文档库 最新最全的文档下载
当前位置:文档库 › 氯化钾镀锌钝化附着力差的原因

氯化钾镀锌钝化附着力差的原因

氯化钾镀锌钝化附着力差的原因
氯化钾镀锌钝化附着力差的原因

表面处理网:氯化钾镀锌是目前最主要的镀锌工艺之一,其镀层的整平性和光亮性较好、防护装饰性好,电流效率较高,特别是能在铸铁件及淬火件等表面处理难度较大的基材上镀覆,而且其溶液成分简单,操作方便,镀液易维护管理等优点,因此,氯化钾镀锌工艺得到了广泛的应用。但事物都是一分为二的,虽然氯化钾镀锌有较明显的优势,但也存在自身的弱点:铁杂质积累过快,且不易去除;钝化膜附着力差,易变色,脆性大等,都是其自身难以避免的缺点。本文就浅谈一些关于氯化钾镀锌钝化膜附着力差的原因分析及提高钝化膜牢固性的措施和方法。

一、氯化钾镀锌钝化膜附着力差的原因分析

前几年氯化钾镀锌钝化后钝化膜不牢固(即钝化后掉膜附着力差)的问题一直在困扰着行业很多生产企业,有不少企业都反映他们的产品镀锌钝化零件常常因为钝化膜不牢固而造成返修重镀,给生产造成了极大的麻烦和不小的损失,严重制约了企业的发展和提高。

此类问题看起来简单,但解决起来确不那么容易。镀锌开始到出光钝化最后干燥老化等过程,都可能影响钝化膜的牢固性,而出光钝化不是唯一影响因素,在此观点的指导下,我们首先分析了钝化膜的组成、性质以及形成过程:镀锌层钝化膜是一种凝胶状钝化膜,其主要成分是三价铬和六价铬的化合物、水、以及金属离子等组成。

其中水是以结晶水的形式存在的。其膜层是在固液界面上通过各相化学反应过程经历反复的成膜与溶解、扩散的复杂过程所得到的化合物胶体膜。钝化膜的附着力与形成钝化膜的界面的洁净度、膜层的干燥老化方法及膜层的厚薄有直接关系。

二、防止镀锌钝化膜附着力差的方法和措施

1、控制镀锌后锌层表面有机吸附膜的量来增强钝化膜的附着力。

镀锌后锌层表面的洁净与否,对钝化膜的附着力起着决定性的作用,它是决定钝化膜牢固性的关键因素,如果锌层与膜层界面不洁净,牢固性就无从谈起。在电镀过程中,镀层是在含有锌离子的电解液中在直流电场的作用下锌离子沉积得到镀锌层,在此过程中要使用大量的有机添加剂才能获得较理想的镀锌层,这些添加剂大部分都是不溶性的粘性的透明有机物,它们的主要作用是吸附在阴极表面,形成一个有机膜层来增大阴极极化,使锌离子透过此层膜沉积,使镀层结晶细致、光亮均匀。而此层有机透明膜是用肉眼难以观察到的,虽然经过水洗、出光、钝化,能去掉部分灰尘和颗粒,但吸附的粘性有机添加剂膜确是难以去掉的。理论分析这层粘性有机膜是影响钝化膜牢固性的关键因素。因此我们针对此问题进行了充分的理论分析和试验验证工作。既然吸附膜去不掉,添加剂又必不可少,那么就在添加剂的添加量上下功夫,本着“少加勤加”的原则把添加剂的添加量控制在最低限,使吸附膜尽量减薄。经过试验及实际生产验证,添加

剂控制在最小量时,效果比较好,钝化膜比较牢固。这是因为添加剂量小时吸附膜也较薄,提高了洁净度,钝化膜的牢固性也得到提高。通过一段时间的实际生产验证某产品镀锌钝化零件钝化膜层牢固牢性的机率达到了80%以上。我们把试验得出的结论应用到实际生产当中,同时我们也对添加剂严加管理,领用及添加采取双岗制,严格控制,使添加剂始终处于工艺下限,经过一年多的实际生产验证,采取上述措施后,钝化膜掉膜现象基本消除了。

氯化钾镀锌工艺生产过程中的典型故障

氯化钾镀锌工艺生产过程中的典型故障1·液面浮油 在采用氯化钾镀锌工艺进行生产过程中,有一些电镀厂的镀液容易产生浮油(漂在液面上的一种油状有机物)。其产生的原因主要为:(1)前处理除油不佳,槽中有大量的有机油脂,与表面活性剂形成皂化等;(2)镀液中有较多的铁杂质,镀液一般很混浊;(3)氯化钾的质量浓度过高;(4)添加剂配比有问题,添加剂中某类载体过多等;(5)镀液的pH值≥6。 氯化钾镀锌液面浮油的黏度大,易黏在槽壁、挂具、滚桶、阳极及镀件上或沉淀于镀液底部,难以彻底清除。氯化钾镀锌液是弱酸性的,本身不具有除油能力。导电盐氯化钾对镀液的浊点有很大影响,在高温季节,当镀液中有较多铁杂质时,添加剂的浊点会大幅下降。随着组合型添加剂中某类载体添加剂的不断积累,与电镀液中的悬浮物和镀件中带入的油污及三价铁离子共同作用,形成酸性且黏度大的油渍,严重影响镀层质量。 找到液面浮油产生的原因后,解决起来就比较容易了。要选择大品牌的氯化钾镀锌添加剂,保证前处理后镀件表面无油,无锈,无挂灰,夏天镀液中氯化钾的质量浓度不应过高,控制镀液的pH值在5.6~6.0,镀液温度不宜过高,对于已产生浮油的镀液可按大处理方法进行认真处理,可除掉已产生的浮油。 2·蓝白钝易泛彩泛黄 氯化钾镀锌蓝白钝化的色调比无氰碱性镀锌的色调更艳丽、更易控制(无氰碱性镀锌更易泛黄泛彩),但该工艺也有许多常见故障。 2.1 镀锌层的问题 首先与镀层的厚度有关系,一般要求镀层厚度≥4μm,特别是对三价铬蓝白钝化而言,镀层过薄会出现以下问题:(1)蓝白的色调不佳,易泛彩泛黄;(2)钝化膜放置后易发白(黑)点(当钝化后清洗不良及烘干不彻底时更易出现)。 其次是镀层的纯度,镀液中的重金属杂质(如铜、铅等)较多时,低电流密度区的镀层钝化色泽不良,整体易泛彩泛黄,特别是铁杂质过量时,易大面积泛彩泛黄。镀液中的有机杂质是造成蓝白钝化时泛彩泛黄的主要原因之一,一般有如下规律:(1)镀液越老化(有机和重金属杂质多),越易出现;(2)镀层越光亮,越易出现;(3)生产电流密度≥1.5A/dm2时更易出现,电流密度越大的部位,越易出现;(4)当镀液中残留有微量氧化物时,易出现。 2.2 六价铬蓝白钝化液 配制六价铬蓝白钝化液时对原材料纯度的要求比较高,最好是用去离子水,最低标准是用城市自来水。使用井水、河水等配制蓝白钝化液,镀层易泛彩泛黄是必然结果。钝化用槽只能使用塑料槽,否则会带入大量杂质。 配制六价铬蓝白钝化液时,不得使用双氧水来还原产生三价铬,因为双氧水还原产生的三价铬会使镀层泛彩。最好使用还原剂还原三价铬。对清洗水也有要求,最低标准是用城市自来水,井水、河水作清洗水时,镀层也易泛彩泛黄。正确维护钝化液需定时检测钝化液的pH值,大多数六价铬蓝白钝化液的pH值应控

