文档库 最新最全的文档下载
当前位置:文档库 › 高等数学上册练习题

高等数学上册练习题

高等数学上册练习题
高等数学上册练习题

高等数学上册练习题集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

高数练习题

一、选择题。 4、1

1lim

1

--→x x x ( )。

a 、1-=

b 、1=

c 、=0

d 、不存在

5、当0→x 时,下列变量中是无穷小量的有( )。

a 、x 1sin

b 、x x

sin c 、12--x d 、x ln

7、()=--→1

1sin lim 21x x x ( )。 a 、1 b 、2 c 、0 d 、2

1

9、下列等式中成立的是( )。

a 、e n n n =??

?

??+∞

→21lim b 、e n n n =?

?? ??++∞→2

11lim

c 、e n n n =??? ??+∞→211lim

d 、

e n n

n =?

?

?

??+∞

→211lim

10、当0→x 时,x cos 1-与x x sin 相比较( )。

a 、是低阶无穷小量

b 、是同阶无穷小量

c 、是等阶无穷小量

d 、是高阶无穷小量

11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) .

(A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x

(B) x

(C)1

ln(12)2x + (D) x (x +2)

14、若函数()f x 在某点0x 极限存在,则( ).

(A )()f x 在0x 的函数值必存在且等于极限值

(B )()f x 在0x 的函数值必存在,但不一定等于极限值

(C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0

lim ()x x f x →+

与0

lim ()x x f x →-

存在,则( ).

(A )0

lim ()x x

f x →存在且00

lim ()()x x

f x f x →=

(B )0

lim ()x x

f x →存在但不一定有00

lim ()()x x

f x f x →=

(C )0

lim ()x x

f x →不一定存在

(D )0

lim ()x x

f x →一定不存在

16、下列变量中( )是无穷小量。

17、=∞→x x

x 2sin lim ( )

2

18、下列极限计算正确的是( ) 19、下列极限计算正确的是( )

A. f(x)在x=0处连续

B. f(x)在x=0处不连续,但有极限

C. f(x)在x=0处无极限

D. f(x)在x=0处连续,但无极限

23、1

lim sin x x x

→∞=( ).

(A )∞ (B )不存在 (C )1 (D )0

24、221sin (1)

lim (1)(2)

x x x x →-=++( ).

(A )13 (B )13

- (C )0 (D )23

25、设1

sin 0()3

0x x f x x a

x ?≠?

=??=?,要使()f x 在(,)-∞+∞处连续,则a =( ). (A )0 (B )1 (C )1/3 (D )3

26、点1x =是函数311

()1131x x f x x x x -

==??->?

的( ).

(A )连续点 (B )第一类非可去间断点 (C )可去间断点 (D )第二类间断点

28

、0()0x f x x

k x -≠=??=?

,如果()f x 在0x =处连续,那么k =( ). (A )0 (B )2 (C )1/2 (D )1

30、设函数()???=x

xe x f x

00≥?x x 在点x=0处( )不成立。

a 、可导

b 、连续

c 、可、连续,不可异

31、函数()x f 在点0x 处连续是在该点处可导的( )。 a 、必要但不充分条件 b 、充分但不必要条件

)

(

, 0 x 1 x 2 0

x 1 x ) x ( f . 20、 2 则下列结论正确的是 设 ?

? ? ? ? ? ? ?

c 、充要条件

d 、无关条件

32、下列函数中( )的导数不等于x 2sin 2

1

a 、x 2sin 21

b 、x 2cos 4

1 c 、x 2cos 21- d 、x 2cos 41

1-

33、设)1ln(2

++=x x y ,则y ′= ( ).

①112++x x ②11

2

+x

③122++x x x ④12

+x x

34、已知44

1

x y =,则y ''=( ).

