文档库 最新最全的文档下载
当前位置:文档库 › 冶金法太阳能级多晶硅的制取

冶金法太阳能级多晶硅的制取

冶金法太阳能级多晶硅的制取
冶金法太阳能级多晶硅的制取

冶金法太阳能级多晶硅的制取

来源: 作者:中国有色金属工业协会硅业分会副秘书长何

允平时间:2010-07-29

目前世界各国生产多晶硅普遍采用的是改良西门子法。这种方法生产的多晶硅占世界多晶硅总产量的70%~80%。所谓西门子法,就是用氢气还原三氯氢硅生产多晶硅的方法,是上世纪50 年代发明的,60 年代实现了工业化生产。经过几十年的应用和发展,先后出现了第一代、第二代和第三代技术。第三代就是目前所说的“改良西门子法”。它是在第二代技术将四氯化硅与工业硅反应,实现了SiCl4 的回收利用之后,又增加了还原尾气干法回收系统和SiCl4 氢化工艺,实现了全密闭生产。这是西门子法生产高纯多晶硅的最新技术,是目前多晶硅生产中占绝对优势的主流工艺方法。国外用这种方法可以生产出纯度为9N~11N 的高纯多晶硅。它的优点是生产工艺成熟,产品纯度高,无爆炸危险。存在的问题是项目建设投资大,周期较长,生产过程电耗大,产品成本高,产出效率较低。目前我国正在生产、建设或拟建的采用改良西门子法的多晶硅厂家有近20 个。这些企业有的采用国产化技术,有的采用国外技术,在采用的国外技术中有东欧技术、西欧技术,也有北美技术。

总体来看,这些企业的技术趋同,个体来看各工艺环节、设备水平各有特色,产品质量、原材料和能耗差别较大,这些厂家在人才、生产成本、产品质量等方面都还面临着不同挑战。西门子法有很突出的优点,但也有令人难以接受的致命弱点。如果说用这种方法生产

电子级多晶硅是不得已采用的,那么用这种方法生产太阳能级多晶硅也是人们并不心甘情愿的。因为太阳极能级多晶硅通常说其纯度是4N~6N,达到6N 或6N 以上完全可以满足使用要求,这比电子级多晶硅在纯度方面的要求(6N~8N 或9N~11N)要低得多。人们一直在寻求制取太阳能级多晶硅西门子法之外的各种方法,冶金法就是人们期望中要寻求的方法之一。

所谓冶金法,它是类似于金属冶炼提纯的一种方法。这种方法从实质上说,是被提纯的硅元素在提纯过程中不参与任何化学反应,工业硅生产中的炉外精炼就属于这种方法。太阳能级多晶硅制取提纯的冶金法更全面地说它包括吹气精炼、熔剂精炼、定向凝固、真空精炼、熔盐电解等多种方法。目前国内外研究用冶金法制取太阳能级多晶硅的人员和单位不少,单从国内来看,就有昆明理工大学、河北工业大学、厦门大学、华中科技大学、大连理工大学、河南迅天宇、上海普罗新能源、辽宁锦州新世纪玻璃有限公司等多家高等院校和企业。经过国内外大量研究开发,应该说冶金法制取太阳能级多晶硅已有相当进展,但到目前为止还没有真正实现工业化生产。现在这种方法在除掉个别杂质的深度、产品产出的稳定和均衡性及所得产品成分的均匀性等方面还存在一些问题,但冶金法所具有的工艺简单、投资少和能耗低等一系列优点,很有吸引力。很多人相信,对这种方法,经过潜心钻研,一定会取得突破。

冶金法制取太阳能级多晶硅的方法和相关成果:

1.硅中杂质的存在状态和对太阳能电池功能的影响

多晶硅太阳能电池

摘要 在全球气候变暖、人类生态环境恶化、常规能源短缺并造成环境污染的形势下,可持续发展战略普遍被世界各国接受。光伏能源以其具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,被认为是二十一世纪最重要的新能源。 由于不可再生能源的减少和环境污染的双重压力,使得光伏产业迅猛发展;太阳电池的发展也日新月异。太阳能电池的发展历程,详细介绍了多晶硅太阳能电池的各种工艺,多晶硅太阳能电池的结构、特点,以及多晶硅的制备方法,并展望了多晶硅太阳能电池的研究趋势。 关键词:多晶硅太阳能电池发展趋势

目录 绪言 (3) 一.太阳能电池概述 (4) 1.1太阳能电池简介 (4) 1.2太阳能电池原理 (4) 1.3太阳能电池材料 (5) 二.多晶硅太阳电池的制造 (6) 三.多晶硅生产工艺分析 (7) 3.1不同硅原子种类太阳能电池商业化的比较 (7) 3.2多晶硅太阳能电池生产工艺分析 (8) 3.3多晶硅太阳能电池影响因素分析 (8) 四.多晶硅电池应用前景分析 (9) 参考文献 (10)