常见13种氯化钾镀锌故障处理分析告诉你标准答案

常见13种氯化钾镀锌故障分析告诉你答案 本篇汇总了氯化钾镀锌的常见故障,包括镀层不光亮、发雾、结合力差、烧焦、黑色条纹、厚度不均、脆性、沉积速度慢、分散能力差、镀液浑浊等。介绍了这些疵病的产生原因及其处理方法。提出了应加强工艺管理、认真做好镀液维护、定期进行净化等措施,以期避免或减少故障发生。 氯化钾镀锌是由最早的无氰氯化铵镀液发展而来的一种无铵弱酸性光亮镀锌工艺。其优点是: (1)镀液导电性好,槽压低,节省电能; (2)镀层结晶细致、光亮、平整; (3)电流效率高,沉积速度快; (4)镀液分散能力好; (5)适用于铸件直接电镀; (6)废水处理简便,解决了环境污染的问题。因此,氯化钾镀锌在工业上得到了广泛应用。 但是,在日常生产中难免会发生质量故障,主要原因在于镀液维护不力,组分失调或受到有害杂质干扰,以及工件前处理不良。本篇拟就氯化钾镀锌中常见故障的产生原因及其处理方法进行汇总和介绍。 各种常见故障的产生原因及其处理方法 1.镀层不光亮产生原因: (1) 镀液浓度过低(即氯化锌、氯化钾和硼酸的含量均低);

(2) 光亮剂不足; (3) pH 过高; (4) 镀液温度过高; (5) 阴极电流密度小; (6) 金属铁杂质多; (7) 有机杂质多。 处理方法: (1) 通过分析,补加氯化锌、氯化钾和硼酸至工艺规范; (2) 适当添加光亮剂; (3) 用稀盐酸溶液调节pH 至工艺规范; (4) 降低镀液温度至工艺规范; (5) 适当提高阴极电流密度; (6) 加入0.5 ~ 2 mL/L 的双氧水(w = 30%),充分搅拌后,用w = 5% 的氢氧化钠调节pH 至6.2,沉淀、过滤后可除去氢氧化铁; (7) 在镀液温度为45 °C 时加入1 ~ 3 g/L 活性炭,搅拌约30 min 后过滤;或采用高锰酸钾法处理,即先用稀盐酸调低pH 至3 ~ 4,然后在搅拌的情况下将溶有0.5 ~ 1 g/L 高锰酸钾的热水均匀加入镀液中,再继续搅拌30 min ,然后静置过滤,可除去有机物。 2.发雾、发花:产生原因 (1) 镀液温度过高;氯化钾镀锌故障处理 (2) pH 过高; (3) 槽镀工件过多或阳极面积不够;

影响印铁涂膜附着力的原因和对策

所谓涂膜的附着力,主要是指印铁产品在施工完毕后,涂料膜层、彩色油墨膜层与金属薄板之间的附着能力。印铁成品在进行各种机械加工成型之后,要求依附于金属薄板上的彩色涂膜无损伤和膜层剥落现象。一般情况下,涂膜的附着力与金属印件的表面性质、涂料性质以及印铁涂料施工方式有着密切的关系。 金属印件性质检测 印铁所使用的金属薄板主要有镀锡薄钢板(俗称马口铁)、镀铬薄钢板以及铝板三大类。金属薄板在制作成型加工过程中,通常表面需要涂上一层薄而均匀的油膜,以防止在机械加工过程中摩擦损伤和保存期内生锈。在金属薄板的制作中,主要是对马口铁和镀铬薄钢板进行表面涂防锈油和表面钝化处理。涂油要求控制好量。而氧化膜和铬的含量,更要求控制在一定的范围之内,这是因为镀锡薄钢板出厂前必须经过钝化处理,以防表面快速氧化,如果钝化处理过强,即表面含铬量过高,就会导致表面附着力下降。此外,表面含铬状态直接影响印铁施工中印墨和涂膜的附着力,不同钝化液配方和电流密度,工艺条件也不同。 金属薄板表面状态的检测十分重要,主要涉及对金属薄板表面氧化膜量、含铬量和涂油量的检测。 氧化膜检测在适当的电解液和适当的电流密度下,氧化物被还原。在电流接通开始还原反应时,金属薄板表面保持在稳定的电位。反应终了时,会有明显的电位跌声。记录起止时刻,并算出该时段内所耗用的总电量,再根据法拉第定律,即可算出被还原的氧化物量。 含铬量的测定化学法测定含铬量较为繁琐,且容易出错,目前行业多采用库伦法估算。其原理是电解铬——测试电路接通后,记录仪上将会呈现表面铬层在电解剂将用尽时表面电极电位逐渐升高的状况,电位停滞段越长,表示其含铬量越高。 涂油量检测用类似于测定涂膜量的脱膜方法,即在3%的Na2CO3的溶液里,以3~6V直流电源的负极接于金属薄板表面。如果金属薄板表面含油量超标,被H2推入溶液中的油会显而易见。 金属薄板和涂料的选择及配合 涂料施工在印铁操作中是重要的一环,关系到印铁产品的基础是否扎实。印铁涂料一般可以分成油(打底涂料)、白色涂料(又叫白可丁)、罩光涂料(光油)、内壁涂料以及特种涂料共五大类组成。涂料不同,稀释剂也各异,要求互相匹配,在稀释时要求稠稀相宜,否则不利于施工质量和涂膜质量。一般情况下,打底涂料要求涂料调配时稀薄一些,涂层也较薄。其主要功能是连接金属薄板和上面的涂膜、墨膜。由于施工要求因涂料而异,操作人员必须认真按施工单上的具体指令进行施工,严格控制涂膜的厚度、车速以及烘炉的实际温度,确保产品质量的稳定性。 施工方式影响印涂膜的附着能力 此外,施工方式也直接影响到印涂膜的附着能力。通常要求印铁涂料的粘度尽可能低,同时确保涂膜在施工完成之后具有基本厚度。在涂料施工时,还要求施工现场保持适当温、湿度,目的是使涂料保持合适的粘度和厚度。在涂膜完工,印件进入隧道式烘炉后,升温速度不宜太快,使涂层的干燥结膜有一定缓冲的过程,这样对涂层表面的流平性有益。