A. 3x

B. 23x

C. x 6

D. 6

36、下列等式中,( )是正确的。 37、d(sin2x)=( )

A. cos2xdx

B. –cos2xdx

C. 2cos2xdx

D. –2cos2xdx 39、曲线y=e 2x 在x=2处切线的斜率是( ) A. e 4 B. e 2 C. 2e 2

40、曲线11=+=x x y 在处的切线方程是( )

41、曲线

2

2y x x =-上切线平行于x 轴的点是 ( ). A 、 (0, 0) B 、(1, -1) C 、 (–1, -1) D 、 (1, 1)

42、下列函数在给定区间上不满足拉格朗日定理的有( )。 a 、x y = []2,1- b 、15423-+-=x x x y []1,0 c 、()21ln x y += []3,0 d 、2

12x x

y +=

[]1,1- 43、函数23++=x x y 在其定义域内( )。

a 、单调减少

b 、单调增加

c 、图形下凹

d 、图形上凹 44、下列函数在指定区间(,)-∞+∞上单调增加的是( ).

A .sin x

B .e x

C .x 2

D .3 - x

45、下列结论中正确的有( )。

a 、如果点0x 是函数()x f 的极值点,则有()0x f '=0 ;

b 、如果()0x f '=0,则点0x 必是函数()x f 的极值点;

c 、如果点0x 是函数()x f 的极值点,且()0x f '存在, 则必有()0x f '=0 ;

d 、函数()x f 在区间()b a ,内的极大值一定大于极小值。

46、函数()x f 在点0x 处连续但不可导,则该点一定( )。

a 、是极值点

b 、不是极值点

c 、不是拐点

d 、不是驻点 52、函数f(x)=x 3+x 在( )

53、函数f(x)=x 2+1在[0,2]上( )

A.单调增加

B. 单调减少

C.不增不减

D.有增有减 54、若函数f(x)在点x 0处取得极值,则( ) 55、函数f(x)=e x -x-1的驻点为( )。

A. x=0 =2 C. x=0,y=0 =1,e-2 56、若(),0='x f 则0x 是()x f 的( )

A.极大值点

B.最大值点

C.极小值点

D.驻点 57、若函数f (x )在点x 0处可导,则

58、若,)1

(x x f =则()='x f ( )

59、函数x x y -=3

3

单调增加区间是( ) A.(-∞,-1) B.( -1,1) C.(1,+∞) D.(-∞,-1)和(1,+∞) 60、=-?)d(e x x ( ).

A .c x x +-e

B .c x x x ++--e e

C .c x x +--e

D .c x x x +---e e

61、下列等式成立的是( ) .

A .x x x 1d d ln =

B .21d d 1x x x -=

C .x x x sin d d cos =

D .x x x 1

d d 12=

62、若)(x f 是)(x g 的原函数,则( ).

(A )?+=C x g dx x f )()( (B )?+=C x f dx x g )()( (C )?+='C x g dx x g )()( (D )?+='C x g dx x f )()( 64、若?+=c e x dx x f x 22)(,则=)(x f ( ).

(A )x xe 22 (B )x e x 222 (C )x xe 2 (D ))1(22x xe x + 65、设x e -是)(x f 的一个原函数,则?=dx x xf )(( ).

(A )c x e x +--)1( (B )c x e x ++-)1( (C )c x e x +--)1( (D )c x e x ++--)1( 66、若?+=c x dx x f 2)(,则?=-dx x xf )1(2( ).

(A ) c x +-22)1(2 (B ) c x +--22)1(2

(C ) c x +-22)1(2

1 (D ) c x +--22)1(21

67、?=xdx 2sin ( ).

(A )c x +2cos 2

1

(B )c x +2sin

(C )c x +-2cos (D )c x +-2cos 2

1

68、下列积分值为零的是( ) 71、若=+=?)(,2sin )(x f c x dx x f 则

B. 2sin2x

C. -2cos2x

D. -2sin2x 73、若()?=+1

02dx k x ,则k=( )

a 、0

b 、1

c 、1-

d 、2

3 75、?+-=+π

πdx x x e x )sin (2cos ( )

76、?=-2

1dx x

77、无穷积分?+∞=121

dx x

( ) A.∞

31

.C

78、=?-])(arctan [0

2x

dt t dx d ( )。

(A )2arctant 2

11t

+ (B )2)(arctan x - (C ) 2)(arctan x (D )2

)(arctan t - 二、填空题

2、函数x

x x f --

+=21)5ln()(的定义域是 .