绪言 鉴于常规能源供给的有限性和环保压力的增加, 世界上许多国家掀起了开发和利用新能源的热潮。在新能源中, 特别引人瞩目的是不断地倾注于地球的永久性能源——太阳能。太阳能是一种干净、清洁、无污染、取之不尽用之不竭的自然能源,将太阳能转换为电能是大规模利用太阳能的重要技术基础, 世界各国都很重视。 利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。多晶硅,这种原本主要用作电子芯片领域的原材料,在中国成为各地争上的产业,虽然在2008年曾因金融危机的影响,但是作为一种新型的产业其具有极强的生命力。中国电子材料行业协会给国家发改委的一份行业报告显示,到2009年6月底,我国已有19家企业多晶硅项目投产,产能规模达到3万吨/年,另有10多家企业在建,扩建多晶硅项目,总规划产能预计到2010年将超过10万吨。而2008年我国多晶硅的总需求量才17000吨。这些产能若全能兑现,将超过全球需求量的2倍以上。

单晶硅太阳能电池板详细参数

单晶硅太阳能电池板,铝合金边框,钢化玻璃面板详细参数:单晶硅太阳能板100W 尺寸:963x805x35MM 净重:11KGS 工作电压:33.5V 工作电流:2.99A 开路电压:41.5V 短路电流:3.57A 蓄电池:24v 二、产品特点:采用平均转换效率在15%以上的优质单晶硅太阳电池单片,具有优良的弱光响应性能,符合IEC61215 和电气保护II 级标准。太阳能电池转换效率高。而且太阳能电池板阵列一次性性能佳。太阳能电池板阵列的表面采用高透光绒面钢化玻璃封装,气密性、耐候性好,抗腐蚀。阳极氧化铝边框:机械强 度高,具有良好的抗风性和防雹性,可在各种复杂恶劣的气候条件下使用,便于安装。 太阳能电池板在制造时,先进行化学处理,表面做成了一个象金字塔一样的绒面,能减少反射,更好地吸收光能。采用双栅线,使组件的封装的可靠性更高。太阳能电池板阵列抗冲击性能佳,符合IEC 国际标准。太阳能电池板阵列层之间采用双层EVA 材料以及TPT 复合材料,组件气密性好,抗潮,抗紫外线好,不容易老化。直流接线盒:采用密封防水、高可靠性多功能ABS 塑料接线盒,耐老化防水防潮性能好;连接端采用易操作的专用公母插头,使用安全、方便、可靠。带有旁路二极管能减少局部阴影而引起的损害。工作温度:-40℃~+90℃使用寿命可达20 年以上,衰减小于20%。三、问题集锦:1、什么是太阳能电池答:太阳能电池是基于半导体的光伏效应将太阳辐射直接转换为电能的半导体器件。现在商品化的太阳能电池主要有以下几种类型:单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池,目前还有碲华镉电池、铜铟硒电池、纳米氧化钛敏化电池、多晶硅薄膜太阳能电池及有机太阳能电池等。晶体硅(单晶、多晶)太阳能电池需要高纯度的硅原料,一般要求纯度至少是99. 99998%,也就是一千万个硅原子中最多允许2 个杂质原子存在。硅材料是用二氧化硅(SiO2,也就是我们所熟悉的沙子)作为原料,将其熔化并除去杂质就可制取粗级硅。从二氧化硅到太阳能电池片,涉及多个生产工艺和过程,一般大致分为:二氧化硅—> 冶金级硅—>高纯三氯氢硅—>高纯度多晶硅—>单晶硅棒或多晶硅锭—>硅片—>太阳能电池片。2、什么是单晶硅太阳能电池板答:单晶硅太阳能电池片主要是使用单晶硅来制造,与其他种类的太阳能电池片相比,单晶硅电池片的转换效率最高。在初期,单晶硅太阳能电池片占领绝大部份市场份额,在1998 年后才退居多晶硅之后,市场份额占据第二。由于近几年多晶硅原料紧缺,在2004 年之后,单晶硅的市场份额又略有上升,现在市面上看到的电池有单晶硅居多。单晶硅太阳能电池片的硅结晶体非常完美,其光学、电性能及力学性能都非常的均匀一致,电池的颜色多为黑色或深色,特别适合切割成小片制作成小型的消费产品。单晶硅电池片在实验室实现的转换效率为24.7%.普通商品化的转换效率为10%-1 8%。单晶硅太阳能电池片因为制作工艺问题,一般其半成硅锭为圆柱进,然后经过切片->清洗->扩散制结->去除背极->制作电极->腐蚀周边->蒸镀减反射膜等工蕊制成成品。一般单晶硅太阳能电池四个角为圆角。单晶硅太阳能电池片的厚度一般为200uM- 350uM 厚,现在的生产趋势是向超薄及高效方向发展,德国太阳能电池片厂家已经证实40uM 厚的单晶硅可达到20%的转换效率。3、什么是多晶硅太阳能电池板答:在制作多晶硅太阳能电池时,作为原料的高纯硅不是再提纯成单晶,而是熔化浇铸成正方形的硅锭,然后再加工单晶硅一样切成薄片和进行类似的加工。多晶硅从其表面很容易进行辨认,硅片是由大量不同大小的结晶区域组成(表面有晶体结晶状),其发电机制与单晶相同,但由于硅片由多个不同大小、不同取向的晶粒组在,其晶粒界面处光电转换易受到干扰,因而多晶硅的转换效率相对较低,同时,多晶硅的光学、电性能及力学性能一致性没有单晶硅太阳能电池好。多晶硅太阳能电池实验室最高效率达到20.3%,商品化的一般为10%-16%,多晶硅太阳能电池是正方形片,在制作太阳能组件时有最高的填充率,产品相对也比较美观。多晶硅太阳能电池片的厚度一般为220uM-300uM 厚,有些厂家已有生产180uM 厚的太阳能电池片,并且向薄发展,更以节约昂贵的硅材料。4、怎么区分单晶硅和多晶硅答:多晶片是直角的正方形或长方形,单晶的四个角有接近圆形的

