文档库 最新最全的文档下载
当前位置:文档库 › 高中平面解析几何知识点总结(直线、圆、椭圆、曲线)

高中平面解析几何知识点总结(直线、圆、椭圆、曲线)

高中平面解析几何知识点总结(直线、圆、椭圆、曲线)
高中平面解析几何知识点总结(直线、圆、椭圆、曲线)

高中平面解析几何知识点总结

一.直线部分

1.直线的倾斜角与斜率:

(1)直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.

倾斜角[0,180),90斜率不存在.

(2)直线的斜率:k

y y

21xxk

(12),

xx

21

t an

.两点坐标为P1(x1,y1)、P2(x2,y2).

2.直线方程的五种形式:

(1)点斜式:()

yy1kxx(直线l过点(,)

P1xy,且斜率为k).

111

注:当直线斜率不存在时,不能用点斜式表示,此时方程为xx0.(2)斜截式:ykxb(b为直线l在y轴上的截距).

y y

1 x x

1

yyxx (3)两点式:21

21 (y1y2,xx).

12

注:①不能表示与x轴和y轴垂直的直线;

②方程形式为:(x)()()()0时,方程可以表示任意直线.

2xyyyyxx

11211

x

y

1

a

b

(4)截距式:

(a,b分别为x轴y轴上的截距,且a0,b0).注:不能表示与x轴垂直的直线,也不能表示与y轴垂直的直线,特别是不能表示过原点的直线.

(5)一般式:AxByC0(其中A、B不同时为0).

AC

yx

一般式化为斜截式:B

B

A

k

,即,直线的斜率:B

注:(1)已知直线纵截距b,常设其方程为ykxb或x0.

已知直线横截距x0,常设其方程为x myx(直线斜率k存在时,m为k的倒数)或y0.

已知直线过点(x0,y0),常设其方程为y k(xx)y或

00 x x.

(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直

线一般不重合.

-1-

3.直线在坐标轴上的截矩可正,可负,也可为0.

(1)直线在两坐标轴上的截距相等直线的斜率为1或直线过原点.

(2)直线两截距互为相反数直线的斜率为1或直线过原点.

(3)直线两截距绝对值相等直线的斜率为1或直线过原点.

4.两条直线的平行和垂直:

(1)若l1:yk1xb1,

l2:yk2xb2

,有

①l1//l2k1k2,b1b2;②l1l2k1k21.

(2)若:0

l1AxByC,:0

l2AxByC,有

111222

①l1//l2A1B2A2B1且A1C2A2C1;②1lAABB0

l.

21212 5.平面两点距离公式:

(1)已知两点坐标P1(x1,y1)、P2(x2,y2)

,则两点间距离

2

P

1P(xx)(yy)

21212

2

(2)x轴上两点间距离:ABx B x A.

x 0 x

1

2

x2

(3)线段P1P2的中点是(,)

Mx0y

y

1

y

,则2

y

2

6.点到直线的距离公式:

点(,)

Px0y

Ax

By

C

d

2

2

到直线l:AxByC0的距离:

A

B

7.两平行直线间的距离公式:

两条平行直线l1:AxByC0,l:AxByC0的距离:

122 d

C

1

2

A

C

2

2

B

8.直线系方程:

(1)平行直线系方程:

①直线ykxb中当斜率k一定而b变动时,表示平行直线系方程.

②与直线l:AxByC0平行的直线可表示为A xByC

10

③过点P(x0,y0)与直线l:AxByC0平行的直线可表示为:A(xx)B(yy)0

00 .

-2-

(2)垂直直线系方程:

BxAyC10

①与直线l:AxByC0垂直的直线可表示为

②过点P(x0,y0)与直线l:AxByC0垂直的直线可表示为:B(xx)A(yy)0

00 .(3)定点直线系方程:

①经过定点P0(x0,y0)的直线系方程为y y0k(xx0)(除直线x x),其中k是待定的

系数.