3、若2

211

()3f x x x x

+=+

+,则()f x =________. 4、=+∞→x

x

x x sin lim

5、如果0x →时,要无穷小量(1cos )x -与2

sin 2

x

a 等价,a 应等于________. 6、设2

0()()0

ax b

x f x a b x x x +≥?=?++

1

1

-x 的间断点是_____________ 8、1

1

3--=x x y 的间断点是_______________.

9、曲线x y =

在点(4, 2)处的切线方程是 .

10、设)(x f 是可导函数且0)0(=f ,则x

x f x )

(lim

→=________________; 11、曲线x x y arctan +=在0=x 处的切线方程是______________; 12、设由方程0y

x

e e xy -+=可确定y 是x 的隐函数,则0

x dy dx

==

13、函数x y tan =在0=x 处的导数为 ;

14、设x e y 2=, 求 0=''x y =__________________. 15、若函数x y ln =,则y ''=

. 16、函数y x =-312()的驻点是 . 18.指出曲线2

5x x

y -=

的渐近线 . 17、已知)(x f 的一个原函数为x -e ,则)(x f = . 20、?

=-dx x

x 2

)1( .

23、设)(x f 连续,且?

=30

)(x x dt t f ,则=)8(f .

24、20

3

sin lim

x

x t dt x

→=?

25、

1

5xdx -=?

26、若函数3ln =y ,则y '=

. 27、若y = x (x – 1)(x – 2)(x – 3),则y '(0) =

28、函数y x =-312()的单调增加区间是 .

29、过点)3,1(且切线斜率为x 2的曲线方程是y = .

30、函数x xe y -= 的驻点是 ,拐点是 ,凸区间为 ,凹区间为 。

31、=+?dx x x 1

02

2

1______________.

=?)sin (2

1

2dx x dx d . 33.设?=x

tdt x F 1

tan )(,则=')(x F ___________.

34. 设?=2

1

tan )(x tdt x F ,则=')(x F ___________.

36、_______________)3(5

4

2

=-?

x dx

39、?-=+-1

111ln

dx x x

_______________________.

三、计算题 (一)求极限

(1)(

)

432lim 2

1+-→x x x (2)34lim 23--→x x x (3)1

2

3lim 221-+-→x x x x

(4)321lim

3

--+→x x x (5)39lim 9--→x x x (6)22

011lim x

x x +-→

(8)??? ?

?---→1112

lim 21x x x (10)4332lim 22++-∞→x x x x (11)x x x x x 7153lim 23+++∞→ (12)336lim 2+++∞→x x x x (14)??

? ??---→x x x 1113

lim 31 (16)x x x 5sin 3sin lim

0→ (17)x x x x x sin sin 2lim 0+-→ (18)1

)

1sin(lim 21--→x x x

(19)20cos 1lim x x x -→ (20) x x x x sin cos 1lim 0-→(22)x

x x 311lim ??

? ??+∞→ (23)x

x x -∞→???

??+21lim (24)x

x x ??

?

??-∞→21lim (25)()x x x 1031lim +→ (26)()x x x 1021lim -→ (29) ()x x x +→1ln lim 0

(30)30sin lim x x x x -→ (31)x e e x x x -→-0lim (32)x x e x 2lim +∞→ (33)2ln lim x x

x +∞→ (34)??

? ??--→x x x ln 111

lim 1 (35))111(lim 0--→x x e x 1cos )1(lim 0--→x e x x x (二)求导数或微分

(1).求下列函数的导数.

1. x xe y 2=,

2. ,

3. 102)12(+-=x x y ,

4. x y 4sin =,

6.3

x e y =,7. )2sin ln(2++=x x y , 8. 5

sin

cos 712π

++=

x x

y ,9.)32arcsin(+=x y ,

10. )ln(sin x y =, 11. 3)(ln x y =, 12. x x y 2ln 12+=, 13. 2cos 3sin x x y +=,

15.已知?????==-t

t

te

y e

x 2, 求 dx dy , 16. 求由方程F (x,y )=0所确定的隐函数y=f(x)的导数(1)y x y ln = (2)y xe y +=1 (3)y x y ln += (4)122=-+xy y x

(2).求下列函数的微分.