2010年冶金法提纯多晶硅的进展-史珺

Progress of Metallurgical Purified Solar Grade Poly-Silicon Industry and Technology in 2010 2010年冶金法太阳能级多晶硅产业技术进展 史珺 冶金法太阳能多晶硅产业技术创新战略联盟 (UMSOG) 上海普罗新能源有限公司 ProPower Inc.

目录?Technical Progress of Metallurgical Purification of SOG 冶金法太阳能级多晶硅的技术进展?Industrialization Progress of MSOG 冶金法太阳能级多晶硅的产业化进展?Application Progress of MSOG 冶金法太阳能级多晶硅的应用进展 ?Elite Equipment Manufacturing Ability of Propower 普罗卓越的装备制造能力

太阳能所需要的多晶硅纯度?Poly silicon with purity higher than 7N could not be made into solar cell directly 7N以上的多晶硅无法用来直接作太阳能电池 ? B or P must be mixed as dopant,The dopant of B must be about 0.15~0.3ppm for P-type solar cell须掺入硼或磷,对太阳能来说硼的掺杂浓度大约在 0.15~0.3ppmw ?Because impurities must added to high pure poly-silicon from Siemens method, which means energy double waste, 采用西门子法得出高纯度的硅后,即便是11N的多晶硅,还是要掺杂到6N的纯度,意味着能源的双重浪费

多晶硅太阳能电池制备工艺(论文)

XINYU UNIVERSITY 毕业设计(论文) (2013届) 题目多晶硅太阳能电池制备工艺 二级学院新能源科学与工程学院 专业光伏材料加工及其应用 班级 10级光伏材料(一)班 学号 1003020138 学生姓名纪涛 指导教师胡耐根

目录 摘要 (1) Abstract (2) 第 1 章绪论 (3) 第 2 章多晶硅太阳电池制备工艺 (5) 2.1 一次清洗工序 (5) 2.1.1 一次清洗工序的原理 (5) 2.1.2 一次清洗工序的工艺参数 (5) 2.2 扩散工序 (6) 2.2.1 扩散原理 (6) 2.2.2 扩散工艺 (7) 2.3 湿法刻蚀的工序及其原理 (8) 2.4 等离子体增强化学气相沉积工序 (10) 2.4.1 等离子体增强化学气相沉积氮化硅薄膜的原理 (10) 2.5 丝网印刷工序及其工作原理 (11) 2.6 测试分选工序及太阳能测试仪的原理 (13) 2.7 小结 (15) 第 3 章多晶硅太阳能电池行业展望 (16) 参考文献(References) (17) 致谢 (18)

多晶硅太阳能电池制备工艺 摘要 长期以来随着能源危机的日益突出,传统能源已不能满足能源结构的需求,然而光伏发电技术被认为是解决能源衰竭和环境危机的主要途径。而多晶硅太阳能电池份额占据光伏市场的绝大部分,并呈现逐年上升趋势,有极大的发展潜力。 本文在阐明了国内外光伏市场以及光伏技术发展趋势的基础上,对多晶硅太阳能电池的结构及其特性简述,同时对其制备工艺:一次清洗→扩散→湿法刻蚀去背结→PECVD(等离子体增强化学气相沉积)→丝网印刷→烧结→测试分选做简要介绍。 关键词:多晶硅太阳能电池;光伏技术;光伏工艺;