氯化钾镀锌主要成分及工艺条件的控制

氯化钾镀锌主要成分及工艺条件的控制前言 氯化钾镀锌是上世纪80年代发展起来的一种光亮镀锌工艺。近年来,我国在电镀添加剂研究开发上取得了显著进展,使得氯化钾镀锌工艺水准达到一个全新的高度,例如:LAN-930氯化钾镀锌工艺较为成功地解决了传统氯化钾镀锌工艺的3大难题:(1)镀层的耐盐雾试验性能比碱性镀锌差;(2)添加剂的分解产物 多;(3)铁杂质易超标。新型氯化钾镀锌添加剂的使用,降低了电镀生产厂商的生产成本,促进了国内电镀锌工艺朝更利于节约成本且环境友好的方向发展。 1·氯化钾镀锌成分及工艺条件的控制 氯化钾镀锌工艺的常用配方的工艺条件范围是比较宽广的,其主要成分及工艺条件为:氯化锌 30~80g/L,氯化钾180~280g/L,硼酸20~30g/L,添加剂适量,pH值4.5~6.0,10~50℃。 1.1 氯化钾镀锌液主要成分的控制 1.1.1 氯化锌 氯化锌系主盐,溶于水中会大量放热。当溶液的pH值≥6.2时,有沉淀产生。锌离子的质量浓度≥90g/L 时,光亮电流密度范围扩大,但镀液的分散能力和深镀能力会有所下降。锌离子的质量浓度较低时,光亮电流密度的上限下降,高电流密度区易烧焦,此时的深镀能力较好,但镀层沉积速率较慢。可增加阳极面积,同时保持镀液较低的pH值,从而使锌离子的质量浓度逐渐上升。对挂镀而言,当氯化锌的质量浓度为60~70g/L 时,镀液的分散能力最好。 氯化钾镀锌液中无强配位剂,其分散能力和深镀能力不如氰化物镀锌,更加不如无氰碱性锌酸盐镀锌。有人喜欢在氯化钾镀锌液中加入少量氯化铵,但镀液中加入氯化铵后其分散能力和深镀能力均无改善;又会增加电镀废水的达标难度,所以当使用优良氯化钾镀锌光亮剂时,一般不建议加入氯化铵。 1.1.2 氯化钾 氯化钾是弱的配位剂和导电盐,其质量浓度应适当。当其质量浓度恰当时,镀液的导电性最好,过多或过少都会降低镀液的电导率,从而影响镀液的分散能力和深镀能力。大量氯离子的存在能增加阴极极化,提高镀液的分散能力和深镀能力,促进阳极的正常溶解。氯离子的电子桥作用对提高镀锌层与基体的结合力有较大影响。当ρKCl∶ρZnCl2=(3.5~4.5)∶1时,镀液的分散能力和深镀能力较好。若氯化钾的质量浓度偏高或偏低,易使镀层产生暗黑条纹或滚桶眼子;当氯化钾的质量浓度过高时,添加剂还可能因盐析现象而呈油状物析出。 应当注意有时按分析化验结果调整镀液后,镀液的分散能力和深镀能力还是不佳。 其原因是化验分析的是镀液中的氯离子,然后换算成氯化钾,而不是分析钾离子。在实际生产过程中不论是调节pH值,还是前处理中的酸洗,都是使用盐酸,这样会造成氯化钾的质量浓度偏高的假象。此时适当的补加氯化钾即可解决问题。

金属表面涂装附着力解决方案

相信大家在使用涂料对金属产品进行喷涂的时候都有遇到过大部分涂料对金属产品的附着力都不是特别理想的,今天在这里,源雅化工就和大家来谈谈这个问题,到底怎么样才能使涂料对金属附着力提升? 很多金属如锌合金、镁合金、不锈钢等在表喷涂的时候附着力都是不理想,如需在金属表面获得良好附着力,一般需要对金属表面打底处理,可以起到承上启下的作用,使其铰链上底材和UV,达到附着。金属表面附着力促进剂是以特殊树脂为基础经过改性后的最新产品,专门用于提高五金、镁合金、锌合金、金属水电镀、真空电镀等基材的附着力,并且具有优良的物理性能及耐化学性和耐热性,如耐盐雾,耐人工汗液等;它对各类光固化面漆体系都具有优良的附着力。 物理性质: 1、外观:微黄色浑浊液体 2、固含: 25% 3、软化温度:80℃左右 4、分子量:60000-90000 施工工艺: 1、涂装工艺流程五金件(PVD)镀膜表面的清洁→喷涂金属处理水→风干3-5分钟→喷涂UV面漆→IR流平(60±10℃×4~6min)→UV固化(700±100mj/cm2)→检验,下一工序。 2、施工粘度:8±1秒(岩田2#杯) 3、施工气压:3-4Kg/cm2 4、喷涂膜厚:喷涂五金处理剂的膜厚一般控制在3-5μm之间效果最佳,UV面漆的膜厚为10-15μm 尼龙处理剂解决尼龙表面附着力差 来源:源雅化工 产品用途: 尼龙处理剂应用于尼龙塑胶表面加工时增进上涂料时对底材的附着性的特殊助剂。尼龙素材的表面物理性能差、极性低,常常附着力差,需要进行特殊处理后,才能有效的附着。尼龙处理剂专门为这些而产生,具有优异的附着力,可以在处理过的尼龙底材上喷涂任何涂料(包括手感油、UV光油等)。尼龙处理剂广泛应用于家用电器、小商品、高级玩具等许多方面,操作方便、可通过各种测试。 物理性质: 1、化学组成:高分子界面聚合物。 2、密度(g/cm3):0.90。 3、闪点:约12℃。 4、外观:淡黄透明液体。 使用方法: 1.将要处理的尼龙素材擦拭干净,去除表面残留油脂或脱模剂等。

影响ITO薄膜附着力的因素及对策

影响ITO薄膜附着力 的因素及对策 霍锦辉 2011/4/16

附着机理 ?薄膜附着力的产生来源于膜/基片界面之间的相互作用,可分为物理吸附和化学吸附两种。 ?物理吸附的有力学锁合作用和由单分子层间接触所引起的附着力。这两种力主要是: (1)范德华力;(2)偶极子效应、诱起效应和劳伦兹力三种力的总和。 ?化学吸附可分为以下几种类型: (1)由两相邻材料之间发生了化学反应所引起的附着力; (2)由于扩散所引起的附着力; (3)“类扩散”所引起的附着力。

影响附着力因素-本底真空度 ?高的本底真空意味着真空腔体内杂质少,本底真空的提高可以减少在基片上形成薄膜的过程中,空气分子作为杂质混入膜内或在薄膜中形成的化合物。?本底真空度越高,镀膜时引入的杂质就越少。

影响附着力因素-基体表面状态 ?基体的表面状态对附着力有很大影响,.薄膜之所以能附着在基体上,是范德瓦尔力,扩散附着,机械锁合,静电引力,化学键力等的综合作用.基体表面的不清洁将使薄膜不能和基体直接接触,范德瓦尔力大大减弱,扩散附着也不可能,会使附着性能极差.由于表面的吸附(在10-3Pa压力1min即可吸附一个单分子层)作用会使其表面的化学键达到饱和。使沉积物不能与基片形成适当的化学键,这也会降低膜的附着力。