1. x x x y ln sin =, 2. x y 2sin =, 3. x x y 2sin =, 4. )1ln(x e y +=, 5. x xe y cos =, (三)求下列函数的单调区间和极值

(1)159323+--=x x x y (2)1--=x e x y (3)2224+-=x x y (4)x x y -+=1 (四)积分.

1. ?dx e x

2,2. ?

+dx x 1

31,3. ?xdx 2

cos , 4. ?-dx x x 12, 5. ?dx xe x 2, 6. ?xdx x cos sin 3, 7. ?

+dx x x 1ln 12?+dx x

x 21 13. ?-dx e x x x

x )2(, 15. ?dx e x , 16. ?xdx x 2cos , 17.?xdx x sin 2

,21. ?+1

2

3dx x x ,, 24. dx e

x ?-2

11

2,25 20cos x xdx π

??

26. 10x xe dx ?, 27. ?10

arccos xdx , 28. dx x ?π20sin ,29.设???≤<≤≤=-3

1,1

0,)(x e x x x f x , 求dx x f ?30)(, 30.

dx x

?

4

1

1,31. dx x ?

-1

29

41, 32. dx e x

?+∞

-0

,33.?

+∞

∞-+2

1x dx

(五)、定积分的应用

1利用定积分求曲线所围成区域的面积

(1 ) 求曲线x y 2=,直线x=0,x=3和x 轴所围成的曲边梯形的面积; (3)求由曲线2x y =,直线x=0,x=1和x 轴所围成的图形的面积; 2利用定积分求旋转体的体积

(1) 求由连续曲线x y cos =和直线2

,0π

==x x 和x 轴所围成的图形绕x 轴旋转所成旋转体的体

积;

(3)求由曲线轴绕x y x x y ,0,2,3===旋转所得旋转体的体积; (4)求由曲线轴绕y y x x x y ,0,4,1,====旋转所得旋转体的体积。 四、证明。

(1)证明方程0107324=-+-x x x 在1与2之间至少有一个实根;

(2)证明方程12=?x x 至少有一个小于1的正根。 (3)证明方程135=-x x 在(1,2)内至少存在一个实根;

(4)方程sin x a x b =+,其中0,0a b >>,至少有一个正根,并且它不超过a b +.

(5)证明当0>x 时,

x x x

x

<+<+)1ln(1。 (6)证明当1>x 时,x x 1

32->。

(7)已知函数)(x f 在]1,0[上连续,在)1,0(内可导,且1)1(,0)0(==f f 证明:(1)存在)1,0(∈ξ,使得ξξ-=1)(f ;

(2)存在两个不同的点)1,0(,∈ζη,使得1)()(=''ζηf f .

五、应用题

(1)一个圆柱形大桶,已规定体积为V,要使其表面积为最小,问圆柱的底半径及高应是多少 (2)某车间靠墙壁盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大

(3)某地区防空洞的截面积拟建成矩形加半圆。截面的面积为5平方米,问底宽x 为多少时才能使截面的周长最小

(4). 某厂每批生产A 商品x 台的费用为()5200C x x =+(万元),得到的收入为

201.010)(x x x R -=(万元), 问每批生产多少台才能使企业获得最大利润.

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

《高等数学》上册期末考试题附答案

2006-2007学年第一学期 高等数学(A1)试题(A 卷) 一、填空(本题共5小题,每小题3分,满分15分) 1.已知=++=??? ?? +)(,31122x f x x x x f 则 ____________. 2.设)(0x f '存在,则()() =--+→h h x f h x f h 000 lim ____________. 3.设)(x f 的原函数为 x x ln ,则()='?dx x f ____________. 4.向量{}4,3,4-=a 在向量{}1,2,2=b 上的投影是____________. 5. )1(1 )(+= x x x f 按的幂展开到n 阶的泰勒公式是_________ . 二、选择题(本题共5小题,每小题3分,满分15分) 1.设()x f 可导且()2 1 0= 'x f ,当0→?x 时,()x f 在0x 处的微分dy 与x ?比较是( )无穷小. (A ) 等价 (B ) 同阶 (C ) 低阶 (D ) 高阶 2.已知c bx ax x y +++=3323,在1-=x 处取得极大值,点(0,3)是拐点, 则( ). 3,0,1)(3,1,0)(==-==-==c b a B c b a A 均错以上) ( 0,1,3) (D c b a C =-== 3.设)(x f 在[-5,5]上连续,则下列积分正确的是( ). [][]0 )()()(0 )()()(5 5 5 5=--=-+ ??--dx x f x f B dx x f x f A [][]0)()() (0)()() (5 50 =--=-+??dx x f x f D dx x f x f C 4. 设直线L 为 1 2241z y x =-+=-,平面0224:=-+-z y x π 则( ). 上;在;平行于ππL L A )B ()(.(D);)(斜交与垂直于ππL L C 5. 若0532<-b a ,则方程043235=++-c bx ax x ( ) (A ) 无实根; (B ) 有五个不同的实根. (C ) 有三个不同的实根; (D ) 有惟一实根;

