文档库 最新最全的文档下载
当前位置:文档库 › 大股东制衡机制与定向增发隧道效应研究

大股东制衡机制与定向增发隧道效应研究

大股东制衡机制与定向增发隧道效应研究
大股东制衡机制与定向增发隧道效应研究

双势垒中的隧道效应及其应用-王鑫

双抛物线势场中的隧道效应 王 鑫 (陕西理工学院 物理系2007级物理学3 班 ,陕西 汉中 723000) 指导老师:王剑华 [摘要]量子力学中的隧道效应是一种重要的物理现象,有着非常广泛的应用. 本文从薜定谔方程出发, 讨论了求解双抛物线势场中的隧道效应,给出了相应的透射系数和反射系数,并对其进行讨论,研究其应用。 [关键词] 薜定谔方程与遂道效应;双抛物线势场中粒子的透射系数;双抛物线势场中粒子的透射系数;隧道效应及其应用 引言 在量子力学发展初期,德布罗意根据光的波粒二象性,提出了物质波假说,即认为微观粒子(电子、质子、中子等)也具有波动性。由于微观粒子具有波动性因而它在能量E 小于势垒高度时仍能贯穿势垒,这种现象称为隧道效应,隧道效应完全是由于微观粒子具有波动的性质而来的。1957年,江崎制成了隧道二极管,第一次令人信服地证实了固体中的电子隧道效应的存在。1960年贾埃弗利用隧道效应测量了超导能隙,验证了超导理论。1982年德国的宾尼等研制成功第一台扫描隧道显微镜,把隧道效应的应用推向一个新的阶段。近几 年来,人们十分关注分子和半导体量子阱中双势的隧道效应问题研究[4-8] ,氨分子作为一个典型的三角锥形模型,早在1927年Hund 就提出量子隧道效应会对三角锥形分子的内部结构 有很大的调整作用[1] 。适当选择外部条件便可在不同程度上控制分子结构的稳定性。近几年 来在介观尺度的隧道效应和光子隧道效应方面的研究日益成为热点[1-9] ,如在超导技术及纳 米技术方面的应用发展较为明显[3]。本文就双抛物线的隧道效应问题求解并进行讨论[2-3] 。 1 薛定谔方程与隧道效应 在量子力学中,微观体系的运动状态是用一个波函数来描写的,反映微观粒子运动规律的微分方程是()t r , ψ对时间的一阶微分方程,即: ψ+ψ?-=?ψ?)(22 2r U t i μ (1.1) 我们称它为薛定谔方程(Schr?dinger equation),式中)r (U 是表征力场的函数。 如果作用在粒子上的力场是不随时间改变的,即力场是以势能)(r U 表征的,它不显含时间,这时

量子点效应 知识点

量子点效应,包括:量子尺寸效应、量子隧穿效应、库伦阻塞效应、表面效应、介电效应。 一、首先说下什么是量子点? 二、下面介绍量子尺寸效应 我们通过控制量子点的形状、结构和尺寸,可以调节带隙宽度,激子束缚能的大小以及激子的能量蓝移等。 那这些是怎么实现的呢? 首先我们要介绍下,原子能级、能带、禁带宽度、激子束缚能的概念 1、原子能级 说到能级就离不开早期人们对光谱的观察,光谱是电磁辐射的波长成分和强度分布的记录,人们以氢原子模式为例,从氢气放射管中获得氢原子光谱,从1885年开始,巴耳末等人将 氢原子光谱的波数归纳为:?=R H() (1) 那么这些原子是怎么发射光谱的呢,这就需要进一步研究电子在原子核的库伦场中的运动情况,原子核的质量比电子大1836倍,它们的相对运动可以近似的看作只是电子绕原子核的运动,那这样我们考虑简单的圆周运动,电子在场中的动能和体系的势能,我们得到了原子 的能量:E=(4) 和电子轨道运动的频率:f==(5) 从上述原子中的电子轨道运动,按经典理论试图说明光谱就会遇到困难。 (1)原子如果连续辐射,它的能量就逐渐降低,由1.2中(4)可知,电子的轨道半径就要连续的缩小到碰到原子核止,即半径是是10-15米的数量级,才能稳定不变,但从不同实验,测得的原子半径都是10-10米的数量级。这与事实不符。 (2)按照电动力学,原子所发光的频率等于原子中电子运动的频率。现在,如上文说到,原子辐射时,其电子轨道连续缩小,由1.2中(5)可知,轨道运动的频率就连续增大,那么所发光的频率应该是连续变化的,原子光谱应该是连续光谱。但事实不是这样,原子光谱的谱线是分隔的,代表一些分隔而有一定数值的频率。 所以所引用的宏观理论不能用在原子这样的微观客体上, 人们在此基础上发现新的规律——量子化,在玻尔研究这问题时,已经有公认正确的量子论。按照这理论,光能量总是一个单元的整数倍,而每一个单元是hv,这里v是光的频率,h是普朗克常数,在此理论的基础上,我们得到了氢原子内部能量的表达式: E=-n=1,2,3,4… 这个式子也表示能量的数值是分隔的。 求得氢原子的能量后,我们可以把能量式代入氢原子光谱的经验式中,对比经验式,我们就得到里德伯常数R,最终化简,我们得到氢原子能量随量子数n变化