影响附着力因素-基体表面温度 ?在沉积薄膜时,提高基片温度,不但可以去掉基片表面残留的气体及各种水汽、溶剂,还利于薄膜和基片原子的相互扩散,并且会加速化学反应,从而有利于形成扩散附着和通过中间层的附着,这样,包含在微结晶中的晶格缺陷就会减少,而且粒子形状易于长成为纤维状的结构,有利于形成致密的膜层,降低膜/基片界面处的孔隙度,附着力就会增大。低温沉积时,原子活性低,形核密度低,界面存在孔隙;高温沉积时,原子活性增大,形核密度高,界面孔隙少,界面结合较强,附着力高。但基体温度过高会使薄膜晶粒粗大,增加膜中热应力,从而影响薄膜的其他性能。

锌合金表面涂装涂层附着力不良的原因

锌合金表面涂装涂层附着力不良的主要原因 (本方案由东莞炅盛附着力促进剂整理发布) 在腐蚀环境恶劣的情况下,需要对某些产品或工程设备采取更好的防腐措施,镀锌层加涂装涂层被认为是一种比较好的方法。 镀锌层一般分为电镀锌和热镀锌,在涂层完好的情况下,热浸镀锌层比电镀锌层防腐性能要好。当在产品或零部件的镀锌层上进行涂装时, 最常见的质量事故就是涂装涂层的附着力不良,造成短期内涂层脱落。在涂装和使用现场的表现形式是涂装涂层的附着力时好时坏,质量不稳定。 造成镀锌层与涂装涂层附着力不良的主要原因: 1.镀锌层本身与基体金属的附着力不好,导致镀锌层开裂和脱落(与镀液成分和镀层厚度有关)。 2.锌镀层内混入气体,在涂装涂层烘烤时发生膨胀,造成涂层脱落。 3.热镀锌板镀层较厚、镀层晶粒较粗,以致成型后表面粗糙度过大及零件表面黏附过多锌粉,干扰了磷化膜的正常形成。 4.因为镀锌板镀层中Al的溶解,以致Al3+在磷化槽中积聚,使磷化膜结晶粗大。 5.钝化膜表面太光滑或有油污、水渍影响附着力。 6.金属锌的活性强,富有反应性,使得涂层的黏度下降。 7.锌的二次生成物(碱式复盐)易溶于水,多数显示碱性,使用过程中,透过涂层的水与基板上的盐类发生溶解,破坏涂装涂层的附着力。 8.锌因为各种原因(如微电池作用)产生的锈蚀产物(白锈Zn(OH)255%·ZnCO340%·H2O5%)使体积膨胀(增加几十倍),影响涂装涂层的附着力。 9.锌在pH为9~11之内是比较稳定的,透过涂装涂层的水或水溶液的pH如果不在此范围内,锌则会溶解析出,从而影响涂装涂层的附着力。 10.锌与存在于涂料(某类油性涂料)中或涂层中的 脂肪酸发生反应,可生成溶解于水的金属皂(树脂金属盐),常常成为涂装涂层脆化甚至剥离的原因。原子灰直接刮涂在镀锌板上附着力极差,其原因是由于镀锌层与不饱和聚酯相互反应生成金属盐,产生锈蚀、小泡,进而造成原子灰大面积脱落。镀锌板需经特殊处理(如钝化、专用钣金腻子或采用致密的底漆层隔离等)才能与原子灰配套使用。

漆膜附着力高低温交变测试

漆膜附着力高低温交变测试 漆膜涂覆于产品,起保护与装饰作用,由于涂覆的产品使用于不同温度的环境,不同的材料热胀冷缩系数不一样,如果漆膜与基材热胀冷缩系数差异较大,会使漆膜附着力变差,漆膜很容易从基材上脱落,因此需要研究温度变化对漆膜性能的影响。我们选用电子产品常用漆种进行了高低温冲击试验,以考察环境温度变化对漆膜性能的影响。由于产品常用的基材为铝合金低温氧化基材、导电氧化基材及钢件镀锌基材,因此主要测试不同漆种在这几种基材上的性能变化。 高低温交变试验箱用途: 国防工业,航天工业,自动化零组件,汽车部件,电子电器零组件,塑料,化工业,食品业,制药工业及相关产品之耐热,耐寒,耐干性能及研发,质量管理工程之试验规范。 ◆全新完美的造型设志外观质感高水平,进口型多功能,扩展性强之专用控制器,操作简单,学习容易,控制稳定可靠。 ◆全方位的安全保护.确保机器本身及使用者安全. ◆宽敞明亮之大视窗配高亮度荧光灯,让使用者可随时观测试验箱内的状况。 ◆采用全毛细管,自动负载容量调整系统技术,较以往膨胀阀系统更稳定可靠。温度控制更精确,升降温速度快速,平稳、均匀、为使用者节 约宝贵时间。 ◆特殊强制送风循环设计,可避免箱内的气流死角,保证提供优良的温度分布均匀度。 ◆圆弧之内箱结构设计,便于清洗。 ◆釆用对奥氧系数为零的绿色环保(HFC)制冷剂R507,R23。 ◆代燥音设计≦65Db。 ◆可连接计算器,记录仪(选配)。 高低温交变试验机 1、试验部分

1.1原材料 铝合金镀银试片、铝合金低温氧化试片、铝合金导电氧化试片、钢件镀锌试片; 复合涂层配套组合分别为:S06-N-2底漆+丙烯酸聚氨醋面漆、铭黄底漆(A 707)+丙烯酸氨基面漆CAS、锌黄底漆(CH06-2)+丙烯酸氨基面漆 (B)、铁红底漆(CH 06-2)+丙烯酸聚氨醋面漆、铁红底漆(CH 06-2) +丙烯酸氨基面漆(B)、铁红底漆(CH 06-2)+醇酸氨基漆、锌黄底漆((H 06-2)+醇酸氨基漆。 1.2试验方法 本次试验按照油漆的配套性及漆种的涂覆要求,将不同的漆种涂覆于不同的基材,由于底漆直接和基材接触,油漆的附着力至关重要,首先测试了不同底漆的附着力,其次又测试了复合涂层的附着力,最后考察了高低温冲击试验对不同涂膜的附着力的影响。附着力按照GB庄9286-1998进行测试。本次高低温冲击的试验条件为:-55℃(30min)→25℃(3min)→85℃(3min),循环24次。 2、试验结果与讨论 2.1底漆附着力测试 本次试验首先测试了各种底漆在不同基材上的附着力,测试结果见表1。由试验可以看出,镀银试片比较光滑,各种漆膜在镀银层上的附着力都不是很好,建议设计将铝件的镀银改变为其他镀种;表中的各种底漆在低温氧化、导电氧化试片上的附着力都很好,均能满足某单位产品要求;钢件镀锌表面由于有一层钝化膜,该层钝化膜在高温加热时,附着力明显变差。如果钝化膜不去除,S06-N-2底漆的附着力优于铁红底漆的附着力。未高温烘烤前,钝化膜附着力为0级,喷完底漆后,进行烘烤,高温烘烤后,钝化膜附着力明显变差,做划格试验,漆膜连同钝化膜一起脱落。 2.2复合涂层附着力 油漆剥落有时从底漆层直接剥落,有时从面漆层剥落,所有产品涂覆的基本都为复合涂层,所以对不同基材上复合涂层的附着力进行了测