②经过定点P0(x0,y0)的直线系方程为A xxByy,其中A,B是待定的系数.

()()0

00

(4)共点直线系方程:经过两直线l:0,:0交点的直线系

1AxByClAxByC

1112222

方程为()0

A1xByCAxByC(除开

11222 l),其中λ是待定的系数.2

9.两条曲线的交点坐标:

曲线C1:f(x,y)0与C2:g(x,y)0

的交点坐标方程组f(x,y)0

g(x,y)0

的解.

10.平面和空间直线参数方程:

①平面直线方程以向量形式给出:

x a

n

1 y b

n

2

方向向量为sn1

n下面推导参数方程:

2

x 令:

a

n

1

y b

n

2

t

则有

x

y

a

b

nt

1

nt

2

②空间直线方程也以向量形式给出:

x a

n

1 y b

n

2

zb

n

3

方向向量为sn1,n

,n下面推导参数方程:

23

x 令:

a

n

1

y b

n

2

zc

n

3

t

则有

x

y

z

a

b

c

nt

1

n

2

t

nt

3

注意:只有封闭曲线才会产生参数方程,对于无限曲线,例如二次函数一般不会有化为如

上的参数方程。

-3-

二.圆部分1.圆的方程:

(1)圆的标准方程:

2()22 (x a)ybr(r0).

2yDxEyFD2E2F

2

(2)圆的一般方程:x0(40).

(3)圆的直径式方程:若(,)(,)

Ax,,以线段AB为直径的圆的方程是:

1yBxy

122

(xx1)(xx2)(yy1)(yy2)0.

( D

2

,

E

2

)

122

rDE4F

2

注:(1)在圆的一般方程中,圆心坐标和半径分别是

.(2)一般方程的特点:

2

x和

2

y的系数相同且不为零;②没有xy项;③2E24F0

D

2BxyCyDxEyF

2

(3)二元二次方程Ax0表示圆的等价条件是:

2E2AF

①AC0;②B0;③D40.

2.圆的弦长的求法:

(1)几何法:当直线和圆相交时,设弦长为l,弦心距为d,半径为r,

则:“半弦长”——2+弦心距2=半径

2+弦心距2=半径

2

l

22

()dr

2

2

(2)代数法:设l的斜率为k,l与圆交点分别为(,)(,)

Ax1y,Bx y,则

122

2 |AB|1k|

1

x A x|1|yy

B2AB

k

|

(其中||,||

x1xyy的求法是将直线和圆的方程联立消去y或x,利用韦达定理求解)212

3.点与圆的位置关系:

点(,)

Px0y

0 与圆

2()

22

(xaybr的位置关系有三种

)

①P在在圆外

222

dr(x0a)(yb)r.

②P在在圆内

222

dr(x0a)(yb)r.

③P在在圆上

222

dr(x0a)(yb)r.

【P到圆心距离

22

d(ax)(by)

00

4.直线与圆的位置关系:

-4-

直线AxByC0与圆2()

22

(xa)ybr的位置关系有三种:

AaBb

C

d

2B

2

圆心到直线距离为d(

A

),由直线和圆联立方程组消去x(或y)后,所得一元二次方程的判别式为.

dr;

相离

d;

r0

相切

d.

r0

相交

5.两圆位置关系:

设两圆圆心分别为O1,O2,半径分别为r,OOd

1,r12

2

d;

r1r外离4

条公切线2

d r1r

2 内含无公切线

d;

r1r外切3

条公切线2

d r1r

2 内切1

条公切线

r1rdrr

212

相交2

条公切线

.2y2DxEyFD2E2F

x

6.圆系方程:0(40)

2y2DxEyF (1)过直线l:AxByC0与圆C:x0的交点的圆系方程:

2y2DxEyFAxByC

()0

x,λ是待定的系数.

2yDxEyF

2

(2)过圆C1:0

x与圆

111

2y2DxEyF

C:0

x的交点的圆系2

222

方程:

2yDxEyFxyDxEyF

222

x),λ是待定的系数.