冶金法多晶硅酸洗去除金属杂质工艺探索

冶金法多晶硅酸洗去除金属杂质工艺探索 周京明1 云南乾元光能产业有限公司,中国云南昆明650216 Zhou jing ming Yunnan Qian Yuan solar energy industry co., LTD, Kunming Yunnan China 650216 摘要:高纯多晶硅是制备单晶硅和太阳能硅电池的主要原材料,是太阳能光伏产业的基石,由于现阶段高纯多晶硅生产的主流技术西门子法不利于降低太阳能电池的成本,因此探索低成本高纯多晶硅生产技术成为目前国内外的热点之一。目前低成本多晶硅生产技术主要是物理法,其中如何有效脱出金属硅中的金属杂质是关键工序之一。本文就酸洗脱出金属硅中的金属杂质的关键因素进行探索,对相应的工艺条件进行了摸索和验证,为寻找低成本高纯多晶硅生产技术工作进行有益探索。 Abstract: High-purity polysilicon preparation monocrystalline silicon and silicon solar cell is the main raw material, is the cornerstone of the solar pv industry, because at present the mainstream of high-purity polysilicon production technology of Siemens method is not conducive to reduce the cost of solar cells, thus to explore the low cost of high purity polysilicon production technology to become one of the hot spots at home and abroad. Low cost of polysilicon production technology at present is mainly physical method, including how to effectively out metal impurity in silicon metal is one of the key working procedure. In this paper, the metal impurities in silicon metal pickling out key factors to explore, to grope for the corresponding technological conditions and validation, looking for low cost production technology work of high purity polycrystalline silicon. 关键词:冶金法多晶硅;酸洗除杂。 Keyword: Metallurgical method of polysilicon;Removal of impurities with acid. 一、前言 高纯多晶硅是制备单晶硅和太阳能硅电池的主要原材料,是太阳能光伏产业的基石。目前,国内外高纯多晶硅的生产工艺技术主要包括化学法和物理法,化学法典型工艺以改良西门子法—闭环式三氯化硅氢还原法为代表,是目前多晶硅生产的主流技术,现阶段国内外的多晶硅生产厂家80%以上是采用此方法生产多晶硅。该方法是用氯气和氢气合成氯化氢,氯化氢再与工业硅粉在一定温度下合成三氯氢硅,通过精馏进行分离提纯后,在氢 1周京明,1968年出生,男,汉族,云南省昆明市嵩明县人,工程师,工程硕士,从事化工工艺多年,现为云南乾元光能产业有限公司制造部副主任,邮箱:ynzjm68@https://www.wendangku.net/doc/ed17131039.html,,地址:云南省昆明市盘龙区穿金路云山村457号。

光伏组件(太阳能电池板)规格表

光伏组件(太阳能电池板)规格表如本页不能正常显示,请点击刷新 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28 APM36P30W82x36多晶硅30 17.5 1.71 21.5 1.94 356*816*28 APM36M35W62x54单晶硅35 17.5 2.00 21.5 2.26 537*617*40

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

冶金法生产多晶硅

冶金法多晶硅相关材料 目录 一、冶金法介绍 (1) 二、项目投资成本 (2) 三、技术路径 (3) 四、主要企业 (5) 一、冶金法介绍 目前,国际多晶硅生产的主流工艺是改良西门子法,占总产能85%以上。2010年用该技术生产的多晶硅占全球总产量的86.6%。太阳能级多晶硅仅需要6个9的纯度即可,西门子法一般提纯后可达11个9以上。为保证得到多晶硅电池最佳的电流传输率,西门子法还需要进行掺杂工序(掺硼掺磷),这无疑增加了光伏电池制造的成本。另外,某些公司也采用其他方法来制作多晶硅,如硅烷法、流化床法。此三种方法都属于多晶硅制作中的“化学法”。 物理法是采用对冶金级的硅进行造渣、精炼、酸洗(湿法冶金)、定向凝固等方式,将杂质去除。由于硅是不参加化学反应的,所以俗称物理法。但其实,无论是造渣、精炼还是酸洗,都不可避免地涉及到化学反应,因此,比较准确的叫方法应该是冶金法。物理法主要有

区域熔化法(FZ)、直拉单晶法(CZ)、定向凝固多晶硅锭法(铸造法)等等。 按照硅的纯度不同,硅料分为冶金级硅(MG-Si)、太阳能级硅(SG-Si)、电子级硅(EG-Si),国际业界通常把物理法称为冶金法(Metallurgical Method),把物理法提纯的硅称为UMG-Si(Upgraded Metallurgical Grade Silicon)。 UMG-Si制备由于其工艺路径使其理论提纯水平仅能够达到7N级,化学法可提纯至9N级以上用于半导体行业,而3N以下的冶金级硅料主要用于铝合金等领域。因此,UMG-Si的目标市场即为太阳能光伏领域。 二、项目投资成本 UMG-Si由于采用的是物理提纯方法,主要是通过物理变化而非复杂的系列化学反应来提取硅料,在设备投入、环保控制、能耗指标等均低于化学法制备,就SG-Si制备而言具备成本优势。 在2011年初,就项目总投资而言,化学法多晶硅制备如果从三氯氢硅开始直至多晶硅产出,年产量1000吨的工厂大约需要投资6亿到7亿元人民币,;而UMG-Si制备由于采取的工艺路径和原材料冶金硅品质的区别,其初始投资以年产1000吨计算,大约在2亿元左右。 在2012年的成都西博会上,阿坝州共有25个新项目签约,签约金额达107亿元。其中包括:协鑫集团下属四川协鑫硅业科技有限公

