文档库 最新最全的文档下载
当前位置:文档库 › 40CrNiMoA拔叉齿轮热处理工艺设计

40CrNiMoA拔叉齿轮热处理工艺设计

40CrNiMoA拔叉齿轮热处理工艺设计
40CrNiMoA拔叉齿轮热处理工艺设计

目录

1绪论 (3)

1.1热处理工艺课程设计的意义 (3)

1.2课程设计任务及要求 (3)

1.3热处理工艺设计的方法 (3)

2材料的选择和要求 (5)

2.1课题工件简图 (5)

2.2技术要求 (5)

2.3钢材的介绍 (6)

3拔叉齿轮热处理工艺设计 (7)

3.1拔叉齿轮加工工艺路线 (7)

3.2预备热处理—等温退火 (7)

3.2.1等温退火目的及工艺 (7)

3.2.2等温退火工艺曲线 (7)

3.2.3装具的选择 (8)

3.2.4热处理炉的选择 (8)

3.2.5检验:检验金相组织和硬度,方法见表3.3 (9)

3.3淬火工艺 (9)

3.3.1淬火的目的以及工艺参数 (9)

3.3.2冷却方法 (10)

3.3.3热处理炉的选择 (11)

3.3.4淬火工艺曲线 (11)

3.4高温回火....................................................................................................... 错误!未定义书签。

3.4.1冷却方式 (12)

3.4.2热处理炉的选择 (12)

3.4.3高温回火工艺曲线 (13)

3.4.4得到的组织 (13)

3.4.5检验 (13)

3.5渗氮 (14)

3.5.1渗氮的特点 (14)

3.5.2选择渗氮的目的 (14)

3.5.3渗氮前的热处理 (14)

3.5.4渗氮工艺参数 (14)

3.5.5渗氮炉中的气氛 (15)

3.5.6渗氮工艺曲线 (16)

3.5.7渗氮后的组织 (16)

3.5.8检验 (17)

3.6总的热处理工艺曲线 (17)

4热处理工序中材料的组织、性能分析 (18)

4.1淬火工艺中的组织转变 (18)

4.2回火工艺中的组织转变 (18)

4.3渗氮工艺中的组织转变 (19)

5热处理缺陷及措施 (19)

5.1淬火缺陷及其产生的原因及预防措施 (19)

5.2回火缺陷及其产生的原因及预防措施 (20)

5.3退火缺陷及其产生的原因及预防措施 (20)

5.4气体渗氮的缺陷及其产生原因及预防措施 (21)

6参考文献 (22)

7心得体会 (23)

40CrNiMoA拔叉齿轮热处理工艺设计

1绪论

1.1热处理工艺课程设计的意义

热处理工艺课程设计是高等工业院校金属材料工程专业一次专业课程设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是:

①培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其

所学知识得到巩固和发展。

②学习和热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。

③进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用资料、手

册、标准和规范。

1.2课程设计任务及要求

进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定夹具,填写热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择和各热处理后的显微组织,作出说明。

1.3热处理工艺设计的方法

热处理工艺的最佳方案是在能够保证达到根据零件使用和产品设计者提出的热

处理技术要求的基础上,设计的一种高质量,低成本,低能耗,清洁,高效,精确的热处理工艺方法。根据零件使用性能及技术要求,提出所可能实施的几种热处理工艺方法,通过综合经济分析,确定最佳热处理方案。确定热处理方案后,首先应根据零件的材料及技术要求,选择热处理设备,加热温度,保温时间与冷却方式。在此基础上,制定编制热处理工艺规范,设计零件在有关热处理工序使用的装夹具及校直装置等。最后主要编写热处理工序的操作守则。

涉及新材料,新技术等特殊的热处理工艺,可遵循实验室、小批量生产实验、生产验证程序进行确定。

2材料的选择和要求

2.1课题工件简图

课题工件简图如图2.1所示

图2.1拔叉齿轮的示意图【1】

2.2技术要求

齿轮齿部及30H11槽部渗氮

调质:250-280 HBS

渗氮层深度:0.35-0.55mm

表面硬度:850-950HV

生产批量为:5件

2.3钢材的介绍

合金结构钢简称合结钢,40CrNiMoA是合结钢的其中一种,也称合金钢,它是在优质碳素结构钢的基础上,适当地加入一种或数种合金元素(总含量不超过5%)而制成的钢种。40CrNiMoA化学成分见表2.1。

表2.1 40CrNiMoA钢的化学成分[3](%)