(2220111

特别地,当1时,

2222

xyD1xE1yF1(x yD2xE2yF2)0 就是

-5-

(D D)x(EE)y(F F)0表示两圆的公共弦所在的直线方程,即过两圆交点的

121212

直线.

7.圆的切线方程:

(1)过圆

2y2r

2

x上的点(,)

Px0y

的切线方程为:

2

x.

0xyyr 0

(x ayb r上的点(,)

)

2()22Px

0y 0

的切线方程为:

(xa)(x0a)(yb)(yb)r

2

(2)过圆

(3)当点(,)

Px0y

0 在圆外时,可设切方程为yy0k(xx)

,利用圆心到直线距离等于半径,

即dr,求出k;或利用0,求出k.若求得k只有一值,则还有一条斜率不存在的直线x x

0 .

11.圆的参数方程:

22

圆方程参数方程源于:sincos1

22(

xa)(yb)

那么1

22

RR

设:(

x

R

a)

sin

得:xRsin

a

(y

R

b)

cos

y b Rcos

2y2DxEyF2yDxEyF

2

9.把两圆x0与x0方程相减

111222

即得相交弦所在直线方程:()()()0

D1DxEEyFF.

21212 10.对称问题:

(1)中心对称:

①点关于点对称:点(,)

Ax1y关于M(,)的对称点A(2,2).

x0yx0xyy

01011

②直线关于点对称:

法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.

法2:求出一个对称点,在利用l1//l2由点斜式得出直线方程.

(2)轴对称:

-6-

①点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.

AAl

⊥k A k1

·

Al

点A、A关于直线l对称A中点在上

Al A Al方程

中点坐标满足

②直线关于直线对称:(设a,b关于l对称)

法1:若a,b相交,求出交点坐标,并在直线a上任取一点,求该点关于直线l的对称点.若a//l,则b//l,且a,b与l的距离相等.

法2:求出a上两个点A,B关于l的对称点,在由两点式求出直线的方程.

(3)其他对称:

点(a,b)关于x轴对称:(a,-b);

关于y轴对称:(-a,b);

关于原点对称:(-a,-b);

点(a,b)关于直线y=x对称:(b,a);

关于y=-x对称:(-b,-a);

关于y=x+m对称:(b-m、a+m);

关于y=-x+m对称:(-b+m、-a+m).

11.若(,)(,)(,)

Ax1y,Bxy,Cxy

12233

x1xxyyy

23123

,则△ABC的重心G的坐标是33

12.各种角的范围:

直线的倾斜角0180

两条相交直线的夹角090

两条异面线所成的角090

三.椭圆部分

12.椭圆定义:

①到两定点距离之和为一常数的平面几何曲线:即∣MO1∣+∣MO2∣=2a

②或定义:任意一条线段,在线段中任取两点(不包括两端点),将线段两端点置于这两点处,

用一个钉子将线段绷直旋转一周得到的平面几何曲线即为椭圆。

-7-

③从椭圆定义出发得到一个基本结论:椭圆上任意一点引出的两个焦半径之和为常数2a。

13.椭圆性质:

①由于椭圆上任意一点到两点距离之和为常数,所以从A点向焦点引两条焦半径

∣AO1∣+∣AO2∣=∣AO2∣+∣O2B∣=2a

这是因为∣AO1∣=∣O2B∣(由图形比较看出)

②椭圆的标准方程:

2 2 x a

2 y

2

b

1

③椭圆参数方程:

2

22

从圆方程知:xyR

22

圆方程参数方程源于:sincos1

2

2

y

x视为所以按上面逻辑将椭圆方程1

22

ab

x

R sin

xRsin设得:

y

R cos

y Rcos

同理椭圆参数方程为:x

a sin 得:x asin y

b cos

y bcos

④由于两个焦半径和为2a

所以O1COC2a得:

2

OC 1 O C

2

OCOCa

12得:

OCb

OCc

2

a

c

2

b

2

a

2

c

2

b

⑤椭圆离心率,来源于圆的定义:

圆实际上是一种特殊的椭圆,而圆不过是两个焦点与坐标圆点重合罢了。

椭圆离心率为

e c a

-8-

四.双曲线部分

14.双曲线定义:到两定点的距离之差的绝对值为常数的平面几何图形,即:

MO 2MO

1

2a

①双曲线的标准方程:

2 2 x a

2

y

2

b

1

②由于双曲线上任意一点两个焦点之差的绝对值为常数2a.

AQ

2 A Q

1 AB

2a

AQ

2 A Q

1

AB B Q

2

A Q

1

AB 2a

③双曲线的渐近线:

2

bb2

2222 yy由标准方程知:xaxa

2

aa

又y b

a

2

x

2

a

b

a

2

x

b

a

x

y

b

a x

为渐近线,另一条为y b

a

x

以上为渐近线的推导过程。

2

y

2

x 若标准方程为1

22

ba ,那么这时

x

y

a

b

2

y

b

a

x

2

b

a

b

2

y

a

b

y

注意y下面对应b,x下面对应a.

④取x=a及x=-a两条直线,它们与渐近线的两个焦点的连线和y轴的交点称为虚焦点,

该轴称为虚轴。

⑤推导a、b、c之间的关系:

设双曲线上任意一点坐标M(x,y)

-9-

MO

2 (x

2

c)

2

y

MO

1 (x

2

c)

2

y

MO

2 MO

1

(x

2

c)

2

y ( x

2

c)

2

y 2a

2

2

yx

经化简得:1

222

aca

2

2

y

x

222

设:1

cab双曲线标准方程为:

22

ab

222

从而得到

:cab

五.抛物线部分

15.定义:到定点与定直线距离相等的平面曲线称为抛物线。

为了推导抛物线标准式,设:定直线为x=-p,定点为O1(p,0),

(尽管这是一种特殊情况,但同样具有一般性)

①设:抛物线上任意一点坐标为M(x,y)

M点到定直线x=-p的距离为xp

2

M点到定点O(1p,0)的距离为(xp)y

2

xp(x

2

p)

2

y

2 x

2

p 2px

2

x

2

p 2 px

2

y

2

y 4px

②很显然与以前学习的二次函数是一致的,只不过这里自变量变成y,函数变成x;而二次函数自变量是x,函数是y,因而二次函数也是抛物线,同样具有抛物线的性质。

2

如下:y(0)

axbxca

韦达定理:⑴. x

1

x

2

b

a

x

1

x

2

c

a

-10-

2

b4acb ⑵.顶点坐标()

,,推导采用配方法: 2a4a

22

y

a 2 x

b a

x

b 2a b 2a

c

2

a x

b 2a

4ac 4a

2 b

⑶求根公式:

x 1,2 b

2 b 2a

4ac 从而零点坐标为

x 1,0、x ,0。

2

③平移 例如:

( a 、

y 2

1)

2 px 如何平移呢?那就要看 ( y 2

1)

怎么样才可等于零,不

难看出

只有在 y1 y

0时,1

,即向下移动一个单位。

2

y

b 、 2p(x1)(x 1) 同样看如何为零,不难看出x ,即图像向左移动一个单位

1

( c 、

y 2

1) 2 p( x 1) 同样看 ( y 2

1) (

x

1)

y

和及

如何为零,不难看出

1

x

1 ,

即图像想上移动一个单位,向右移动一个单位。 注意,平移部分需要自己琢磨,根据上面三个例子.

