文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)清华大学杨顶辉数值分析第6次作业

(完整word版)清华大学杨顶辉数值分析第6次作业

(完整word版)清华大学杨顶辉数值分析第6次作业
(完整word版)清华大学杨顶辉数值分析第6次作业

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

(完整版)数值分析第一次作业

问题1:20.给定数据如下表: 试求三次样条插值S(x),并满足条件 (1)S`(0.25)=1.0000,S`(0.53)=0.6868; (2)S ’’(0.25)=S ’’(0.53)=0。 分析:本问题是已知五个点,由这五个点求一三次样条插值函数。边界条件有两种,(1)是 已知一阶倒数,(2)是已知自然边界条件。 对于第一种边界(已知边界的一阶倒数值),可写出下面的矩阵方程。 ????????????????=???????? ?? ??? ???????????????????4321043210343 22 110d M M M M M 2000200 00 02 002 2d d d d λμμλμλμλ 其中μj = j 1-j 1-j h h h +,λi= j 1-j j h h h +,dj=6f[x j-1,x j ,x j+1], μn =1,λ0=1 对于第一种边界条件d 0= 0h 6(f[x 0,x 1]-f 0`),d n =1 -n h 6 (f`n-f `[x n-1,x n ]) 解:由matlab 计算得: 由此得矩阵形式的线性方程组为: ? ? ????????????=???????????????????????? ?????? 2.1150-2.4286-3.2667-4.3143-5.5200-M M M M M 25714.0000 120 4286.0000 04000.02 6000.0006429.023571.00 012 43210 解得 M 0=-2.0286;M 1=-1.4627;M 2= -1.0333; M 3= -0.8058; M 4=-0.6546 S(x)= ??? ????∈-+-+-∈-+-+-∈-+-+-∈-+-+-]53.0,45.0[x 5.40x 9.1087x 35.03956.8.450-x 1.3637-x .5301.67881- ]45.0,39.0[x 9.30x 11.188x 54.010.418793.0-x 2.2384 -x .450(2.87040-]39.0,30.0[x 03.0x 6.9544x 9.30 6.107503.0-x 1.9136-x .3902.708779 -]30.0,25.0[x 5.20x 10.9662x 0.3010.01695.20-x 4.8758-x .3006.76209-333 33 33 3),()()()(),()()()),()()()(),()()()( Matlab 程序代码如下:

数值分析第一次作业及参考答案

数值计算方法第一次作业及参考答案 1. 已测得函数()y f x =的三对数据:(0,1),(-1,5),(2,-1), (1)用Lagrange 插值求二次插值多项式。(2)构造差商表。(3)用Newton 插值求二次插值多项式。 解:(1)Lagrange 插值基函数为 0(1)(2)1 ()(1)(2)(01)(02)2 x x l x x x +-= =-+-+- 同理 1211 ()(2),()(1)36 l x x x l x x x = -=+ 故 2 20 2151 ()()(1)(2)(2)(1) 23631 i i i p x y l x x x x x x x x x =-==-+-+-++=-+∑ (2)令0120,1,2x x x ==-=,则一阶差商、二阶差商为 011215 5(1) [,]4, [,]20(1) 12 f x x f x x ---= =-= =----- 0124(2) [,,]102 f x x x ---= =- 实际演算中可列一张差商表: (3)用对角线上的数据写出插值多项式 2 2()1(4)(0)1*(0)(1)31P x x x x x x =+--+-+=-+ 2. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使 截断误差不超过6 10-,问使用函数表的步长h 应取多少 解: ()40000(), (),[4,4],,,, 1.x k x f x e f x e e x x h x x h x x th t ==≤∈--+=+≤考察点及