玛钢管材电镀锌常见问题

玛钢管件电镀锌常见问题解析引言:近日,我应邀前往山西某玛钢加工基地的镀锌车间处理电镀故障,总结了一些经验,在此分享给大家,希望同行朋友们指正。 一、玛钢材料的特性 可锻铸铁俗称玛钢,马铁.蠕墨铸铁的生产过程是:首先浇注成白口铸铁件,然后经可锻化退火(可锻化退火使渗碳体分解为团絮状石墨)而获得可锻铸铁件。可锻铸铁的化学成分是: wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1% 可锻铸铁的组织有二种类型: 铁素体(F)+团絮状状石墨(G);珠光体(P)+团絮状石墨(G). 二、玛钢管件氯化钾镀锌工艺流程 酸洗-- 二联水洗-- 除油--三联水洗--活化--水洗-- 氯化钾镀锌(滚镀)-- 回收--二联水洗--出光--六价蓝白钝化-- 二联水洗-- 热水洗--烘干 以上工艺流程为标准的自动线工艺,一般手动线没有这么完善的流程,一般为 酸洗-- 三联水洗-- 氯化钾镀锌(滚镀)-- 回收--水洗--六价蓝白钝化-- 二联水洗-- 热水洗--烘干 三、玛钢管件镀锌的常见故障原因解析 1、低区发黑无镀层 低区发黑镀层薄或无镀层其实就是深镀能力差导致的,一般改善镀液的深镀能力即可解决。在日常生产中,保持氯化钾的浓度为220-240g/L氯化锌45-50g/L硼酸30-35g/L,其中氯化钾偏低或偏高都会对低区产生一定影响。当氯化钾偏低时,导致整体电流效率下降,甚至低区无电流通过,则难以上镀;当氯化钾偏高时,虽然提高了镀液的电导率,但同时也会增大高区的阴极极化值,造成高低区镀层厚度相差大,降低了镀液的分散能力。 氯化锌的含量跟钾盐应保持着特定的比例,一般为4-4.5/1氯化锌高时,高区上镀较快,影响低区的电沉积速度,氯化锌偏低时,造成镀液中锌离子浓度偏低,会在阴极上表面造成浓差极化,过多的电子因得不到锌离子而在镀件上聚集,易造成高区烧焦,低凹处无镀层。 硼酸的含量直接影响镀液PH的稳定,在电解中不断的补充H以平衡析出的OH。硼酸的含量在常温时30-35为最佳。PH升高导致深镀能力差。 2、镀层发黄或变色 如镀件出槽时呈米黄色,经过硝酸出光后能洗净,则为表面有少量的有机物,只要钝化后不变色,镀件表面的有机物不会太多,不影响镀层质量。但在实际生产中由于镀液中添加剂的使用会产生大量的有机分解产物,如镀液维护不当,就会造成镀件表面有机产物过多,影响后处理钝化膜的形成,耐蚀性能下降,导致变色。 同时当铁离子在镀液中的浓度达到25mg/L时,由于铁的电极电位比锌正,在大的电流密度下(高区)优于锌先沉积到镀件。在出光和钝化过程中,铁离子都会与硝酸根反应Fe+HNO3=Fe(NO3)2+H2,形成棕黑色,难以形成完整的钝化膜。 钝化液的工作时间和PH及钝化液的浓度也会对表面色泽产生明显的影响,六价蓝白钝化没有三价稳定,如有条件的话,建议采用三价钝化工艺。 3、镀层脆性大、掉锌 由于玛钢件表面较为粗糙,镀层的微观结构和表面光洁的电镀件有一定差别,有极少量的掉锌亦属正常。锌层的脱落归根结底是镀层的脆性大或结合力不好。 影响镀层脆性的因素主要有: (1)电流密度从生产效率上来讲,电流密度越大,锌层沉积越快,生产效率高。但电流密度过大时镀层结晶粗糙,易脱落,同时也影响镀层抗蚀性能。

漆膜附着力的六等级及漆膜的力学性质与附着力

作为保护层的涂料,经常受到各种力的作用,如摩擦、冲击、拉伸等,因此要求漆膜有必要的力学性能。为了评价漆膜的力学性质,涂料工业本身发展了一系列测试方法,但这些方法只能提供具体材料性能优劣的数据,而不能给出漆膜力学性能的规律、特点及其与漆膜结构之间的关系。另一方面,由于聚合物材料的广泛应用,有关聚合物材料的力学性质已进行了广泛而深入的研究,涂料也是一种聚合物材料,且包括了聚合物材料的各种形式,如热塑性材料,热固材料、复合材料、聚合物合金等等,因此用已有的聚合物材料学的知识来了解和总结漆膜力学性质是很有意义的。但是,涂料和塑料、橡胶、纤维等典型的聚合物材料又有不同,漆膜的性能是和底材密切联系的,换言之,聚合物材料的规律和理论只和自由漆膜的性质有直接关联。如何将自由漆膜与附着在底材上的实际漆膜的性能联系起来,仍是一

个需要研究的课题,但无论如何,有关自由漆漆膜是和底材结合在一起的,因此漆膜和底材之间的附着力对漆膜的应用性能同样有重要影响。附着力的理论和规律是粘合剂研究的重要课题,因此涂料和粘合剂有着密切的关系,粘合剂的理论对于涂料同样有重要的参考价值。 1、无定型聚合物力学性质的特点 材料的力学性质主要是指材料对外力作用响应的情况。当材料受到外力作用,而所处的条件使它不能产生惯性移动时,它的几何形态和尺寸将产生变化,而几何尺寸变化的难易又与材料原有的尺寸有关,用原有尺寸除以受力后的形变尺寸就称为应变。材料发生应变时,其分子间和分子内的原子间的相对位置和距离便要发生变化。由于原子和分子偏离原来的平衡位置,于是产生了原子间和分子间的回复内力,它抵抗着外力,并倾向恢复到变化前的状态。达到平衡时,回复内力与外力大小相等,方向相反。定义单位面积上的回复内力为应力,其值与单位面积上的外力相等。产生单位形变所需的应力称为模量。 模量=应力/应变 根据外力形式不同,如拉伸力、剪切力和静压力,模量分别称为杨氏模量、剪切模量和体积模量。从材料的观点来看,模量是材料抵抗外力形变能力,它与材料的化学结构和聚集态结构有关,是材料最重