1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现

1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现 1973年诺贝尔物理学奖一半授予美国纽约州约克城高地(YorktownHeights)IBM瓦森研究中心的江崎玲於奈(Leo Esaki,1925—),美国纽约州斯琴奈克塔迪(Schenectady)通用电器公司的贾埃沃(IvarGiaever,1929—),以表彰他们分别在有关半导体和超导体中的隧道现象的实验发现;另一半授予英国剑桥大学的约瑟夫森(BrianJosephson,1940—),以表彰他对穿过隧道壁垒的超导电流所作的理论预言,特别是关于普遍称为约瑟夫森效应的那些现象。 江崎玲於奈1925年3月12日出生于日本大阪的一个建筑师家庭里,1938年,江崎进入同志社中学,三年后父亲去世。江崎自幼就表现出对科学的浓厚兴趣,喜欢阅读科学家传记故事,立志要作像爱迪生和马可尼那样的发明家,小时自己动手制作电动火车和汽车模型。1940年,他以优异成绩越级进入京都第三高等学校。1944年初提前毕业。同年10月,江崎进入东京帝国大学攻读实验物理。在大学期间,为维持生计勤工俭学,做晚间家庭教师。他认真学习了数学和物理课程,并自学物理学专著。 1947年,江崎获硕士学位,有机会进入神户工业股份有限公司研究真空管热电子发射现象。他由此接触到固体表面物理化学性质和真空管材料技术。由于这项研究与强外电场作用下的冷金属表面电子发射现象有关,他对固体中的隧道效应发生了兴趣。1950年,他转入对半导体材料和晶体管的研究。这时,晶体管刚刚发明。1956年江崎辞去神户公司的工作转入索尼公司。在索尼公司领导了一个小组对半导体二极管内电场发射机理进行研究。这项研究主要考查窄宽度p-n结的导电机制。p-n结中内电场分布取决于杂质的分布。当时许多研究者都把提取含杂质少的高纯半导体材料当作目标,而江崎选择了相反的路线,他尝试制备高掺杂的锗p-n结器件。 1957年初江崎首先获得了掺有高浓度杂质的锗精制单晶体做成了薄p-n结。他发现这种薄p-n结的正向电阻特性没有变化,但反向电阻却呈直线下降趋势。随后,江崎增大了掺杂浓度,使结宽进一步变窄。当浓度达到1018cm-3以上时,p-n结的施主和受主浓度都高到使结两侧呈简并态,费米能量完全占据了整个导带或价带内部。江崎发现,在这种隧穿路程极短的情况下,所有温度条件下都可以观察到负阻现象。 负阻现象所对应的电压远低于人们熟知的击穿电压。江崎用量子力学理论令人信服地证明了这正是人们长期以来所寻找的隧道效应,这项研究确立了隧道效应在半导体材料中的存在。接着,江崎利用这种半导体p-n结中的隧道效应研制出一种新型半导体器件——隧道二极管。这种二极管具有独特而优异的反向负阻特性,可在开关电路、振荡电路、微波电路以及各种高速电路中获得广泛应用,成为现代电子技术中最重要的器件之一。正是这项贡献使江崎于1973年获得诺贝尔物理学奖。 1958年,江崎进一步研究了硅、锑化铟、砷化镓、砷化铟、碲化铅、碳化硅等金属氧化物半导体材料的p-n结,证实它们也有类似的负阻特性。用这些材料制成了多种隧道二极管。70年代,江崎在研究砷化镓等材料的周期性超晶格结构时,指出这些材料的负阻效应的工作频率上限远高于当时已知的任何半导体器件,为后来微波、毫米波、亚毫米波电子学发展提供了制作器件的切实依据。 江崎研究硅隧道二极管时,精确分析了隧穿电流,揭示了材料的电子状态,说明了隧穿电子与势垒中的声子、光子、等离子体量子甚至分子类振动模式之间的相互作用。这些对隧穿物理机制的研究,开创了一门新兴学科——隧穿波谱学。 1959年,日本东京大学授予江崎理学博士学位。1960年,江崎迁居美国,任国际商用机器公司(IBM)中央研究所研究员。