(3) 2000 4 43 4 3 () ()[(()]()[()] 3! (1)(1) (1)(1) 3!3! .(4,4). 6 f R x x x h x x x x h t t t e t h th t h e h e ξ ξ =----+ -+ ≤+??-= ≤∈- 则 4 36 ((1)(1) 100.006. t t t h - -+± << Q在点 得 3.求2 () f x x =在[a,b]上的分段线性插值函数() h I x,并估计误差。 解: 22 22 11 1 111 22 11 11 1 () () k k k k h k k k k k k k k k k k k k k k k k k x x x x x x I x x x x x x x x x x x x x x x x x x x x x ++ + +++ ++ ++ + --- =+= --- ?-? -=+- - [] 2 11 22 11 ()()()[()] 11 ()() 44 h h k k k k k k k k R x f x I x x x x x x x x x x x x x h ++ ++ =-=-+- =--≤-= 4.已知单调连续函数() y f x =的如下数据 用插值法计算x约为多少时() 1. f x=(小数点后至少保留4位) 解:作辅助函数()()1, g x f x =-则问题转化为x为多少时,()0. g x=此时可作新 的关于() i g x的函数表。由() f x单调连续知() g x也单调连续,因此可对() g x的数值进行反插。的牛顿型插值多项式为 1()0.110.097345( 2.23)0.451565( 2.23)( 1.10) 0.255894( 2.23)( 1.10)(0.17) x g y y y y y y y - ==-+++++ -++-

数值分析作业

第二章 1. 题目:运用MATLAB编程实现牛顿迭代 2. 实验操作 1、打开MATLAB程序软件。 2、在MATLAB中编辑如下的M程序。 function [p1,err,k,y]=newton(f,df,p0,delta,max) %f 是要求根的方程(f(x)=0); %df 是f(x)的导数; %p0是所给初值,位于x*附近; %delta是给定允许误差; %max是迭代的最大次数; %p1是newton法求得的方程的近似解; %err是p0的误差估计; %k是迭代次数; p0 for k=1:max p1=p0-feval('f',p0)/feval('df',p0); err=abs(p1-p0); p0=p1; k p1 err y=feval('f',p1) if (err> newton('f','df',1.2,10^(-6),20) 3.实验结果

p0 = 1.2000 k =1 p1=1.1030 err=0.0970 y=0.0329 k= 2 p1=1.0524 err=0.0507 y=0.0084 k =3 p1=1.0264 err=0.0260 y=0.0021 k =4 p1=1.0133 err=0.0131 y=5.2963e-004 k =5 p1=1.0066 err=0.0066 y=1.3270e-004 k =6 p1=1.0033 err=0.0033 y=3.3211e-005 k =7 p1=1.0017 err=0.0017 y=8.3074e-006 k =8 p1=1.0008 err=8.3157e-004 y = 2.0774e-006 k =9 p1=1.0004 err=4.1596e-004 y =5.1943e-007 k=10 p1=1.0002 err=2.0802e-004 y= 1.2987e-007 k=11 p1=1.0001 err=1.0402e-004 y =3.2468e-008 k=12 p1=1.0001 err=5.2014e-005 y=8.1170e-009 k=13 p1=1.0000 err=2.6008e-005 y= 2.0293e-009 k=14 p1=1.0000 err=1.3004e-005 y=5.0732e-010 k=15 p1 =1.0000 err=6.5020e-006 y=1.2683e-010 k=16 p1 =1.0000 err=3.2510e-006 y=3.1708e-011 k=17 p1 =1.0000 err=1.6255e-006 y =7.9272e-012 k=18 p1 =1.0000 err =8.1279e-007 y= 1.9820e-012 ans = 1.0000 结果说明:经过18次迭代得到精确解为1,误差为8.1279e-007。

数值分析作业答案part

6.4.设??? ? ? ??=5010010a b b a A ,0det ≠A ,用a ,b 表示解线性方程组f Ax =的雅可比迭代与 高斯—塞德尔迭代收敛的充分必要条件。 解 雅可比迭代法的迭代矩阵 ? ??? ??? ? ??----=???? ? ??----????? ??=-050100100100000001010101 a b b a a b b a B J , ?? ? ?? -=-1003||2ab B I J λλλ,10||3)(ab B J = ρ。 雅可比迭代法收敛的充分必要条件是3 100 ||