浅谈氯化钾镀锌

浅谈氯化钾镀锌 1 前言 氯化钾镀锌是目前最主要的镀锌工艺之一, 镀锌层的整平性和光泽性较好, 电流效率较高, 废水处理简单, 特别是能在锌铁件、洋火件等表面处理难度较大的基材上镀覆。因此, 氯化钾镀锌工艺得到广泛应用。 2 氯化钾镀锌工艺参数的影晌及控制 2.1 镀液主要成分作用与控制 (1) 氯化锌 氯化锌是钾盐镀锌的主盐。氯化钾浓度高, 允许电流密度范围大, 沉积速率快, 但镀液分散能力和深镀能力降低; 氯化锌浓度低, 浓差极化较大, 分散能力和深镀能力有所改善, 但允许电流密度范围变小, 沉积速率减小, 且高电流密度区容易烧焦等。因此, 适宜的氯化锌浓度为40~70 g/L。更为关键的是, 严格控制氯化锌/氯化钾在1:(3~5)为宜。 (2) 氯化钾 氯化钾在钾盐镀锌液中既是配位剂又是导电盐,适当提高其含量可提高镀液的导电能力和分散能力。但其含量高时,会使高电流密度区易出现烧焦,尤其是由于盐析作用使添加剂中载体光亮剂溶解度降低而析出,恶化镀层质量,且降低添加剂产生的光亮作用。若氯化钾含量太低,会使镀液导电性和分散能力降低。因此,一般钾盐镀锌工艺配方中氯化钾200~250g/L,最重要的是控制氯化锌/氯化钾的比值在较佳的工艺范围内。 (3) 硼酸 硼酸在钾盐镀锌液中是缓冲剂,稳定镀液的pH值, 且在阴极膜中还能起弱配位作用, 对镀层沉积有催化作用。其含量允许范围较大, 为25~40g/L。但含量高时, 在温度偏低时容易结晶析出。 2.2 添加剂的影晌和控制 市售钾盐镀锌添加剂种类繁多, 但其作用机理和组成基本相同, 都是由主光亮剂、载体光亮剂、辅助光亮剂、应力消除剂等有机物按一定比例复配而成的。 (1) 主光亮剂 主光亮剂属于芳香酮类化合物, 能吸附于阴极表面, 增大阴极极化, 使锌镀层结晶细致。使用比较多的, 如苄叉丙酮、邻氯苯甲醛、对氯苄叉丙酮等。主光亮剂不溶于水, 要通过载体助溶、增溶、扩散到镀液中发挥其作用。载体则大多为非离子型或阴离子型表面活性剂, 要求具有高的浊点, 有助于提高镀液的操作温度。常用的载体有烷基醇聚氧乙烯醚、烷基

镀锌故障排除要点

锌易溶于酸,也能溶于碱,故称它为两性金属。锌在干燥的空气中几乎不发生变化。在潮湿的空气中,锌表面会生成碱性碳酸锌膜。在含二氧化硫、硫化氢以及海洋性气氛中,锌的耐蚀性较差,尤其在高温高湿含有机酸的气氛里,锌镀层极易被腐蚀。 锌的标准电极电位为-0.76V,对钢铁基体来讲,锌镀层属于阳极性镀层,它主要用于防止钢铁的腐蚀,其防护性能的优劣与镀层厚度关系甚大。 要把被一些人认为很简单的镀锌真正做好,并非易事,下面举一些例子说明。 某厂为新搬迁的新地址,主要电镀锌玛钢(铸铁类)和冷轧板冲压件,镀锌工艺为氯化钾,其中一条滚镀锌线(三槽),滚镀锌合格率低。圆环形工件10%不合格品为高区暗、镀层薄;玛钢类工件80%不合格品为高区不光亮、低区暗、镀层薄。笔者应邀到现场处理,滚桶为新制造的,做了许多改进,如加长、加固、阴极进滚桶侧板孔改小,避免小零件掉出,滚桶转速7 r/min,认真察看滚桶内导电辨,发现导电辫因与滚桶侧板孔间隙太小而随滚桶转动而翘起,而不是下垂伸入工件中,导电辫头太轻,且圆柱形,外径比圆环形工件的内径还小,有可能某些工件套入导电辨头上,造成这些套入的工件一直在镀,同时检查pH值各为6.2,6.4,6.3。当即赶制加长100mm的导电辨,加重导电辨头,用化学纯盐酸掺水稀释后调低pH值至5.4,同时用干净烧杯取槽液再加光亮剂A、B,观察有无析出,判断出是否光亮剂过量;用霍尔槽试验最佳的光亮剂比例,得出光亮剂A、B偏少。更换加长、加重的导电辫,补加光亮剂后即施镀难镀的玛钢类工件,达到全部合格。本例要点:认真观察,导电是关键。 某厂为简易电镀锌作坊,自产自镀自用,氰化滚镀锌后钝化发雾。笔者应邀到现场处理,工件为挤锻压加工的直径10~15mm、长130mm轴类,表面油很多,无除油工序,整筐约50kg工件浸在浓盐酸中10min后、水洗入槽氰化镀锌,出光后发雾、无法兰白色钝化。当即找来洗衣粉代替除油剂用温水泡溶解将工件除油后、水洗、酸洗、水洗入槽镀锌,出光后发雾现象减轻很多,说明油污是祸首、以前带入氰化镀锌槽液中油污仍很多,去除氰化槽液中油污很难,笔者试用CK-778镀锌除杂剂,利用其中铝粉与槽液反应上浮托起油污,不断捞掉上浮物,除掉大部分油污,同时取样分析:氧化锌30g/L,氰化钠高达100g/L,光亮剂太多。询问操作者回答:因发雾,误认为氰化钠太小、光亮剂少,多次加氰化钠、光亮剂。当即取出部分槽液加水稀释、补加氢氧化钠、氧化锌,按正常工艺,全部合格。某厂为玛钢(铸铁类)电镀锌,

氯化物镀锌常见故障处理

氯化物镀锌常见故障处理 1镀层发花或起泡,结合力差 产生原因:前处理除油除锈不净。 应加强镀前处理,选择良好的化学除油、电解除油工序和酸洗除锈工序。 2镀层光亮度差 产生原因:①光亮剂不足;②镀液中有机杂质污染。应通过霍耳槽试验确定补给光亮剂和开缸剂的补充量,通常霍耳槽试片高中区镀层光亮度差,就必须补加开缸剂,若试片低区镀层光亮度差,甚至发暗,则必须补加光亮补给剂。若补充光亮剂后无济于事,则可能是有机杂质的污染,必须用活性炭处理后再补加光亮添加剂。 3镀层易烧焦,电流密度开不大 产生原因:①镀液pH值高;②锌含量过低;③硼酸含量低。可通过分析镀锌液的成分进行调整,消除上述故障。 4镀层粗糙有麻点 产生原因:镀液中有固体杂质。过滤镀液可消除上述故障。注意镀锌阳极必须加套阳极袋。 5镀层覆盖能力差,孔内及凹处无镀层 产生原因:①光亮剂不足。可通过霍耳槽试验确定光亮剂的补充量。②镀液中氯化钾(钠)含量过低。可通过化学分析,调整氯化钾(钠)含量。③镀液温度过高;暂停生产或采用冷却措施,降低槽液温度。④铅杂质污染。通过霍耳槽试验确定后用锌粉处理或小电流电解处理。同时重要的是要查明引入铅杂质的原因--检查氯化锌和锌阳极的纯度。 6镀层灰暗 氯化物镀锌零件用稀硝酸出光后,低电流密度区发黑发暗的原因:镀液中有铜杂质。可以往镀液中加锌粉处理或小电流电解处理,消除铜杂质的影响。 7镀层有白雾、黑点 稀硝酸出光后,高电流密度区发黑或呈棕色。产生原因:镀液中有铁杂质。可用双氧水处理过滤。 8光亮剂消耗量增大