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

comsol案例——肖特基接触

肖特基接触 本篇模拟了由沉积在硅晶片上得钨触点制成得理想肖特基势垒二极管得行为。将从正向偏压下得模型获得得所得J-V(电流密度与施加电压)曲线与文献中发现得实验测量进行比较 介绍 当金属与半导体接触时,在接触处形成势垒。这主要就是金属与半导体之间功函数差异得结果。 在该模型中,理想得肖特基接触用于对简单得肖特基势垒二极管得行为进行建模。使用“理想”这个词意味着在这里,表面状态,图像力降低,隧道与扩散效在界面处计算半导体与金属之间传输得电流应被忽略。 注意,理想得肖特基接触得特征在于热离子电流,其主要取决于施加得金属 - 半导体接触得偏压与势垒高度。这些接触通常发生在室温下掺杂浓度小于1×1016 cm-3得非简并半导体中。 模型定义 该模型模拟钨 - 半导体肖特基势垒二极管得行为。图1显示了建模设备得几何形状。它由n个掺杂得硅晶片(Nd = 1E16cm-3)组成,其上沉积有钨触点。该模型计算在正向偏压(0至0、25V)下获得得电流密度,并将所得到得J-V曲线与参考文献中给出得实验测量进行比较。该模型使用默认得硅材料属性以及一个理想得势垒高度由下列因素定义: ΦB=Φm-χ0 (1) 其中ΦB就是势垒高度,Φm就是金属功函数,χ0就是半导体得电子亲与力。选择钨触点得功函数为 Φm = 4,72V (2) 其中势垒高度为ΦB= 0、67V。 结果与讨论 图2显示了使用我们得模型(实线)在正向偏压下获得得电流密度,并将其与参考文献中给出得实验测量进行比较ref、 1(圆)。

建模说明 从文件菜单中,选择新建NEW。 N E W 1在“新建”窗口中,单击“模型向导”。 MODEL WIZARD 1 在模型向导窗口,选择2D轴对称 22在选择物理树中,选择半导体>半导体(semi)。 3单击添加。 4点击研究。 5在“选择”树中,选择“预设研究”>“稳态”。 6单击完成。 D E F I N I T I O N S 参数 1在“模型”工具栏上,单击“参数”。 2在“参数”得“设置”窗口中,找到“参数”部分。3在表格中,输入以下设置: 选择um做长度单位

欧姆接触与肖特基接触

欧姆接触 欧姆接触是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。欧姆接触在金属处理中应用广泛,实现的主要措施是在半导体表面层进行高掺杂或者引入大量复合中心。 欧姆接触指的是它不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变。 条件 欲形成好的欧姆接触,有二个先决条件: (1)金属与半导体间有低的势垒高度(Barrier Height) (2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3) 区别 前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。 若半导体不是硅晶,而是其它能量间隙(Energy Gap)较大的半导体(如GaAs),则较难形成欧姆接触 (无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Metal-p+-p等结构。 理论 任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。费米能级和真空能级的差值称作工函数。接触金属和半导体具有不同的工函,分别记为φM和φS。当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。 欧姆接触或肖特基势垒形成于金属与n型半导体相接触。 欧姆接触或肖特基势垒形成于金属与p型半导体相接触。在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能