数值分析大作业三四五六七完整版

数值分析大作业三四五 六七 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

大 作 业 三 1. 给定初值 0x 及容许误差 ,编制牛顿法解方程f (x )=0的通用 程序. 解:Matlab 程序如下: 函数m 文件: function Fu=fu(x) Fu=x^3/3-x; end 函数m 文件: function Fu=dfu(x) Fu=x^2-1; end 用Newton 法求根的通用程序 clear; x0=input('请输入初值x0:'); ep=input('请输入容许误差:'); flag=1; while flag==1 x1=x0-fu(x0)/dfu(x0); if abs(x1-x0)

end m=m+1; x0=x1; end if flag1==1||abs(x0)>=ep flag=0; end end fprintf('最大的sigma 值为:%f\n',sigma); 2.求下列方程的非零根 5130.6651()ln 05130.665114000.0918 x x f x x +?? =- = ?-???解:Matlab 程序为: (1)主程序 clear clc format long x0=765; N=100; errorlim=10^(-5); x=x0-f(x0)/subs(df(),x0); n=1; while nerrorlim n=n+1; else break ; end x0=x; end disp(['迭代次数: n=',num2str(n)]) disp(['所求非零根: 正根x1=',num2str(x),' 负根x2=',num2str(-x)]) (2)子函数 非线性函数f function y=f(x) y=log((513+*x)/*x))-x/(1400*; end (3)子函数 非线性函数的一阶导数df function y=df() syms x1 y=log((513+*x1)/*x1))-x1/(1400*; y=diff(y);

李庆扬-数值分析第五版第7章习题答案(0824)汇编

第7章复习与思考题

求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得 X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何 X 。? [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列 〈X k 1有极限 则称迭代方程收敛,且X* =?(x*)为?(X )的不动点 故称 X k q 二(X k ), k =0,1,2,...为不动点迭代法。 5?什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定 X k 1 二「(X k )(k =0,1,2,...)的收敛阶 P219 设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差 e k = x k - x *满足渐近关系式 —t C,C =const 式 0 e/ 则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。 以收敛阶的大小衡量收敛速度的快慢。 6?什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。 牛顿法: 当| f (X k )卜J 时收敛。 7?什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。 在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。就是弦截法。 收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量) 8?什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229 X - m X k 1 =X k f (X k ) f (X k )

(完整版)《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b );

9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 , 用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 16、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 17、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

研究生《数值分析》课程作业(二) (含答案)

研究生《数值分析》课程作业(二) 姓名: 学号: 专业: 1、据如下函数值表,建立二次的Lagrange 插值多项式及Newton 插值多项式。 20012222()()()()()()() (1)(2)(0)(2)(-0)(1)59 3143 (01)(02)(10)(12(20)(21)22 L x f x l x f x l x f x l x x x x x x x x x =++-----=? +?+?=-+------解: 二次 l agr ange插值 ) Newton 插值多项式: 200100120122()()[,](-)[,,](-)(-) 5559 32(0)(0)(1)32()3 2222 N x f x f x x x x f x x x x x x x x x x x x x x x =++=-?-+--=-+-=-+ ()y f x =2、已知单调连续函数在如下采样点处的函数值 *()0[2,4],f x x =求方程在内根的近似值使误差尽可能小。 解:1 ()()y f x x f y -==解: 对的反函数进行二次插值

1110201122012010210122021(0)(0)(0)(0)(0)(0) (0)() ()() ()()()()()() (0 2.25)(05)(03)(05)(03)(0 2.25) 2 3.54( 3 2.25)(35)(2.253)(2.255)(53)(5 2.25) y y y y y y L f y f y f y y y y y y y y y y y y y ---------=++--------+-+-=? +?+? ----+-+- 2.945 ≈()(1)01(1)1()[,]()(,),()[,],() ()()()() (1)! ,n n n n n n n n f x a b f x a b a x x x b L x x a b f R x f x L x x n a b x ξωξ+++≤<<<≤∈=-=+∈ 3、证明:设在上连续,在内存在,节点是满足拉格朗日插值条件的多项式,则对任何插值余项 这里()且依赖于。 0110101(0,1,,)()()0()()()()()()()()[,]()()()()()()() (),,,(k n n k n n n n n n x k n R x R x R x K x x x x x x x K x x K x x x a b t f t L t K x t x t x t x t x x x x t ωφφφ+===---==----- 证由条件知节点是的零点,即。于是其中是与有关的待定函数。 现把看成上的固定点,作函数 根据插值条件和余项定义,知在点及处均为零。故明:1111)[,]2()[,]1()()[,]()(,)(,),()()(1)!()0 ()()(,),(1)! n n n n a b n t a b n t t a b n t a b a b f n K x f K x a b x n φφφφξφξξξξ++++'+'''+∈=-+==∈+() () ()()在上有个零点,根据罗尔定理,在内至少有个零点。对再应用罗尔定理,可知在内至少 有个零点。依次类推,在上至少有一个零点,记为 使 于是 , 且依赖于于是得到插值余项。 证毕。 44、试用数据表建立不超过次的埃尔米特插值多项式。 解:(用重节点的均差表建立埃尔米特多项式)