太阳能级硅材料

太阳能级硅材料 什么是太阳能级硅材料 太阳能级硅材料是纯度为6个9以上的高纯硅材料,即纯度为99.9999%以上的硅材料。 太阳能级硅如何制造 在半导体工业上主要有Siemens和流化床FBR(FludizedBedRactor)来制备高纯多晶硅材料,Siemens采用高纯SiHCl3作为原料,而FBR是采用SiH4为原料。对于太阳能级多晶硅,在过去的80年代里,包括BayerAG,Siemens和Wacker等公司在内花费了相当大的努力开发太阳能级多晶硅,但是由于产量和纯度不能满足高效太阳电池的需要,与传统的电池生产技术相比并没有降低电池组件的成本,从而未能实现工业化。 目前,有以下太阳能级多晶硅的制备工艺将

会在未来的几年有所突破。WackerChemie 公司采用高纯SiHCl3和流化床过程来制备粒状高纯多晶硅。2003试验的产量为200吨/年,到2006年可达到年产600吨,其目标是每公斤多晶硅价格低于25美元/公斤,这种太阳能级多晶硅只用来供给光伏产业,由于纯度的原因,不能够应用与半导体工业。Tokuyama也采用SiHCl3为原料,并采用高温、高速沉积过程将多晶硅沉积到衬底上,预计将在2006年计划生产;德国的SolarWorldandDegussa联合宣布采用SiH4热分解方法,在加热的硅圆柱体上得到太阳能级多晶硅;挪威的REC和美国的ASiMi将SiH4和Siemens方法制备高纯多晶硅的工艺改进,来制备太阳级多晶硅,产量预计2000吨/年;此外,日本的KawasakiSteel公司通过将冶金级硅提纯来制备太阳级硅,目前还处在试验工厂阶段,进行大规模生产的主要因素是多晶硅的纯度和材料的生产成本价格;美国的CrystalSystems采用热交换炉法提纯冶金级硅,将冶金级硅的难以提纯的B、P杂质

物理冶金法多晶硅的成本分析与技术壁垒

陈朝**,罗学涛 Chen Chao , Luo Xuetao (厦门大学物理系、材料系,Xiamen University) **E-mail :cchen@https://www.wendangku.net/doc/ed17131039.html, ____________________________ *获福建省重大专项/专题(2007ZH0005-2)资助

?一、光伏产业的关键在于降低成本?二、物理冶金法简介 ?三、物理冶金法的成本分析 ?四、物理冶金法的技术壁垒 ?五、当前物理冶金法多晶硅的质量?六、对发展我国物理冶金法的建议

一、光伏产业的关键 在于降低成本 Key problem is reduce cost for PV domain.

?Lack of energy sources,serious pollution in the World,

?光伏发电的优点: 清洁,无机械运动,无污染,轻便,有阳光处就可用,能量回收期短,长寿命。 ?光伏发电的各种应用: (1)并网发电:小电站,屋顶工程; (2)离网发电:移动通讯电源、手机直放站电源 PV-LED(光伏-发光二极管)系统: 电压、电流、功率、直流、安全等方面两者匹配最好!(庭园灯、夜景灯、路灯、交通指挥系统、灯塔、长久广告牌、夜景工程、照明等)可能成为光伏应用的亮点。(3)建筑一体化

?光伏发电一次性投入高,但使用寿命长(10~20年)电池:3-4$/Wp;模组:比电池高0.65$/Wp 光伏电价约是风力电价3倍,常规电价的9倍。 ?发展光伏产业的关键: 除了各国政府推出鼓励性政策外, 须大大降低原料成本(约占60%)和电池制备成本!?如果太阳电池成本降低到~1$/Wp, 则可风力发电相当,光伏产业就不需要政府的优惠政策而进入市场。?如果太阳电池成本降低到~0.3$/Wp, 则可火力发电相当,光伏发电就可进入千家万户。 ?所以,在保证质量的前提下,低成本是光伏产业发展的必经之路!

单多晶硅电池板的区别

多单晶硅太阳能电池板的区别 多晶硅是生产单晶硅的直接原料,是当代人工智能、自动控制、信息处理、光电转换等半导体器件的电子信息基础材料。被称为“微电子大厦的基石”。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。 从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。(太阳能人才太阳能招聘人才招聘太阳能商情网) 相关新闻

2019年多晶硅太阳能电池片企业发展战略和经营计划

2019年多晶硅太阳能电池片企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (3) 1、宏观经济层面 (3) 2、行业环境层面 (3) 二、公司发展战略 (4) 三、公司经营计划 (5) 1、强化内控管理 (5) 2、加快技改进程 (5) 3、稳定现有客户资源,拓展优质新客户 (5) 4、推进品牌战略,提升企业形象 (6) 四、风险因素 (6) 1、客户集中风险 (6) 2、委外加工模式的风险 (6) 3、产品价格波动的风险 (7) 4、产业政策变动风险 (7) 5、竞争加剧的风险 (8) 6、资金压力及融资风险 (9)