产生原因:①镀液温度高。最好采用冷却措施将降低槽液温度或采用间歇生产;②镀液中氯化钾、氯化锌含量过高,使镀液浊点降低,光亮剂析出。通过分析镀液成分,稀释镀液;③工件除油不净,将大量油污带入镀液中,消耗光亮添加剂中的载体光亮剂。保证镀锌零件电镀前除油要彻底。 9镀层有条纹 产生原因:①光亮剂失调,配槽时添加剂严重不足。可通过霍耳槽试验,补充添加剂的用量。②有机杂质的污染。可用活性炭处理后过滤。 10综合因素引起的氯化物镀锌故障及处理实例 某采用钾盐镀锌的大型灯头镀锌厂,在连续高温高热天气下生产,出现了严重的镀锌故障,也造成了很大经济损失。 1.故障特征 1)灯头镀层质量差 灯头表面的镀锌层太薄,最薄处只有l.0μm左右,而且电镀时间延长,还难达到镀层厚度要求。螺口灯头镀锌层经常出现发黄、发青、发暗,插口灯头镀锌层表面经常出现花纹斑、条纹斑等,灯头内孔镀层亮度不够,经常出现发雾、斑迹等现象。而且镀锌层的耐蚀性差,镀锌灯头产品储存不久,就会产生锈蚀、白点等现象。 2)镀液中光亮添加剂消耗过快 生产过程中还发现光亮添加剂的消耗比原来生产添加量明显增多,并且在镀槽底部形成了很厚的一层沉淀物。 3)电镀电压高、电流上不去 不管新配的镀液,还是经过大处理的老镀液,生产2个月左右,就会出现槽电压升高、电流开不大的现象。延长电镀时间也很难达到厚度要求,造成镀液的生产不稳定。 2.故障产生的原因 1)电镀药品原料的影响 首先对镀锌生产中使用的化工原材料,逐一进行工艺试验筛选,有疑问的要进行化验鉴定,如发现所用的氯化锌中,金属杂质含量严重超标。 2)镀槽材料的影响

几种常见金属表面处理工艺

金属表面处理种类简介 电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。电泳工艺优于其他涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。 发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。 发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制造中,常用的是发蓝处理;在工业生产中,常用的是发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 发蓝(发黑)的操作流程:

镀锌钝化技术

镀锌钝化 钝化原理 在盛有镀锌液的镀槽中,经过清理和特殊预处理的待镀件作为阴极,用镀覆金属制成阳极,两极分别与直流电源的正极和负极联接。镀锌液由含有镀覆金属的化合物、导电的盐类、缓冲剂、pH调节剂和添加剂等的水溶液组成。通电后,镀锌液中的金属离子,在电位差的作用下移动到阴极上形成镀层。阳极的金属形成金属离子进入镀锌液,以保持被镀覆的金属离子的浓度。在有些情况下,如镀铬,是采用铅、铅锑合金制成的不溶性阳极,它只起传递电子、导通电流的作用。电解液中的铬离子浓度,需依靠定期地向镀液中加入铬化合物来维持。镀锌时,阳极材料的质量、镀锌液的成分、温度、电流密度、通电时间、搅拌强度、析出的杂质、电源波形等都会影响镀层的质量,需要适时进行控制。 在彩色钝化的配方中,钝化液总是带酸性的。在酸性介质中,锌层会与之起化学反应。这里主要反应是金属锌镀层与钝化液中铬酸之间的氧化和还原反应。锌作为还原剂,将作为氧化剂的铬酸还原成三价铬。钝化膜其实是三价铬和六价铬与锌发生氧化还原反应后的化合物。其中三价铬与锌的化合物呈蓝绿色,六价铬与锌的化合物呈赭红色或棕黄色。由于不同色素的组合和相互干扰的结果,形成了锌彩色钝化膜绚丽多彩、具有彩虹色的美丽色调。三价铬化合物一般不溶于水,强度也高,在钝化膜中起骨架作用。六价铬化合物易溶解于水,尤其易在热水中溶解,在干燥前膜层不坚牢。它依附在三价铬化合物的骨架上,填充了其空间的部分,所以可形象地譬如它为“肉”。有了肉并有骨架的支撑,这样才能使钝化膜显得丰满。 提高镀锌钝化耐腐蚀的途径 (1)镀层厚度。可供牺牲腐蚀的锌越多,抗蚀性越耐久。热镀锌层厚度难低于300μm,而电镀锌仅(5-25)μm,故热镀锌即使不经钝化,抗蚀力也很好,但加工成本高、色调单一。 (2)锌层纯度。镀锌层纯度越高,自身形成微电池腐蚀越小,越“结实”而不易牺牲。纯度依氰化镀锌、碱性锌酸盐镀锌、微酸性氯化物镀锌次序而下降,后者最差。 (3)镀锌后钝化的好坏。优良的六价铬彩钝比白钝抗生白锈时间要