几种常用数值积分方法的比较汇总

学科分类号110.3420 州 GUIZHOU NORMAL COLLEGE 本科毕业论文 题目—几种常用数值积分方法的比较_____________ 姓名潘晓祥学号1006020540200 院(系)数学与计算机科学学院 __________________ 专业数学与应用数学年级_____________2010级 指导教师雍进军职称______________________讲师 二O—四年五月

贵州师范学院本科毕业论文(设计)诚信声明本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月曰

贵州师范学院本科毕业论文(设计)任务书

研究方法: 本论文主要通过对相关文献和书籍的参考,合自己的见解,复化求积公式,Newton —Cotes求积公式,Romberg求积公式,高斯型求积公式进行讨论并进行上机实验,从代数精度,求积公式误差等角度对这些方法进行分析比较完成期限和采取的主要措施: 本论文计划用6个月的时间完成,阶段的任务如下: (1) 7月份查阅相关书籍和文献; (2) 8月份完成开题报告并交老师批阅; (3) 9月份完成论文初稿并交老师批阅; (4) 10月份完成论文二搞并交老师批阅; (5) 11月份完成论文三搞; (6) 12月份定稿. 主要措施:考相关书籍和文献,合自己的见解,老师的指导下和同学的帮助下完成 主要参考文献及资料名称: [1] 关治?陆金甫?数学分析基础(第二版) [M].北京:等教育出版社.2010.7 [2] 胡祖炽.林源渠.数值分析[M]北京:等教育出版社.1986.3 [3] 薛毅.数学分析与实验[M] 北京:业大学出版社2005.3 [4] 徐士良.数值分析与算法[M].北京:械工业出版社2007.1 [5] 王开荣.杨大地.应用数值分析[M]北京:等教育出版社2010.7 [6] 杨一都.数值计算方法[M].北京:等教育出版社.2008.4 [7] 韩明.王家宝.李林.数学实验(MATLAB版[M].上海:济大学出版社2012.1 [8] 圣宝建.关于数值积分若干问题的研究[J].南京信息工程大学.2009.05.01. : 42 [9] 刘绪军.几种求积公式计算精确度的比较[J].南京职业技术学院.2009. [10] 史万明.吴裕树.孙新.数值分析[M].北京理工大学出版社.2010.4. 指导教师意见: 签名: 年月日

数值分析作业答案(第5章)

5.1.设A 是对称矩阵且011≠a ,经过一步高斯消去法后,A 约化为 ?? ????21 110 A a a T 证明2A 是对称矩阵。 证明 由消元公式及A 的对称性,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 对称。 5.2.设n ij a A )(=是对称正定矩阵,经过高斯消去法一步后,A 约化为 ?? ????21 110 A a a T 其中1)2(2)(-=n ij a A 。证明: (1).A 的对角元素;,,2,1,0n i a ii => (2).2A 是对称正定矩阵。 证明 (1).因为A 对称正定,所以 n i e Ae a i i ii ,,2,1,0),( =>=, 其中T i e )0,,0,1,0,,0( =为第i 个单位向量。 (2).由A 的对称性及消元公式,有 ,,,3,2,,)2(111 11111 )2(n j i a a a a a a a a a a ji i j ji j i ij ij ==-=- = 故2A 也对称。 又由A L A a a T 121110=????? ?,其中

??? ?????- =? ????? ? ?????????--=-111 1 11111 21101 1011n n I a a a a a a L , 可见1L 非奇异,因而对任意0≠x ,由A 的正定性,有 ,0),(),(,011111>=≠x AL x L x AL L x x L T T T T 故T AL L 11正定。 由,000110211 111121111 1?? ? ?? ?=????????-??????=-A a I a a A a a AL L n T T T 而011>a ,故知2A 正定