扫描隧道显微镜(STM)的原理和应用

扫描隧道显微镜(STM)的原理和应用 【摘要】: 本实验主要学习扫描隧道显微镜的工作原理,了解STM的基本仪器结构,掌握 用电化学腐蚀方法制作STM探针,熟悉STM的数据采集并获取石墨的原子分 辨像,分析所得扫描图像计算x、y方向压电陶瓷的电压灵敏度分别为14.53、 15.6。 关键词: 扫描隧道显微镜隧道效应石墨晶体 一、实验引言: 随着材料科学的不断进步,人们能够复制改良设计合成很多种材料。为了能够探测到一些材料的表面形态,在20世纪80年代基于量子隧道效应,IBM公司的Binning博士、Rohrer博士及其同事研制成功了扫描隧道显微镜(scanning tunneling microscopy,简称STM)。两位发明者因此于1986年获得诺贝尔物理学奖。STM技术的诞生使在纳米尺度范围探测材料的表面特性成为可能,这是因为STM 能够一个原子一个原子地将表面的几何结构和电子结构联系起来,实时地观察单个原子在物质表面的排列状态及与表面电子行为有关的物理、化学性质。 STM技术的最大优势在于可获得原子级的分辨率,通常它的分辨率在平行于表面的方向可达0.1纳米,在垂直于表面的方向可达0.01纳米,此外,STM还可实时地获得材料表面实空间的三维图像;可以观察单个原子层的局部表面结构,而不是整个表面的平均性质;配合扫描隧道谱STS可以得到有关表面电子结构的信息,例如表面不同层次的态密度、表面电子势阱等。在STM之后衍生出了原子力显微镜、磁力显微镜、近场光学显微镜等一系列新型非接触表面探针技术显微镜,使探针显微镜技术日趋完善,并在纳米科技领域中得到越来越广泛的应用。 二、实验原理: 1、量子隧道效应

量子尺寸效应

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道 和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、 催化和超导性等特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下 降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性。 1.1.2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒 的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小 尺寸效应。例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态 转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1.1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应。由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当 粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的 比表面积、表面能和表面结合能都发生很大变化。人们把由此引起的种种特殊效应统 称表面效应[8,9]。随着粒径的减小,比表面迅速增大。当粒径为5nm时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中 到纳米粒子的表面。庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强, 主要表现在:(1)熔点降低。就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量, 造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易 在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大。(3)化学活性增加,有利于催化反应等。 1.1.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧

金属掺杂对肖特基势垒高度的调制以及它在肖特基势垒源漏MOSFET中的应用

A Study of Schottky Barrier Height Modulation by Metal Insertion and Its Application to SB-MOSFETs 金属掺杂对肖特基势垒高度的调制以及它在肖特基势垒源漏MOSFET中的应用 第一章介绍 1.1研究背景 The reduction of the size of MOSFETs is commonly referred to as scaling.Types:(1)Full Scaling 等比例缩小规律(2)Constant Voltage Scaling恒场按比例缩小规律 削弱短沟道效应的方法之一,是当MOSFET的沟道长度缩短时,要求器件的其他各种横向和纵向尺寸(栅绝缘层厚度,结深等),以及电压也按一定比例缩小,衬底掺杂浓度按比例增加(减小耗尽层宽度),使缩小后的MOSFET的内部电场仍与未缩小的MOSFET相同。к是大于1的无量纲缩小因子。表1.1是器件参数和电路性能因素按比例缩小的规律。掺杂浓度必须按比例κ增加为了保持缩小尺寸后器件泊松方程的不变。 如图,MOSFET的沟道长度越来越窄。随着器件尺寸的不断缩小,IC集成电路的性能越来越取决于源-漏极和它们之间连接的串联寄生电阻。