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

东南大学高数(上)至年期末考试(附答案)

东南大学高数(上)至年期末考试(附答案)

————————————————————————————————作者:————————————————————————————————日期:

03~10级高等数学(A )(上册)期末试卷 2003级高等数学(A )(上)期末试卷 一、单项选择题(每小题4分,共16分) 1.设函数()y y x =由方程 ? +-=y x t x dt e 1 2 确定,则 ==0 x dx dy ( ) .e 2(D) ; 1-e (C) ; e -1(B) ;1)(+e A 2.曲线41 ln 2+-+ =x x x y 的渐近线的条数为( ) . 0 (D) ; 3 (C) ; 2 (B) ; 1 )(A 3.设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示, 则导函数)(x f y '=的图形为( ) 4.微分方程x y y 2cos 34=+''的特解形式为( ) . 2sin y )( ;2sin 2cos y )(;2cos y )( ;2cos y )( * ***x A D x Bx x Ax C x Ax B x A A =+=== 二、填空题(每小题3分,共18分) 1._____________________)(lim 2 1 =-→x x x x e 2.若)(cos 21arctan x f e x y +=,其中f 可导,则_______________=dx dy 3.设,0, 00 ,1sin )(?????=≠=α x x x x x f 若导函数)(x f '在0=x 处连续,则α的取值范围是__________。

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 221 n n n n n n ππ ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

高等数学大一上学期期中考试题

山东大学2014-2015学年第一学期期中考试 《高等数学(Ⅰ)》试卷 姓名:________ 一、选择题(每题2分,共16分) 1、下列极限存在的是…………………………………………………………( ) (A)x x2 1 lim ∞ → (B) 1 3 1 lim - →x x (C)x e x 1 lim ∞ → (D)x x 3 lim ∞ → 2 x22 x0-ax+bx+1x a b e → 当时,若()是比高阶的无穷小,则,的值是()…( a ) (A)1/2,1 (B)1,1 (C)-1/2,1 (D)-1,1 3、,0 ) ( lim> = → A x f a x ,0 ) ( lim< = → B x g a x 则下列正确的是…………………………( )(A)f(x)>0, (B)g(x)<0, (C)f(x)>g(x) (D)存在a的一个空心邻域,使f(x)g(x)<0。 4、已知,,2 lim)( = →x x f x 则= →) 2x ( sin3x lim f x ………………………………………………( )(A)2/3, (B)3/2 (C)3/4 (D)不能确定。 5、函数f(x)在[a,b]上有定义,在(a,b)内可导,则() (A)当f(a)f(b)<0时,存在ξ∈(a,b),使f(ξ)=0 (B)对任何ζ∈(a,b),有 (C)当f(a)=f(b)时,存在ξ∈(a,b),使f1(ξ)=0 (D)存在ξ∈(a,b),使f(a)-f(b)=f1(ξ)(b-a) 6、下列对于函数y=x cos x的叙述,正确的一个是………………………………………()(A)有界,且是当x趋于无穷时的无穷大,(B)有界,但不是当x趋于无穷时的无穷大,(C)无界,且是当x趋于无穷时的无穷大,(D)无界,但不是当x趋于无穷时的无穷大。 7、下列叙述正确的一个是……………………………………………………………()(A)函数在某点有极限,则函数必有界;(B)若数列有界,则数列必有极限; (C)若,2 lim)2()2( = - - →h h f h f h 则函数在0处必有导数,(D)函数在 x可导,则在 x必连续。 8、当0 → x时,下列不与2x等价的无穷小量为…………………………………()(A))1 (cos- x(B)2 arcsin x(C)) 1 ln(2x +(D) 1 2- x e ()() 6 3x f x= g x=tan x h x=x e-1 ? ?? ? (),( ()() lim0 x f x f ξ ξ → -= ?? ??

