂的再生质量直接影响临氢装置的产品质量,产品收率、产品分布,能耗高低和装置运行周期的长短。 第五条临氢催化剂器外再生技术,是现代加氢工艺的配套技术,与器内再生相比,具有许多优点: ●有利于优化烧焦再生条件,再生剂的质量有保证; ●占用反应系统的时间短,有利于维修、处理高压设备问题, 缩短检修时间,提高装置利用率; ●无需器内再生所需的设备和占用的公用工程系统、节省分 析化验及操作费用,减少投资;

●避免了再生气体对高压设备的腐蚀和对炼厂环境的污染; ●降低了装置的能耗、物耗。 催化剂的器外烧焦再生,应遵循烧焦再生的科学规律和相应的技术质量标准和管理规范。 第六条器外再生定义: 临氢装置的催化剂器外再生是指积碳复盖型暂时失活的催化剂,在异地专用装置上,在受控的高温含氧气流中对沉积在催化剂表面和微孔中的积碳、硫化物进行氧化燃烧,使催化剂的活性基本恢复的过程。 第七条烧焦反应特点: 临氢催化剂的烧焦反应是在有氧存在条件下催化剂上积炭、金属硫化物进行氧化脱炭、脱硫的气固两相反应过程,并伴随有强放热,产生强腐蚀性有毒有害气体。 第八条烧焦过程中首先要保护好催化剂。要确保催化剂载体的骨架结构不受到破坏,防止活性金属组份的聚集和流失。 第九条催化剂再生,只能基本恢复活性,既不能提高也不能产生新的活性,被判断为永久性失活的催化剂,烧焦后不能恢复其活性,不具有使用价值。 ●在工业生产运行中,受到铁、砷、硅、钙、镁、钠或重金属镍、钒等中毒或严重污染的催化剂,不适宜进行烧焦再生使用。 ●在工业生产运行中,催化剂床层发生严重超温,物化性质

相关文档
相关文档 最新文档