一、行业发展趋势 1、宏观经济层面 根据《国家应对气候变化规划(2014-2020年)》,我国规划到2020年非化石能源占一次能源消费的比重达到15%左右;根据《中美气候变化联合声明》,中国计划2030年左右二氧化碳排放达到峰值且将努力早日达峰,并计划到2030年非化石能源占一次能源消费比重提高到20%左右。国家对于未来中长期的能源规划非常清晰。 现阶段,各项非化石能源对应的2020年和2030年发电量目标总和低于《中美气候变化联合声明》中的要求,考虑到风电和光伏的建设周期相对较短,因此用于填补发电量缺口的可能性较大。与风电相比,光伏发电更清洁,更有优势。以2020年为例,非化石能源发电量测算缺口659亿千瓦时,如果全部用光伏填补缺口相当于光伏并网从 100GW增加到155GW。由此可见,光伏发电的发展空间仍相当可观,电站运营的未来发展十分有前景。 2、行业环境层面 国内光伏电站运营商的竞争处于“一超多强”的格局,央企国电投独占鳌头,其后国企、民企群雄并起。由于电站运营属于资本密集型行业,进入壁垒较高,企业不但需要有雄厚的资金实力,还需要有持续的项目开发能力,因此大型国企的竞争优势较强。但民营企业依靠自身灵活多变的机制,强大的执行力,以及通过资本市场融资平台,

太阳能级多晶硅

太阳能级多晶硅 能耗高、污染重,让多晶硅生产企业深受诟病。在低碳经济成为世界潮流的时候,我国多晶硅生产企业面临更大压力。 近年来,针对太阳能级多晶硅的质量要求发展起来一种新工艺——冶金法。冶金法制备多晶硅以廉价的工业硅为原料,采用冶金技术提纯而成,工艺路线短,能耗仅为改良西门子法的20%左右,因此被认为是最有可能生产价格低廉的制造太阳能级多晶硅新技术。 为推广和不断完善冶金法生产多晶硅工艺,冶金法太阳能多晶硅产业技术创新战略联盟于2009年9月底在宁夏银川成立。 新规定催生新技术 为了落实国务院关于抑制包括多晶硅在内的部分行业产能过剩和低水平重复建设精神,国家发改委针对国内普遍采用的改良西门子法制备太阳能级多晶硅技术明确了技术门槛:多晶硅项目规模必须大于3000吨/年,占地面积小于6公顷/千吨多晶硅,还原尾气中四氯化硅、氯化氢、氢气回收利用率不低于98.5%、99%、99%;引导、支持多晶硅企业以多种方式实现多晶硅—电厂—化工厂联营,支持节能环保太阳能级多晶硅技术开发,降低生产成本。到2011年前,淘汰综合电耗大于200千瓦时/千克的多晶硅产能。 冶金法太阳能多晶硅产业技术创新战略联盟秘书长、中国产学研合作促进会新材料专业委员会副理事长李义春介绍,当前,我国大多数多晶硅生产企业采用的是西门子法。虽然国外的改良西门子法已经发展成熟,但一直为几家大公司所垄断,对我国进行技术封锁。我国一些小企业采用拼凑的设备和技术生产,能耗和污染得不到有效控制,产品质量和成本均不具备优势。 赛迪公司顾问开发区咨询中心咨询师江华明确表示,我们应集中科技资源,共同研发制定中国多晶硅产业的总体布局、技术路线、工艺方法、环保和综合利用方案等,除获得成熟西门子法生产多晶硅的工艺外,加大力度对流化床法、冶金法等多晶硅生产工艺进行开发研究,并针对不同市场,形成多种工艺技术既相互竞争又各自针对合适目标协调发展的技术格局。 李义春介绍,国内外现有的多晶硅厂绝大部分采用改良西门子法生产多晶硅。用该工艺生产的多晶硅纯度较高,通常能达到9N以上,甚至10N、11N,这样才能保证电子材料的功能。但是该技术存在成本高、能耗高、投资大以及流程复杂的问题。 目前发展迅猛的光伏产业,对多晶硅材料的要求没有那么高,一般纯度达到6N-7N就可以了。“但是没有这样的硅片,企业就把高端的电子用多晶硅材料掺杂,降低品质后,才能用于光伏发电。因此,应该有专门用于光伏发电的硅片生产技术。”李义春说。 基于此,业内开始积极研究适合太阳能级多晶硅的低成本制造技术和方法。 新技术的优势

(整理)太阳能电池板规格表.

光伏组件(太阳能电池板)规格表 型号材料 峰值 功率 Pm (watt) 峰值 电压 Vmp (V) 峰值 电流 Imp (A) 开路 电压 Voc (V) 短路 电流 Isc (A) 尺寸 (mm) APM18M5W27x27单晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36M5W27x27单晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM18P5W27x27多晶硅 5 8.75 0.57 10.5 0.66 265*265*25 APM36P5W27x27多晶硅 5 17.5 0.29 21.5 0.32 265*265*25 APM36M8W36x30单晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36P8W36x30多晶硅8 17.5 0.46 21.5 0.52 301*356*25 APM36M10W36x30单晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36P10W36x30多晶硅10 17.5 0.57 21.5 0.65 301*356*25 APM36M15W49x29单晶硅15 17.5 0.86 21.5 0.97 287*487*25 APM36P15W43x36多晶硅15 17.5 0.86 21.5 0.97 356*426*28 APM36M20W63x28单晶硅20 17.5 1.14 21.5 1.29 281*627*25 APM36P20W58x36多晶硅20 17.5 1.14 21.5 1.29 356*576*28 APM36M25W48x54单晶硅25 17.5 1.43 21.5 1.61 536*477*28 APM36P25W68x36多晶硅25 17.5 1.43 21.5 1.61 356*676*28 APM36M30W48x54单晶硅30 17.5 1.71 21.5 1.94 536*477*28