高等数学上册练习题

高数练习题 一、选择题。 4、1 1lim 1 --→x x x ( )。 a 、1-= b 、1= c 、=0 d 、不存在 5、当0→x 时,下列变量中是无穷小量的有( )。 a 、x 1sin b 、x x sin c 、12--x d 、x ln 7、()=--→1 1sin lim 21x x x ( )。 a 、1 b 、2 c 、0 d 、2 1 9、下列等式中成立的是( )。 a 、e n n n =??? ??+∞ →21lim b 、e n n n =? ?? ??++∞→2 11lim c 、e n n n =??? ??+∞→211lim d 、e n n n =?? ? ??+∞ →211lim 10、当0→x 时,x cos 1-与x x sin 相比较( )。 a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量 11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) . (A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x (B) x (C)1 ln(12) 2x + (D) x (x +2) 14、若函数()f x 在某点0x 极限存在,则( ). (A )()f x 在0x 的函数值必存在且等于极限值

(B )()f x 在0x 的函数值必存在,但不一定等于极限值 (C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0 lim ()x x f x →+ 与0 lim ()x x f x →- 存在,则( ). (A )0 lim ()x x f x →存在且00 lim ()()x x f x f x →= (B )0 lim ()x x f x →存在但不一定有00 lim ()()x x f x f x →= (C )0 lim ()x x f x →不一定存在 (D )0 lim ()x x f x →一定不存在 16、下列变量中( )是无穷小量。 0) (x e .A x 1-→ 0) (x x 1 sin .B → )3 (x 9x 3x .C 2→-- )1x (x ln .D → 17、=∞→x x x 2sin lim ( ) 2 18、下列极限计算正确的是( ) e x 11lim .A x 0x =??? ??+→ 1x 1sin x lim .B x =∞→ 1x 1sin x lim .C 0x =→ 1x x sin lim .D x =∞→ 19、下列极限计算正确的是( ) 1x x sin lim .A x =∞→ e x 11lim .B x 0x =??? ??+→ 5126x x 8x lim .C 232x =-+-→ 1x x lim .D 0x =→ A. f(x)在x=0处连续 B. f(x)在x=0处不连续,但有极限 C. f(x)在x=0处无极限 D. f(x)在x=0处连续,但无极限 23、1 lim sin x x x →∞ =( ). (A )∞ (B )不存在 (C )1 (D )0 24、221sin (1) lim (1)(2) x x x x →-=++( ). (A )13 (B )13- (C )0 (D )23 ) ( , 0 x 1 x 2 0 x 1 x ) x ( f . 20、 则下列结论正确的是 设

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

高等数学上册,必背的知识点,期末考试备考的重点知识

高等数学上册,必背的 知识点,期末考试备考 的重点知识 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高等数学上册,必背的知识点,期末考试备考的重点知识 东西不多,但都是经典,多了也记不住,是吧。 (14)C x dx x +-=?csc cot csc (15)C x xdx x +=?sec tan sec (16)C x xdx +-=?|cos |ln tan (17)C x xdx +=?|sin |ln cot (18)C x x xdx ++=?|tan sec |ln sec (19)C x x xdx +-=?|cot csc |ln csc (20)C a x a dx x a +=+?arctan 112 2 (21)C a x a x a dx a x ++-=-?||ln 2112 2 (22)C a x dx x a +=-?arcsin 12 2 (23)C a x x a x dx +++=+? )ln(222 2 (24)C a x x a x dx +-+=-?||ln 222 2 用于三角函数有理式积分的变换: 把sin x 、cos x 表成2 tan x 的函数然后作变换2 tan x u = 2 22122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x x x x x x x +=+== =? 2 2 2222112 sec 2tan 12sin 2cos cos u u x x x x x +-=-=-=? 变换后原积分变成了有理函数的积分 二 泰勒多项式 若)(x f 在点x 0处N 阶可导,称