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

双曲线知识点复习总结

双曲线知识点总结复习 1.双曲线的定义: (1)双曲线:焦点在x 轴上时1-2222=b y a x (222 c a b =+),焦点在y 轴上时2 222-b x a y =1(0a b >>)。双曲线方程也可设为: 22 1(0)x y mn m n -=>这样设的好处是为了计算方便。 (2)等轴双曲线: (注:在学了双曲线之后一定不要和椭圆的相关内容混淆了,他们之间有联系,可以类比。) 例一:已知双曲线C 和椭圆22 1169 x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。(要分清椭圆和双曲线中的,,a b c 。) 思考:定义中若(1)20a =;(2)122a F F =,各表示什么曲线? 2.双曲线的几何性质: (1)双曲线(以)(0,01-22 22>>=b a b y a x 为例):①范围:x a x a ≥≤-且;②焦点: 两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点 (,0),(0,)a b ±±,其中实轴长为2a ,虚轴长为2b ;④准线:两条准线2 a x c =±;⑤离心 率:c e a =,双曲线?1e >,e 越大,双曲线开口越大;e 越小,双曲线开口越小。⑥通 径22b a (2)渐近线:双曲线22 221(0,0)x y a b a b -=>>的渐近线为: 等轴双曲线的渐近线方程为:,离心率为: (注:利用渐近线可以较准确的画出双曲线的草图) 例二:方程 1112 2=--+k y k x 表示双曲线,则k 的取值范围是___________________ 例三:双曲线与椭圆 164 162 2=+y x 有相同的焦点,它的一条渐近线为x y -=,则双曲线的方程为__________________ 例四:双曲线142 2=+b y x 的离心率)2,1(∈e ,则b 的取值范围是___________________

(完整版)直线与圆知识归纳

直线与圆 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式 能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则 c c f b b f a a f ) (,)(,)(的大小关系

例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组???+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A 直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A o 直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

双曲线知识点归纳总结

双曲线知识点归纳总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2121F F MF MF =-,当2 12 1F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2 AB By Ax =+的方程可化为11122=+ B y A x 当01 ,01 B A ,双曲线的焦点在y 轴上; 当01 ,01 B A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.

初中数学圆知识点总结

A 图5 圆的总结 一 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的部:可以看作是到定点的距离小于定长的点的集合 二 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 三 位置关系: 1点与圆的位置关系: 点在圆 dr 点A 在圆外 2 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d

D B B A B A 四 垂径定理: 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB ⊥CD ③CE=DE ④ ⑤ 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD 五 圆心角定理 六 圆周角定理 圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半 即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB 圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧 即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角 ∴∠C=∠D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径 即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠ C=90° ∴AB 是直径 推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 BC BD =AC AD =

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

全国高考数学一轮复习-椭圆知识点总结

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质 标准方程 122 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目) 离心率 )10(<<= e a c e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)

注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等; ②与坐标系有关的性质,如:顶点坐标、焦点坐标等 知识点三:椭圆相关计算 1.椭圆标准方程中的三个量c b a, ,的几何意义2 2 2c b a+ = 2.通径:过焦点且垂直于长轴的弦,其长 a b2 2 焦点弦:椭圆过焦点的弦。 3.最大角:p是椭圆上一点,当p是椭圆的短轴端点时,2 1 PF F ∠为最大角。 4.椭圆上一点和两个焦点构成的三角形称为焦点三角形。 焦点三角形的面积2 tan 2 2 1 θ b S F PF = ? ,其中2 1 PF F ∠ = θ(注意公式的推导) 5.求椭圆标准方程的步骤(待定系数法). (1)作判断:依据条件判断椭圆的焦点在x轴上还是在y轴上. (2)设方程:

(完整版)双曲线经典知识点总结

双曲线知识点总结班级姓名 知识点一:双曲线的定义在平面内,到两个定点、的距离之差的绝对值等于常数(大于0 且)的动点的轨迹叫作双曲线.这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距. 注意:1. 双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支; 3. 若常数满足约束条件:,则动点轨迹是以F1、F2为端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在; 5.若常数,则动点轨迹为线段F1F2的垂直平分线。 知识点二:双曲线的标准方程 1.当焦点在轴上时,双曲线的标准方程:,其中; 2.当焦点在轴上时,双曲线的标准方程:,其中. 注意:1.只有当双曲线的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到双曲线的标准方程; 2.在双曲线的两种标准方程中,都有; 3.双曲线的焦点总在实轴上,即系数为正的项所对应的坐标轴上.当的系数为正时,焦点在轴上, 双曲线的焦点坐标为,;当的系数为正时,焦点在轴上,双曲线的焦点坐标为, . 知识点三:双曲线的简单几何性质 双曲线(a>0,b>0)的简单几何性质 (1)对称性:对于双曲线标准方程(a>0,b>0),把x换成― x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以双曲线(a>0,b >0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 (2)范围:双曲线上所有的点都在两条平行直线x=―a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a。(3)顶点:①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(―a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,―b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 注意:①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。③实轴和虚轴等长的双曲线称为等轴双曲线。 (4)离心率:①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。 ②因为c>a>0,所以双曲线的离心率。由c2=a2+b2,可得, 所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用来表示 双曲线开口的大小程度。③等轴双曲线,所以离心率。 (5)渐近线:经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线 围成一个矩形(如图),矩形的两条对角线所在直线的方程是,我们把直线叫做双曲线的渐近线。 注意:双曲线与它的渐近线无限接近,但永不相交。 标准方程 图形 性质 焦点,, 焦距 范围,,

双曲线知识点归纳总结

第二章 2.3 双曲线

① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向

右延伸的一条射线;当2 112 F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一 条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 4. 形如)0(12 2πAB By Ax =+的方程可化为11122=+ B y A x 当01 ,01φπB A ,双曲线的焦点在y 轴上; 当01 ,01πφB A ,双曲线的焦点在x 轴上; 5.求双曲线的标准方程, 应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. 6. 离心率与渐近线之间的关系 22 2 22222 1a b a b a a c e +=+== 1)2 1?? ? ??+=a b e 2) 12-=e a b 7. 双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-22 22b y a x 0(≠λ

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1 )定义:在平面直角坐标系中,对于一条与 X 轴相交的直线l , 如果把X 轴绕着交点按逆时针方向转到和直线I 重合时所转的最小正角记为,那么 就叫 做直线的倾斜角。当直线I 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围 0, < 2 一 过点P ( J3,1),Q (0,m )的直线的倾斜角的范围 [―,——],那么m 值的范围是 3 3 (答:m 2 或 m 4) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线 的斜率k ,即k = tan ( 丰90° );倾斜角为90°的直线没有斜率;(2)斜率公式:经过 两点R (x 1,yJ 、卩2&2』2)的直线的斜率为 k a (1,k ),直线的方向向量与直线的斜率有何关系? 如(1)两条直线钭率相等是这两条直线平行的一 X 1 X 2 ; ( 3)直线的方向向量 x 1 x 2 (4)应用:证明三点共线: k AB k BC 。 _________ 条件(答:既不充分也不必要); (2)实数x, y 满足3x 2y 5 0 ( 1 x 3),则上的最大值、最小值分别为 ___________ (答: x (1)点斜式:已知直线过点 (x 0,y 0)斜率为k ,则直线方程为kx b ,它不包括垂直于 x 轴的直线。(3)两点式:已知直 线经过R (X 1,yJ 、卩:化皿)两点,则直线方程为 —―丄 —―生,它不包括垂直于坐 y 2 y 1 X 2 X 1 标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为a,b ,则直线方程为— 1 , a b 它不包括垂直于坐标轴的直线和过原点的直线。(5) 一般式:任何直线均可写成 Ax By C 0(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =( — 1, . 3 ) 的直线的点斜式方程是 _____________________ (答:y 1 V3(x 2) ) ; ( 2 )直线 (m 2)x (2 m 1)y (3m 4) 0 ,不管 m 怎样变化恒过点 _______ (答:(1, 2) ); (3) 若曲线y a | x |与y x a (a 0)有两个公共点,则a 的取值范围是 ____________ (答: a 1) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线, 还 有截距式呢?); (2)直线在坐标轴上的截距可正、 可负、也可为0.直线两截距相等 直线 的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线 两截距绝对值相等 直线的斜率为 1或直线过原点。 如过点A (1,4),且纵横截距的绝对 值相等的直线共有―条(答:3) 4. 设直线方程的一些常用技巧 :(1)知直线纵截距b ,常设其方 程为y kx b ; (2) 知直线横截距X 0,常设其方程为x my x °(它不适用于斜率为 0的直线);(3)知直线过 点 (x °,y °),当斜率k 存在时,常设其方程为 y k (x x 。) y 。,当斜率k 不存在时,则其 方程 如(1)直线xcos .. 3y 2 0的倾斜角的范围是 5 (答:[。,評它,));(2) 1) 3、直线的方程 y y 。 k (x x 0),它不包括垂直于 x 轴的直线。(2)斜截式:已知直线在y 轴上的截距为 b 和斜率k ,则直线方程为y