多晶硅太阳能电池生产工艺.docx

太阳能电池光电转换原理主要是利用太阳光射入太阳能电池后产生电子电洞对,利用P-N 接面的电场将电子电洞对分离,利用上下电极将这些电子电洞引出,从而产生电流。整个生产流程以多晶硅切片为原料,制成多晶硅太阳能电池芯片。处理工艺主要有多晶硅切片清洗、磷扩散、氧化层去除、抗反射膜沉积、电极网印、烧结、镭射切割、测试分类包装等。 生产工艺主要分为以下过程: ⑴ 表面处理(多晶硅片清洗、制绒) 与单晶硅绒面制备采用碱液和异丙醇腐蚀工艺不同,多晶硅绒面制备采用氢氟酸和硝酸配成的腐蚀液对多晶硅体表面进行腐蚀。一定浓度的强酸液对硅表面进行晶体的各相异性腐蚀,使得硅表面成为无数个小“金字塔”组成的凹凸表面,也就是所谓的“绒面”,以增加了光的反射吸收,提高电池的短路电流和转换效率。从电镜的检测结果看,小“金字塔”的底边平均约为10um 。主要反应式为: 32234HNO 4NO +3SiO +2H O Si +???→↑氢氟酸 2262SiO 62H O HF H SiF +→+ 这个过程在硅片表面形成一层均匀的反射层(制绒),作为制备P-N 结衬底。处理后对硅片进行碱洗、酸洗、纯水洗,此过程在封闭的酸蚀刻机中进行。碱洗是为了清洗掉硅片未完全反应的表面腐蚀层,因为混酸中HF 比例不能太高,否则腐蚀速度会比较慢,其反应式为:2232SiO +2KOH K SiO +H O →。之后再经过酸洗中和表面的碱液,使表面的杂质清理干净,形成纯净的绒面多晶硅片。 酸蚀刻机内设置了一定数量的清洗槽,各股废液及废水均能单独收集。此过程中的废酸液(L 1,主要成分为废硝酸、氢氟酸和H 2SiF 6)、废碱液(L 2,主要成分为废KOH 、K 2SiO 3)、废酸液(L 3,主要成分为废氢氟酸以及盐酸)均能单独收集,酸碱洗后均由少量纯水洗涤,纯水预洗废液(S 1、S 2、S 3)和两级纯水漂洗废水(W 1),收集后排入厂区污水预处理设施,处理达标后通过专管接入清流县市政污水管网。 此过程中使用的硝酸、氢氟酸均有一定的挥发性,产生的酸性废气(G 1-1、G 1-2),经设备出气口进管道收集系统,经厂房顶的碱水喷淋系统处理达标后排放。G 1-2与后序PECVD 工序产生的G 5(硅烃、氨气)合并收集后经过两级水吸收处理后经排气筒排放。

多晶硅太阳能电池工艺

多晶硅太阳能电池制作工艺概述 [ 雁舞白沙发表于 2005-10-16 18:11:00 ] 孙铁囤陈东崔容强袁哓 上海交通大学应用物理系太阳能所上海空间电源研究所 摘要大规模开发和利用光伏太阳能发电, 提高电池的光电转换效率和降低生产成本是其核心所在,由于近十年人们对太阳电池理论认识的进一步深入、生产工艺的改进、IC技术的渗入和新电池结构的出现,电池的转换效率得到较大的提高,大规模生产上,多晶硅电池的转换效率已接近单晶硅电池,在非晶硅电池稳定性问题未取得较大进展时,多晶硅电池受到人们的关注,其世界产量已接近单晶硅,本文对目前多晶硅太阳电池的工艺发展分别从实验室工艺和规模化生产两个方面作了比较系统的描述。 1 绪论 众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为;[1]可供应太阳电池的头尾料愈来愈少;[2] 对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%。利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。 下面从两个方面对多晶硅电池的工艺技术进行讨论。 2. 实验室高效电池工艺