高数上册练习题

上册练习题 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2.  ) 时(  ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt = -? ,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ()( , )(2)( )(1 =+=? x f dt t f x x f x f 则是连续函数,且 设 (A )2 2x (B )2 2 2 x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 )31(lim . 6. , )(cos 的一个原函数 是已知 x f x x = ? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 22 2 21 n n n n n n π π ππ . 8. = -+? 2 121 2 2 11 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. . d ) 1(17 7x x x x ? +-求

大一上学期(第一学期)高数期末考试题xcsf

高等数学I 1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是 无穷小. (A) ()()x x βα+ (B) ()()x x 2 2βα+ (C) [])()(1ln x x βα?+ (D) )() (2x x βα 2. 极限a x a x a x -→??? ??1sin sin lim 的值是( C ). (A ) 1 (B ) e (C ) a e cot (D ) a e tan 3. ??? ??=≠-+=001 sin )(2x a x x e x x f ax 在0x =处连续,则a =( D ). (A ) 1 (B ) 0 (C ) e (D ) 1- 4. 设)(x f 在点x a =处可导,那么=--+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f ' (C) )(a f ' (D ) ) (31 a f ' 二、填空题(本大题有4小题,每小题4分,共16分) 5. 极限) 0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1. 6. 由x x y e y x 2cos ln =+确定函数y (x ),则导函数='y x xe ye x y x xy xy ln 2sin 2+++ - . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直 线l 的方程为 13 1211--=--=-z y x . 8. 求函数2 )4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) . 三、解答题(本大题有4小题,每小题8分,共32分) 9. 计算极限10(1)lim x x x e x →+-.

高等数学上册试题B

高等数学上册试题B 一、单项选择题(下面每道题目中有且仅有一个答案正确,将所选答案填入题后括号内。共24分) 1.(3分)设()x f 的定义域为[]1,0,()x f ln 的定义域为( ) A.[]1,0 B.()2,0 C.[]e ,1 D.()1,0 2.(3分)设()x x x f =,()2 2x x =?,则()[]x f ?是( ) A.x x 2 B.22x C.x x 22 D.x x 2 3.(3分)在区间()+∞∞-,内,函数()() 1lg 2 ++=x x x f 是( ) A.周期函数 B.有界函数 C.奇函数 D.偶函数 4.(3分) ()??? ??=≠=0,0,2tan x a x x x x f ,当a 为何值时,()x f 在0=x 处连续( ) A.1 B.2 C.0 D.4- 5.(3分)设 ()()???? ?=≠+=0,0,11 x x x x f x α,要使()x f 在0=x 处连续,则=α( ) A.0 B.0 C.e D.e 1 6.(3分)函数1+=x y 在0=x 处满足条件( ) A.连续但不可导 B.可导但不连续 C.不连续也不可导 D.既连续已可导 7.(3分)已知()()()()()d x c x b x a x x f ----=且()()()()d c b c a c k f ---=',则=k ( ) A.a B.b C.c D.d 8.(3分)下列函数中,是同一函数的原函数的函数对是( ) A.x 2sin 21与x 2cos 41 - B.x ln ln 与x 2 ln C.2 x e 与x e 2 D.2tan x 与x x 2sin 1 cot +- 二、填空题 9.(3分) = →x x x x 2sin 1sin lim 220

高等数学典型习题及参考答案

第八章典型习题 一、 填空题、选择题 1、点)3,1,4(M -到y 轴的距离就是 2、平行于向量}1,2,1{a -=? 的单位向量为 3、().0431,2,0垂直的直线为 且与平面过点=--+-z y x 4、.xoz y z y x :面上的投影柱面方程是在曲线?? ?==++Γ2 10222 5、()==-=+=+=-δ λ δλ则平行与设直线,z y x :l z y x : l 1111212121 ()23A ()12B ()32C ()21 D 6、已知k 2j i 2a ????+-=,k 5j 4i 3b ? ???-+=,则与b a 3??-平行的单位向量为 ( ) (A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-± (D )}11,7,3{179 1-± 7、曲线???==++2 z 9 z y x 222在xoy 平面上投影曲线的方程为( ) (A )???==+2z 5y x 22 (B )???==++0z 9z y x 222(C )???==+0 z 5y x 22 (D )5y x 22=+ 8、设平面的一般式方程为0A =+++D Cz By x ,当0==D A 时,该平面必( ) (A)平行于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9 、 设 空 间 三 直 线 的 方 程 分 别 为 251214: 1+=+=+z y x L ,67313:2+=+=z y x L ,4 1312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L 10、设平面的一般式方程为0=+++D Cz By Ax ,当0==B A 时,该平面必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy 面 (D) 平行于xoy 面 11、方程05 z 3y 3x 2 22=-+所表示的曲面就是( ) (A )椭圆抛物面 (B )椭球面 (C )旋转曲面 (D )单叶双曲面 二、解答题