高中数学解析几何专题之椭圆汇总解析版

圆锥曲线第1讲 椭圆 【知识要点】 一、椭圆的定义 1. 椭圆的第一定义: 平面内到两个定点1F 、2F 的距离之和等于定长a 2( 2 12F F a >)的点的轨迹叫椭圆,这两 个定点叫做椭圆的焦点,两个焦点之间的距离叫做焦距。 注1:在椭圆的定义中,必须强调:到两个定点的距离之和(记作a 2)大于这两个定点之间的距离 2 1F F (记作c 2),否则点的轨迹就不是一个椭圆。具体情形如下: (ⅰ)当c a 22>时,点的轨迹是椭圆; (ⅱ)当c a 22=时,点的轨迹是线段21F F ; (ⅲ)当c a 22<时,点的轨迹不存在。 注2:若用M 表示动点,则椭圆轨迹的几何描述法为 a MF MF 221=+(c a 22>, c F F 221=),即 2 121F F MF MF >+. 注3:凡是有关椭圆上的点与焦点的距离问题,通常可利用椭圆的第一定义求解,即隐含条件: a MF MF 221=+千万不可忘记。 2. 椭圆的第二定义: 平面内到某一定点的距离与它到定直线的距离之比等于常数e (10<>b a ); (2)焦点在y 轴、中心在坐标原点的椭圆的标准方程是122 22=+b x a y (0>>b a ).

注1:若题目已给出椭圆的标准方程,那其焦点究竟是在x 轴还是在y 轴,主要看长半轴跟谁走。长半轴跟x 走,椭圆的焦点在x 轴;长半轴跟y 走,椭圆的焦点在y 轴。 (1)注2:求椭圆的方程通常采用待定系数法。若题目已指明椭圆的焦点的位置,则可设 其方程为12222=+b y a x (0>>b a )或122 22=+b x a y (0>>b a );若题目未指明椭圆的焦 点究竟是在x 轴上还是y 轴上,则中心在坐标原点的椭圆的方程可设为 12 2=+ny mx (0>m ,0>n ,且n m ≠). 三、椭圆的性质 以标准方程122 22=+b y a x (0>>b a )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:a x a ≤≤-,b y b ≤≤-; (2)对称性:关于x 轴、y 轴轴对称,关于坐标原点中心对称; (3)顶点:左右顶点分别为)0,(1a A -,)0,(2a A ;上下顶点分别为),0(1b B ,),0(2b B -; (4)长轴长为a 2,短轴长为b 2,焦距为c 2; (5)长半轴a 、短半轴b 、半焦距c 之间的关系为2 2 2 c b a +=; (6)准线方程:c a x 2 ± =; (7)焦准距:c b 2 ; (8)离心率: a c e = 且10<

双曲线知识点归纳总结.