硅冶炼方法

主要的多晶硅生产工艺 1、改良西门子法——闭环式三氯氢硅氢还原法 改良西门子法是用氯和氢合成氯化氢(或外购氯化氢),氯化氢和工业硅粉在一定的温度下合成三氯氢硅,然后对三氯氢硅进行分离精馏提纯,提纯后的三氯氢硅在氢还原炉内进行CVD反应生产高纯多晶硅。 国内外现有的多晶硅厂绝大部分采用此法生产电子级与太阳能级多晶硅。2、硅烷法——硅烷热分解法 硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。以前只有日本小松掌握此技术,由于发生过严重的爆炸事故后,没有继续扩大生产。但美国Asimi和SGS公司仍采用硅烷气热分解生产纯度较高的电子级多晶硅产品。 3、流化床法 以四氯化硅、氢气、氯化氢和工业硅为原料在流化床内(沸腾床)高温高压下生成三氯氢硅,将三氯氢硅再进一步歧化加氢反应生成二氯二氢硅,继而生成硅烷气。 制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。因为在流化床反应炉内参与反应的硅表面积大,生产效率高,电耗低与成本低,适用于大规模生产太阳能级多晶硅。唯一的缺点是安全性差,危险性大。其次是产品纯度不高,但基本能满足太阳能电池生产的使用。 此法是美国联合碳化合物公司早年研究的工艺技术。目前世界上只有美国MEMC公司采用此法生产粒状多晶硅。此法比较适合生产价廉的太阳能级多晶硅。 4、太阳能级多晶硅新工艺技术 除了上述改良西门子法、硅烷热分解法、流化床反应炉法三种方法生产电子级与太阳能级多晶硅以外,还涌现出几种专门生产太阳能级多晶硅新工艺技术。1)冶金法生产太阳能级多晶硅 主要工艺是:选择纯度较好的工业硅(即冶金硅)进行水平区熔单向凝固成硅锭,去除硅锭中金属杂质聚集的部分和外表部分后,进行粗粉碎与清洗,在等离子体融解炉中去除硼杂质,再进行第二次水平区熔单向凝固成硅锭,去除第二次区熔硅锭中金属杂质聚集的部分和外表部分,经粗粉碎与清洗后,在电子束融解炉中去除磷和碳杂质,直接生成太阳能级多晶硅。 2)气液沉积法生产粒状太阳能级多晶硅 主要工艺是:将反应器中的石墨管的温度升高到1500℃,流体三氯氢硅和氢气从石墨管的上部注入,在石墨管内壁1500℃高温处反应生成液体状硅,然后滴入底部,温度回升变成固体粒状的太阳能级多晶硅。 3)重掺硅废料提纯法生产太阳能级多晶硅 主要多晶硅厂及工艺

国内多晶硅厂和国外多晶硅厂的设备技术做些比较.

新光核心技术是俄罗斯技术,也就是改良西门子技术同时还有

太阳能级多晶硅生产项目环评报告表

1、项目基本情况

福建亿田硅业有限公司建设的太阳能级多晶硅生产线,总投资6000万元,年生产太阳能级多晶硅1500吨。根据《中华人民共和国环境保护法》(1989)和《中华人民共和国环境影响评价法》及国家环保总局颁布的《建设项目环境保护影响评价分类管理名录》的有关规定和环保主管部门的要求,确定项目环评形式为报告表。业主于2008年10月委托石狮市阳光环保技术综合服务有限公司编制该项目的环境影响报告表。我公司接受委托后,组织有关人员进行现场踏勘,在对项目开展环境现状调查、资料收集等和调研的基础上,按照环境影响评价有关技术规范和要求,完成了本项目环境影响报告表的编制工作。 2、项目概况、建设内容 2.1项目概况 工程名称:太阳能级多晶硅生产 工程性质:新建 企业名称:福建亿田硅业有限公司 厂址:松溪县旧县乡岩下村 建设规模:年生产太阳能级多晶硅1500吨 项目投资:6000万元,其中环保投资36万元。 员工:100人(其中住厂30人) 工作制度:年生产300天,每天一班制。 2.2建设内容 项目总用地面积50.4亩,总建筑面积12000㎡,建有生产车间6栋10500m2;办公楼1栋占地800㎡。详见附图2、附图3。

2.3主要设备 项目主要设备见表2-1: 表2-1 主要设备一览表 2.4水、能源消耗 项目用水量11.6/d ,3480t/a ;耗电量约20000000kwh/a 。 2.5生产工艺流程 金属硅原材料

工艺简介:将采购来的结晶硅原料进行破碎至粉状后(每小时2吨),用31%盐酸洗筛(每小时洗硅粉1500公斤,盐酸每小时用量120公斤),再水洗除酸。(水洗废水中加入烧碱中和水中的酸,使水PH值达到国家排放标准)。甩干后进入数控冶炼炉炼化,加入氩气(氩气外购,用量约为100KG/T),进行二次物理分凝过程(微机控制温度大约1000度),冷却除杂,即为产品—多晶硅。 2.6污染源分析 2.6.1废水 2.6.1.1用水量 (1)生产用水 项目用水主要在太阳能级多晶硅生产过程中水洗筛选工艺所产生的,用水约每小时500kg,4t/d,1200t/a。 (2)生活用水 该项目有员工100人,住厂30人,用水量按住厂员工每人每天用水150L,不住厂员工每人每天30L计算,则生活用水量约为6.6t/d,1980t/a; (3)绿化用水 厂区内绿化等用水约1t/d,300t/a。 合计用水量为11.6t/d,3480t/a。 2.6.1.2废水量及染污物源强 项目水洗筛选废水排放量按95%计,3.8t/d,1140t/d,该水含酸,业主使用烧碱中和水中的酸,使水PH值达到国家排放标准;绿化用水不排放;生

相关文档
相关文档 最新文档