1.2下一代超大规模集成电路中晶体管所存在的问题 现在,最大的问题是栅氧化层的缩小。缩小栅氧化层厚度对于改善MOSFET性能是必需的。但目前几nm的二氧化硅栅氧化层不能抑制栅极漏电流。二氧化硅的最小厚度是1.2-1.5nm。针对此问题,最新研究用高k电介质(k值比传统二氧化硅高)来替代二氧化硅。如果我们使用材料k值是二氧化硅的5倍,得到相同电容,而物理氧化层厚度仅是原来的1/5。高k材料做栅极,要求满足k是大于10,禁带宽度大于1EV,热稳定性好,单结晶或无定形,小的缺陷密度。随着栅极氧化缩小,就不能忽视电容。它是沟道表面的反转电容和多晶硅栅电极的耗尽层电导。反演电容不能被忽略。而栅极的高掺杂浓度控制栅极耗尽层电容。然。措施是,使用多晶硅栅极代替金属栅。比例缩小造成了源极和漏极结深都很浅薄。但浅结测面有很高的阻抗。源和漏高浓度掺杂使阻抗降低。 1.3肖特基势垒MOSFET 过去四十多年硅集成电路的发展主要集中体现在MOSFET特征尺寸的减小上。通过减小MOSFET的特征尺寸,晶元上的元件个数逐渐增加,集成度大幅度提高。目前己有一些公司宣称器件研制水平达到45nm,65nm可以小批量生产,90nm已经可以投入市场。随着MOSFET特征尺寸的减小,芯片制造的复杂性和难度加大,原有的常规MOSFET的理论基础、器件结构、关键工艺、集成技术等一系列问题成为器件设计和制备者的巨大挑战。 对于常规MOSFET而言,随着沟道长度的减小沟道电势两维分布的影响逐渐显著,缓变沟道近似不再成立,短沟效应越来越明显,阻碍了器件尺寸进一步按比例缩小。理论上有效沟道长度只能降至70nm。为了抑制短沟效应,要求源、漏扩散区的结深也随之缩小,同时为保证器

扫描隧道显微术及其应用

STM的历史 1982年,国际商业机器公司苏黎世实验室的葛·宾尼(Gred Binning)博士和海·罗雷尔(Heinrich Rohrer)博士及其同事们共同研制成功了世界上第一台扫描隧道显微镜。它使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理,化学性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广阔的应用前景,Gred Binning和Heinrich Rohrer也因此荣获1986年诺贝尔物理学奖。 STM与其它表面分析技术相比所具有的独特优点: 1.具有原子级的高分辨率。STM在平行于和垂直于样品表面方向的分 辨率分别可达0.1nm和0.01nm。 2.可实时的得到在实空间中表面的三维图象,可用于具有周期性或 不具有周期性的表面结构研究。这种可实时的观测的性能可用于表面扩散等动态过程的研究。 3.可观察单个原子层的局部表面结构,而不是体相或整个表面的平 均性质。因而可直接观察到表面缺陷、表面重构、表面吸附体的形态和位置,以及由吸附体引起的表面重构。 4.可在真空、大气、常温等不同环境下工作,甚至可将样品浸在水 或其它溶液中,而不需要特别的制样技术,并且探测过程对样品无损伤。这些特点特别适于研究生物样品和在不同实验条件下对样品表面的评价,例如对于多相催化机理、超导机制、电化学反应过程中对电极表面变化的监测等。

5.配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得 到有关表面电子结构的信息,例如表面不同层次的态密度,表面电子阱、电荷密度波、表面势垒的变化和能隙结构等。 透射电镜与扫描电镜 参见有关该章节资料 场粒子显微镜 场粒子显微镜(FIM)是美国宾夕法尼亚大学的E.W.Muller教授在1951年发明的一种具有高放大倍数、高分辨率、并能直接观察表面 ,He)在带正高压的针尖原子的研究装置。它利用成像气体原子(H 2 样品的附近被场离子化,然后受电场加速,并沿着电场方向飞行到阴极荧光屏,在荧光屏上得到一个对应于针尖表面原子排列的所谓“场

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

肖特基的工作原理及特点

肖特基二极管的工作原理和特点 肖特基二极管(SBD)是一种低功耗、大电流、超高速半导体器件。其显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。肖特基二极管多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。常用在彩电的二次电源 整流,高频电源整流中。 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极 管。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 基本原理是:在金属和N型硅片的接触面上,用金属与半导体接触所形成的势垒对电流进行控制。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右,大多不高于60V,以致于限制了其应用范围。其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。 肖特基二极管(SBD)的主要特点: 1)正向压降低:由于肖特基势垒高度低于PN结势垒高度,故其正向导通门限电压和 正向压降都比PN结二极管低(约低0.2V)。 2)反向恢复时间快:由于SBD是一种多数载流子导电器件,不存在少数载流子寿命和反向恢复问题。SBD的反向恢复时间只是肖特基势垒电容的充、放电时间,完全不同于PN 结二极管的反向恢复时间。由于SBD的反向恢复电荷非常少,故开关速度非常快,开关损 耗也特别小,尤其适合于高频应用。 3)工作频率高:由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。 4)反向耐压低:由于SBD的反向势垒较薄,并且在其表面极易发生击穿,所以反向击穿电压比较低。由于SBD比PN结二极管更容易受热击穿,反向漏电流比PN结二极管大。 SBD的结构及特点使其适合于在低压、大电流输出场合用作高频整流,在非常高的频率下(如X波段、C波段、S波段和Ku波段)用于检波和混频,在高速逻辑电路中用作箝