第二章 2.3 双曲线 双曲线 标准方程(焦点在x 轴) )0,0(122 22>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(122 22>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。 {}a MF MF M 22 1 =-()212F F a < 第二定义:平面内与一个定点F 和一条定直线l 的距离的比是常数e ,当1e >时,动点的轨迹是双曲线。定点F 叫做双曲线的焦点,定直线叫做双曲线的准线,常数e (1e >)叫做双曲线的离心率。 范围 x a ≥,y R ∈ y a ≥,x R ∈ 对称轴 x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中 心 原点(0,0)O 焦点坐标 1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c 焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标 (a -,0) (a ,0) (0, a -,) (0,a ) x y P 1 F 2 F x y P x y P 1F 2F x y x y P 1 F 2 F x y x y P 1F 2F x y P

离心率 e a c e (= >1) 准线方 程 c a x 2 ± = c a y 2 ± = 准线垂直于实轴且在两顶点的内侧;两准线间的距离:c a 2 2 顶点到准线的 距离 顶点1A (2A )到准线1l (2l )的距离为c a a 2 - 顶点1 A (2A )到准线2l (1l )的距离为a c a +2 焦点到准线的 距离 焦点1F (2F )到准线1l (2l )的距离为c a c 2 - 焦点1F (2F )到准线2l (1l )的距离为c c a +2 渐近线 方程 x a b y ±= x b a y ±= 共渐近 线的双曲线系 方程 k b y a x =-2222(0k ≠) k b x a y =-22 2 2(0k ≠) 1. 双曲线的定义 ① 当|MF 1|-|MF 2|=2a 时,则表示点M 在双曲线右支上; 当a MF MF 212=-时,则表示点M 在双曲线左支上; ② 注意定义中的“(小于12F F )”这一限制条件,其根据是“三角形两边之和之差小于第三边”。 若2a =2c 时,即2 12 1F F MF MF =-,当2121F F MF MF =-,动点轨迹是以2F 为端点向 右延伸的一条射线;当2112F F MF MF =-时,动点轨迹是以1F 为端点向左延伸的一条射线; 若2a >2c 时,动点轨迹不存在. 2. 双曲线的标准方程判别方法是: 如果2x 项的系数是正数,则焦点在x 轴上; 如果2y 项的系数是正数,则焦点在y 轴上. 对于双曲线,a 不一定大于b ,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 3. 双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<.

直线与圆知识点总结

直线和圆知识点总结 1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。当直线l 与x 轴重合或平行时,规定倾斜角为0;(2)倾斜角的范围[)π,0。如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66 ,,π ππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[π πα∈值的范围是______ (答:42≥-≤m m 或) 2、直线的斜率:(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k = , 直线的方向向量与直线的斜率有何关系?(4)应用:证明三点共线: AB BC k k =。如(1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要);(2)实数,x y 满足3250x y --= (31≤≤x ),则 x y 的最大值、最小值分别为______(答:2,13 -) 3、直线的方程:(1)点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为 00()y y k x x -=-,它不包括垂直于x 轴的直线。 (2)斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。(3)两点式:已知直线经 过111(,)P x y 、222(,)P x y 两点,则直线方程为1 21121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。(4)截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+b y a x ,它不包括垂直于坐标轴的直线和过原点的直线。(5)一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。如(1)经过点(2,1)且方向向量为v =(-1,3) 的直线的点斜式方程是___________(答:1(2)y x -=-);(2)直线(2)(21)(34)m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);(3)若曲线||y a x =与(0)y x a a =+>有两个公共点,则a 的取值范围是_______(答:1a >) 提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等?直线的斜率为-1或直线过原点;直线两截距互为相反数?直线的斜率为1或直线过原点;直线两截距绝对值相等?直线的斜率为1±或直线过原点。如过点(1,4)A ,且纵横截距的绝对值相等的直线共有___条(答:3) 4.设直线方程的一些常用技巧:(1)知直线纵截距b ,常设其方程为y kx b =+;(2)知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);(3)知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;(4)与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=;(5)与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

相关文档
相关文档 最新文档