高等数学上册练习题

高 数练习 题 一、选择题。 4、1 1lim 1 --→x x x ( )。 a 、1-= b 、1= c 、=0 d 、不存在 5、当0→x 时,下列变量中是无穷小量的有( )。 a 、x 1sin b 、 x x sin c 、12--x d 、x ln 7、()=--→1 1sin lim 21x x x ( )。 a 、1 b 、2 c 、0 d 、2 1 9、下列等式中成立的是( )。 a 、e n n n =??? ??+∞→21lim b 、e n n n =? ?? ??++∞ →2 11lim c 、e n n n =??? ??+∞→211lim d 、 e n n n =? ? ? ??+∞ →211lim 10、当0→x 时,x cos 1-与x x sin 相比较( )。 a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量 11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) . (A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x (B) x (C)1 ln(12)2x + (D) x (x +2) 14、若函数()f x 在某点0x 极限存在,则( ).

(A )()f x 在0x 的函数值必存在且等于极限值 (B )()f x 在0x 的函数值必存在,但不一定等于极限值 (C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0 lim ()x x f x →+与0 lim ()x x f x →-存在,则( ). (A )0 lim ()x x f x →存在且00 lim ()()x x f x f x →= (B )0 lim ()x x f x →存在但不一定有00 lim ()()x x f x f x →= (C )0 lim ()x x f x →不一定存在 (D )0 lim ()x x f x →一定不存在 16、下列变量中( )是无穷小量。 17、=∞→x x x 2sin lim ( ) 2 18、下列极限计算正确的是( ) 19、下列极限计算正确的是( ) A. f(x)在x=0处连续 B. f(x)在x=0处不连续,但有极限 C. f(x)在x=0处无极限 D. f(x)在x=0处连续,但无极限 23、1lim sin x x x →∞ =( ). (A )∞ (B )不存在 (C )1 (D )0 24、221sin (1) lim (1)(2) x x x x →-=++( ). (A )13 (B )13- (C )0 (D )23 25、设1sin 0()3 0x x f x x a x ?≠? =??=?,要使()f x 在(,)-∞+∞处连续,则a =( ). (A )0 (B )1 (C )1/3 (D )3 ) ( , 0 x 1 x 2 0 x 1 x ) x ( f . 20、 2 则下列结论正确的是 设

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

高等数学典型例题与应用实例

例 利用二重积分的性质,估计积分 2 222(2)d D x y x y σ+-?? 的值,其中D 为半圆形区域2 2 4,0x y y +≤≥. 解 我们先求函数2 2 2 2 (,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值. 由2 2 220,420,x y f x xy f y x y '?=-=??'=-=??解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2 ()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0. 在边界22 2:4L x y +=(0)y ≥上, 242()(,4)58(22)h x f x x x x x =-=-+-≤≤ 由3 ()4100h x x x '=-=得驻点123550,,22 x x x ==- =,(0)(0,2)8h f ==. 5537 ()(,)2224 h f ± =±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知 222202(2)d 82D x y x y πσπ?≤+-≤???, 即 22220(2)d 16D x y x y σπ≤+-≤??. 例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域, 1D 为D 在第一象限的部分,则 (cos sin )( )D xy x y dxdy +=??. (A )1 2 cos sin D x y dxdy ?? (B )1 2D xy dxdy ?? (C )1 4 (cos sin )D xy x y dxdy +?? (D )0

相关文档
相关文档 最新文档