肖特基接触与欧姆接触

欧姆接触 是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。 欲形成好的欧姆接触,有二个先决条件: (1)金属与半导体间有低的势垒高度(Barrier Height) (2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3) 前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。 若半导体不是硅晶,而是其它能量间隙(Energy Cap)较大的半导体(如GaAs),则较难形成欧姆接触(无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Met al-p+-p等结构。 理论 任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。费米能级和真空能级的差值称作工函。接触金属和半导体具有不同的工函,分别记为φM和φS。当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。 欧姆接触或肖特基势垒形成于金属与n型半导体相接触。 欧姆接触或肖特基势垒形成于金属与p型半导体相接触。在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能级跳到弯曲的导带顶。穿越势垒所需的能量φB是内建势及费米能级与导带间偏移的总和。同样对于n型半导体,φB = φM ? χS当中χS是半导体的电子亲合能(electron affinity),定义为真空能级和导带(CB)能级的差。对于p型半导体,φB = Eg ? (φM ? χS)其中Eg是禁带宽度。当穿越势垒的激发是热力学的,这一过程称为热发射。真实的接触中一个同等重要的过程既即为量子力学隧穿。WKB近似描述了最简单的包括势垒穿透几率与势垒高度和厚度的乘积指数相关的隧穿图像。对于电接触的情形,耗尽区宽度决定了厚度,其和内建场穿透入半导体内部长度同量级。耗尽层宽度W可以通过解泊松方程以及考虑半导体内存在的掺杂来计算: 在MKS单位制ρ 是净电荷密度而ε是介电常数。几何结构是一维的因为界面被假设为平面的。对方程作一次积分,我们得到 积分常数根据耗尽层定义为界面完全被屏蔽的长度。就有 其中V(0) = Vbi被用于调整剩下的积分常数。这一V(x)方程描述了插图右手边蓝色的断点曲线。耗尽宽度可以通过设置V(W) = 0来决定,结果为

隧道效应及其应用

隧道效应及其应用 隧道效应定义是:隧道效应由微观粒子波动性所确定的量子效应,又称势垒贯穿。 1、势垒 在原子核衰变过程会放射出α粒子后变成另一种原子核。原子核表面有40 MeV 的势能,核内α粒子的能量约为 4~9 MeV ,能量较小的α粒子怎么会穿过那么高的势垒从核内放射出来?利用量子力学理论能够给出很好的解释。 表示核内 x <0 和核外 x >0,可以自由运动,而核表面 0 )()()](2[2 2r E r r U m ??=+?-0),()(212122 ≤=-x x E dx x d m ?? a x x E x U dx x d m ≤≤=+-0),()() (22202 2 22??? ???≥≤<<=a x x a x U x U ,000)(0a x x E dx x d m ≥=-),()(232 322 ? ? 2 212 mE k = 202 2)(2 U E m k -=

根据边界条件: 三个区间的薛定谔方程化 为: U U a o x I II III , 0)() (121212 ≤=+x x k dx x d ??a x x k dx x d ≤≤=+0, 0)() (2222 22??a x x k dx x d ≥=+, 0)() (321232 ?? 若考虑粒子是从 I 区入射,在 I 区中有入射波和反射波;粒子从II 区穿过势垒到III 区,在 II 区中同样有入射波和反射波,在III 区只有透射波。 上式分别代表三个平面波波函数。 只有透射波,C'=0。 )(3x ?其中 既有入射波又有反射波, )()(21x x ? ? 、0 ,)(111≤'+=-x e A Ae x x ik x ik ?a x e B Be x x ik x ik ≤≤'+=-0,)(222?a x e C Ce x x ik x ik ≥'+=-, )(113?) 0()0(21??=0201|) (|)(===x x dx x d dx x d ??) ()(3 2a a ??=a x a x dx x d dx x d ===|)(|)(32??B B A A ' +='+2211k B Bk k A Ak '-='-a ik a ik a ik ce e B Be 122='+-a ik a ik a ik e ck e k B e Bk 122122='+-