数值分析作业题

百度文库-让每个人平等地提升自我 第一章误差与算法 1. 误差分为有模型误差, 观测误差__________ , 方法误差________ , 舍入误差 / , Taylor展开式近似表达函数产生的误差是_ 方法误差. 2. 插值余项是插值多项式的方法误差。 3?作为1/4的近似值,有几位有效数字? 0.2499 0.2499 100,即m 0, 1 |— 0.2499 | 0.0001 0.5 10°30.5 10m n,即n 3 4 22 — 3.1428751...,作为圆周率的近似值,误差和误差限分 别是多少,有几位有效数字? 3.142875 3.1415926 0.0012645 0.5 10 20.5 101 3有3位有效数字. *有效数字与相对误差的关系 4. 利用递推公式计算积分 1 1\ I n x n e x dx,n 1,2,...,9 0,建立稳疋的数值算法。 . 〔nx—〔n^x] n x 1 1〔n 1 x 1 . 彳 . o n I n x e dx x de x e n x e dx 1 nI n 1 ,n 2,...,9 n 0 0 0 0 n

百度文库-让每个人平等地提升自我 该算法是不稳定的。因为: (I n) n (InJ ... ( 1)n n! (IJ 5. 衡量算法优劣的指标有一时间复杂度,__空间复杂度_. 6. 时间复杂度是指:算法需耗费时间的度量.,两个n阶矩阵相乘的乘法次数是nL则 称两个n阶矩阵相乘这一问题的时间复杂度为O(n3). 二代数插值 1. 根据下表数据建立不超过二次的 Lagrange和Newton插值多项 式,并写出误差估计式,以及验证插值多项式的唯一性。 x 0 1 4 f(x) 1 9 3 Lagra nge: 设x0,X1 1,X2 4;则f(x°) 1, f(xj 9, g 3 对应K的标准基函数l i(x)为: l°(x) (0 1))(0 4) 4(x ;)(x 4) h(x) ... J(x) ... 因此,所求插值多项式为:1| 1 io 1 10

数值分析作业答案.doc

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 3 76144 211111114241 13110111)() ()(22 221120 022 2 22 11 120 00-=-= ---==x x x x x x x x x f x x x f x x x f a 2 3694211111114411 31101111)(1)(1 )(122 221120 02 2 22112 001=--= --==x x x x x x x x f x x f x x f a 6 5654 2 1 1111114 2 1 3 11011111) (1)(1)(122 2 21120 022 11 00 2=--= ---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:26 52337)(x x x P ++-= (2)用Lagrange 插值基底 )21)(11() 2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l )21)(11() 2)(1())(())(()(2101201------=----=x x x x x x x x x x x l ) 12)(12() 1)(1())(())(()(1202102+-+-=----= x x x x x x x x x x x l

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析作业答案

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 所以f(x)的二次插值多项式为: 2 6 52337)(x x x P ++-= (2)用Lagrange 插值基底 Lagrange 插值多项式为: 所以f(x)的二次插值多项式为:226 52337)(x x x L ++-= (3) 用Newton 基底: 均差表如下: Newton 所以f(x)的二次插值多项式为:2 2 6 52337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。 6、在44≤≤-x 上给出x e x f =)(的等距节点函数表,若用二次插值求e x 的近似 值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有 式中.,11h x x h x x i i +=-=+- 令 634103 9-≤h e 得00658.0≤h 插值点个数

是奇数,故实际可采用的函数值表步长 8、13)(47+++=x x x x f ,求]2,,2,2[710Λf 及]2,,2,2[810Λf 。 解:由均差的性质可知,均差与导数有如下关系: 所以有:1! 7! 7!7)(]2,,2,2[)7(7 1 === ξf f Λ 15、证明两点三次Hermite 插值余项是 并由此求出分段三次Hermite 插值的误差限。 证明:利用[x k ,x k+1]上两点三次Hermite 插值条件 知)()()(33x H x f x R -=有二重零点x k 和k+1。设 确定函数k(x): 当k x x =或x k+1时k(x)取任何有限值均可; 当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数 显然有 在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得 在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈, ),(212ηηη∈k 和),(123+∈k k x ηη使得 再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得 而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到 推导过程表明ξ依赖于1,+k k x x 及x 综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限: 记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。 n a b h n k kh a x k -==+=),,1,0(,Λ 在区间[x k ,x k+1]上有 而最值)(,16 1)1(max )()(max 4 4221 02121 sh x x h h s s x x x x k s k k x x x l k +== -=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4 x f h x I x f b x a h ≤≤≤ - 16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,

相关文档
相关文档 最新文档