电镀故障

电镀故障及处理 一:滚镀故处理: 1.镀不上镀层: 1).电流太小: 2)电流很大但镀不上镀层:绝缘损坏,钢槽带电消耗电能 3)添加剂过量镀不上:阴滞金属沉积速度. 2.镀件发黑: 1).杂质引起:大量铁杂质引起镀液电阻过高,消耗一部分电流,出现低电流密度处发黑.增加电 流镀层就会发亮. 2).电流过大,引起击伤.故应先断电再出槽.在小电流下继续电镀,黑点可消除. 二:锌镉镀层长毛霜: 1.原因:镀层在高温,高湿,空气不流通下,与有机气体接触,易产生腐蚀,其产物就是这种白色粘状 物,主要为锌镉的氧化物,碳酸盐,氢氧化物,以及有机脂肪酸盐. 2.对策:严格工艺程序,提高清洗工序的质量,加强烘干工序的温度和时间控制,加强油封工序的 操作,选择适当的包装材料,如聚氯乙烯,聚乙烯薄膜,或涂复如下成分的有机涂层: (苯骈三氮唑0.5%;丙烯酸清漆95%; 环氧树脂4.5%) 30%+(二甲苯6份; 正丙醇3份; 环己酮1 份)70%,混合后涂刷,浸涂均可. 三::氰化物镀锌故障: 1:一串零件的下部出现暗色条纹,电流大时,零件边角烧焦,镀层粗糙,凹处无锌层,电流小时,则零件无镀层或镀层很薄,槽液均镀能力和深镀能力极差,无法进行生产.分析原因,可能是: 1.NaCN和NaOH的含量不变而锌离子含量相对增加; 2.NaCN含量偏低,引起Zn(CN)4(2-) 络离子不稳定;3.NaOH含量过低以及严重杂质的影响时,均能引起槽液的均镀能力及深镀能力下降. 实际情况是:电镀用阳极板上不均匀分布着成块,成粒状的黑色物质,其原因是浇铸过程中产生的焦化的有机物及金属杂质(而该板已使用近一年).故直接过滤后调整好成分即可电镀四:氯化钾镀锌故障: 1:氯化钾镀锌彩钝膜采用超低铬钝化免清洗工艺解决膜脱落问题: 氯化钾镀锌属单盐体系,镀液中无铬合物存在,靠添加多种有机物的组合添加剂来增加阴极极化,镀层中有不同程度的有机物夹杂.镀液的整平性能远远优于锌酸盐或铵盐镀锌,镀层表面很光滑整,故钝化膜的附着力较差.一般脱膜处的膜层较其余部分厚,膜层疏松结合力差.因此,减慢成膜速度,让膜层厚度适中且均匀是关键.工件上残留的钝化液在干燥过程中继续慢慢钝化,可使工件在钝化液中停留时间缩短,且膜层厚度均匀,结合力增加. 配方:CrO3 1-2g/L; HNO3 2-3ml/L; H2SO4 0.3-0.4ml/L; CH3COOH 3-5ml/L;KMnO4 0.1-0.5g/L;PH=1-1.5; 15-25s 注意:钝化时一出现金黄色即可,在十燥过程中逐渐出现彩虹色.不可将色泽钝得过深,否则膜厚面无光也易脱落.钝化出槽后最好进行甩干再烘烤,尽量减少残留钝化液痕迹.使用一段时间后钝化时间延长可补充铬酐0.5-1g/L,光泽度差时可适量补充硝酸.仍差时可另配新液. 2 镀液中铁离子的去除(电镀与环保92.1): 少量铁离子在镀液中影响不大,但积累到1g/L以上 时,会恶化镀层质量。镀液中多量的铁离子杂质会使镀液浑浊变黄,甚至泛红,降低均镀能力和深镀能力,使镀层明显变暗. 使用锌粉置换法效果不大.可用化学法处理:加双氧水将二价铁氧化成三价铁,再加烧碱调PH6.2(有条件加热到60℃可防止提高PH值时生成氢氧化铁沉淀),过滤.如只有铁杂质,也可用柠檬酸掩蔽.柠檬酸和镀液中的铁离子能形成一种可溶性的络合物,即生成淡绿色的,透明清澈的柠檬酸铁络合物.它会使镀液中三价铁离子还原为二价铁离子,通过电镀沉积到镀层中,可防氢氧化铁析出,防镀液浑浊.有些配方中已加入50g/L柠檬酸钾以改善分散能力和深镀能力. 3:镀锌钝化不合格返修:可示重新电镀,而经过下述工序: 退膜(10%NaOH)----水洗----出光----钝化 对低铬钝化:退膜(10%硫酸)---水洗---出光---钝化.(退膜时间不可过长:表面发黑即可) 4:铸铁镀锌: 高温除碳----喷砂----酸洗----混合酸洗------- 五:锌酸盐镀锌

表面钝化处理工艺

表面钝化处理工艺-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

钝化是将金属置于亚硝酸盐、硝酸盐、铬酸盐或重铬酸盐溶液中处理,使金属表面生成一层铬酸盐钝化膜的过程。常作为锌、镉镀层的后处理,提高镀层的耐蚀性;有色金属的防护;提高漆膜的附着力等。 铁、铝在稀HNO3或稀H2SO4中能很快溶解,但在浓HNO3或浓H2SO4中溶解现象几乎完全停止了,碳钢通常很容易生锈,若在钢中加入适量的Ni、Cr,就成为不锈钢了。金属或合金受一些因素影响,化学稳定性明显增强的现象,称为钝化。由某些钝化剂(化学药品)所引起的金属钝化现象,称为化学钝化。如浓HNO3、浓H2SO4、HClO3、K2Cr2O7、KMnO4等氧化剂都可使金属钝化。金属钝化后,其电极电势向正方向移动,使其失去了原有的特性,如钝化了的铁在铜盐中不能将铜置换出。此外,用电化学方法也可使金属钝化,如将Fe置于H2SO4溶液中作为阳极,用外加电流使阳极极化,采用一定仪器使铁电位升高一定程度,Fe就钝化了。由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。 金属处于钝化状态能保护金属防止腐蚀,但有时为了保证金属能正常参与反应而溶解,又必须防止钝化,如电镀和化学电源等。 金属是如何钝化的呢其钝化机理是怎样的首先要清楚,钝化现象是金属相和溶液相所引起的,还是由界面现象所引起的。有人曾研究过机械性刮磨对处在钝化状态的金属的影响。实验表明,测量时不断刮磨金属表面,则金属的电势剧烈向负方向移动,也就是修整金属表面可引起处在钝态金属的活化。即证明钝化现象是一种界面现象。它是在一定条件下,金属与介质相互接触的界面上发生变化的。电化学钝化是阳极极化时,金属的电位发生变化而在电极表面上形成金属氧化物或盐类。这些物质紧密地覆盖在金属表面上成为钝化膜而导致金属钝化,化学钝化则是像浓HNO3等氧化剂直接对金属的作用而在表面形成氧化膜,或加入易钝化的金属如Cr、Ni等而引起的。化学钝化时,加入的氧化剂浓度还不应小于某一临界值,不然不但不会导致钝态,反将引起金属更快的溶解。 金属表面的钝化膜是什么结构,是独立相膜还是吸附性膜呢目前主要有两种学说,即成相膜理论和吸附理论。成相膜理论认为,当金属溶解时,处在钝化条件下,在表面生成紧密的、复盖性良好的固态物质,这种物质形成独立的相,称为钝化膜或称成相膜,此膜将金属表面和溶液机械地隔离开,使金属的溶解速度大大降低,而呈钝态。实验证据是在某些钝化的金属表面上,可看到成相膜的存在,并能测其厚度和组成。如采用某种能够溶解金属而与氧化膜不起作用的试剂,小心地溶解除去膜下的金属,就可分离出能看见的钝化膜,钝化膜是怎样形成的当金属阳极溶解时,其周围附近的溶液层成分发生了变化。一方面,溶解下来的金属离子因扩散速度不够快(溶解速度快)而有所积累。另一方面,界面层中的氢离子也要向阴极迁移,溶液中的负离子(包括OH-)向阳极迁移。结果,阳极附近有OH-离子和其他负离子富集。随着电解反应的延续,处于紧邻阳极界面的溶液层中,电解质浓度有可能发展到饱和或过饱和状态。于是,溶度积较小的金属氢氧化物或某种盐类就要沉积在金属表面并形成一层不溶性膜,这膜往往很疏松,它还不足以直接导致金属的钝化,而只能阻碍金属的溶解,但电极表面被它覆盖了,溶液和金属的接触面积大为缩小。于是,就要增大电极的电流密度,电极的电位会变得更正。这就有可能引起OH-离子在电极上放电,其产物(如OH-)又和电极表面上的金属原子反应而生成钝化膜。分析得知大多数钝化膜由金属氧化物组成(如铁之Fe2O3),但少数也有由氢氧化物、铬酸盐、磷酸盐、硅酸盐及难溶硫酸盐和氯化物等组成。 吸附理论认为,金属表面并不需要形成固态产物膜才钝化,而只要表面或部分表面形成一层氧或含氧粒子(如O2-或OH-)的吸附层也就足以引起钝化了。这吸附层虽只有单分子层厚薄,但由于氧在金属表面

相关文档
相关文档 最新文档