纳米材料的基本效应

纳米材料的四个基本效应 转载▼ 纳米材料由纳米离子组成,纳米离子一般是指尺寸在1-100纳米之间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统也非典型的宏观系统,是一种典型人界观系统,它具有如下四方面效应,并由此派生出传统固体不具有的许多特殊性质。 1、表面效应 粒子直径减少到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。 2、量子尺寸效应 指纳米粒子尺寸下降到一定值时,费米能级附近的电子能级由连续能级变为分立能级的现象。这一效应可使纳米粒子具有高的光学非线性、特异催化性和光催化性质等。 3、体积效应 指纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期的边界条件将破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化。如光吸收显著增加并产生吸收峰的等粒子共振频移,由磁有序态向磁无序态,超导相向正常相转变等。 4、宏观量子隧道效应 宏观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微颗粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,他们可以穿越宏观系统的势垒而产生变化,故称为宏观的量子隧道效应MQT(Macroscopic Quantum Tunneling)。这一效应与量子尺寸效应一起,确定了微电子器件进一步微型化的极限,也限定了采用磁带磁盘进行信息储存的最短时间。 以上四种效应是纳米粒子与纳米固体的基本特性,它使纳米粒子和固体呈现许多奇异的物理性质、化学性质,出现一些反常现象,如金属为导体,但纳米金属微粒在低温由于量子尺寸效应会呈现电绝缘性;化学惰性的金属铂制成纳米微粒(箔黑)后,却成为活性极好的催化剂等。

肖特基接触与欧姆接触

欧姆接触是指金属与半导体的接触,而其接触面的电阻值远小于半导体本身的电 阻,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。 欲形成好的欧姆接触,有二个先决条件: (1)金属与半导体间有低的势垒高度(Barrier Height) (2)半导体有高浓度的杂质掺入(N ≧10EXP12 cm-3) 前者可使界面电流中热激发部分(Thermionic Emission)增加;后者则使半导体耗尽区变窄,电子有更多的机会直接穿透(Tunneling),而同时使Rc阻值降低。 若半导体不是硅晶,而是其它能量间隙(Energy Cap)较大的半导体(如GaAs),则较难形成欧姆接触(无适当的金属可用),必须于半导体表面掺杂高浓度杂质,形成Metal-n+-n or Metal-p+-p等结构。 [编辑本段] 理论 任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。费米能级和真空能级的差值称作工函。接触金属和半导体具有不同的工函,分别记为φM和φS。当两种材料相接触时,电子将会从低工函一边流向另一边直到费米能级相平衡。从而,低工函的材料将带有少量正电荷而高工函材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的屏蔽长度意味着任何电场只在接触面间无限小距离内存在。 欧姆接触或肖特基势垒形成于金属与n型半导体相接触。 欧姆接触或肖特基势垒形成于金属与p型半导体相接触。在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能级跳到弯曲的导带顶。穿越势垒所需的能量φB是内建势及费米能级与导带间偏移的总和。同样对于n型半导体,φB = φM ? χS当中χS是半导体的电子亲合能(electron affinity),定义为真空能级和导带(CB)能级的差。对于p型半导体,φB = Eg ? (φM ? χS)其中E g是禁带宽度。当穿越势垒的激发是热力学的,这一过程称为热发射。真实的接触中一个同等重要的过程既即为量子力学隧穿。WKB近似描述了最简单的包括势垒穿透几率与势垒高度和厚度的乘积指数相关的隧穿图像。对于电接触的情形,耗尽区宽度决定了厚度,其和内建场穿透入半导体内部长度同量级。耗尽层宽度W可以通过解泊松方程以及考虑半导体内存在的掺杂来计算: 在MKS单位制ρ 是净电荷密度而ε是介电常数。几何结构是一维的因为界面被假设为平面的。对方程作一次积分,我们得到 积分常数根据耗尽层定义为界面完全被屏蔽的长度。就有 其中V(0) = Vbi被用于调整剩下的积分常数。这一V(x)方程描述了插图右手边蓝色的断点曲线。耗尽宽度可以通过设置V(W) = 0来决定,结果为

纳米材料的四大效应

小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 我觉得其实质就是小尺寸效应。 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 这两个更侧重于物理层面,总是不能很好的给出朴实的语言加以描述,甚是头疼。既然是科普,我想如何将这四个概念给工人、初中生甚至是小学生说明白,至关重要。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于 0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金属超微颗粒(直径为 2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏

相关文档
相关文档 最新文档