C Mn Si Cr Ni Mo

0.37~0.44 0.50~0.80 0.20~0.40 0.60~0.90 1.25~1.75 0.15~0.25

合金元素的作用如下:主要加入的元素是Cr、Mo、Ni,加Cr的主要目的是为了提高淬透性,并有二次硬化作用增加高碳钢的耐磨性,还可以提高钢的耐回火性和抗氧化性,提高钢的热强性。Mo的主要作用是提高钢的淬透性,提高热强性和蠕变温度。并热硬性,原因是在淬火后的回火过程中,析出了这些元素的碳化物,使钢产生二次硬化。加Mn主要是降低钢的下临界点,增加奥氏体冷却时的过冷度,细化珠光体组织以及改善其力学性能。而Si是常用的脱氧剂,有固溶强化作用,提高钢的淬透性,抗回火性,对改善综合力学性能有利。

2.440CrNiMoA钢热处理临界温度

40CrNiMoA钢热处理临界温度及硬度范围见表2.2

表2.240CrNiMoA完全退火与正火加热温度及硬度范围[1]

相变临界点/℃退火正火

Ac1 Ac3 Ar1 加热温度/℃硬度HB加热温度/℃硬度HB

760 810 - 840~880 ≤269890~920 220~270

3 拔叉齿轮热处理工艺设计

3.1 拔叉齿轮加工工艺路线

锻造毛坯—预备热处理—粗机械加工—去应力退火—精机械加工—调质处理(淬火-高温回火)—气体渗氮处理—检查

3.2 预备热处理—等温退火

3.2.1 等温退火目的及工艺

等温退火的加热温度与完全退火时大体相同,冷却时则在1r A 一下的某一温

度等温,使之发生珠光体转变,然后出炉空冷到室温。由IT 图可知,等温退火可以缩短退火时间,所得珠光体组织,也更加均匀。具体工艺参数见表3.1

表3.1 40CrNiMoA 等温退火工艺参数

3.2.2 等温退火工艺曲线

图3.1 等温退火加工工艺曲线

装料口

3.2.3 装具的选择

相数为三,每次装炉三件,每件之间有一定距离,使工件充分加热,

提高效率,装具如图3.2

图3.2装具

3.2.4 热处理炉的选择

根据工件的尺寸和重量,选择高温井式电阻炉,设备的技术参数见表3.2

表3.2 RJ2-40-9型中温井式电阻炉参数[2] 型号 RJ2-80-12

额定功率/KW 80 额定电压/V 380 额定温度/℃

1200 相数

3 工作空间尺寸(直径×深)/mm×mm

Φ800×1000

空路升温时间/h ≦3 空路损耗功率/KW ≦17 最大装载量/kg

800

3.2.5检验:检验金相组织和硬度,方法见表3.3

表3.3检验方法[4]

项目技术要求检验方法金相

组织均匀珠光体

用金相显微镜检查,亚共析钢等温退火后的组织是铁

素体+珠光体,共析钢是珠光体,过共析钢是珠光体+

渗碳体

硬度硬度≤223HBS

在模具试样零件侧面选取某点用布式硬度机测量其

硬度值是否达标

脱碳

检验

零件单面脱碳层深不大于

加工余量度的1/3检验方法见GB/T224-1987《钢的脱碳层深度测定法》规定进行

变形检验

变形量应不影响其后的机

械加工和使用性能

工艺规定对拔叉进行测量

3.3淬火工艺

3.3.1淬火的目的以及工艺参数

是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合

以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。

淬火温度:850±10℃

依据:A c3+(30~50)℃。

加热方法:采用当炉温加热到850℃时,将工件装进热处理炉进行加热。原因是加热速度快,节约时间,便于批量生产。

保温时间: 4.5h

选定依据:加热时间可按下列公式进行计算:

t=α×K×D[4]

t为加热时间(min或h)。

α为加热系数[3],合金钢空气电阻炉取1.3~ 1.6 min/mm,这里取

1.5min/mm。

D为零件有效厚度:其中D为160mm。

K为装炉条件修正系数[3],通常取1~1.5,这里取1。

由公式可知,t=α×K×D=1.5×1.0×160=240min,取4h。

3.3.2冷却方法

由于工件淬火温度较高,淬火介质选用油质淬火剂,不会由于工件与油的接触导热提高油温而降低冷却能力。使工件能淬成马氏体,又不致引起太大的淬火应力。将加热保温后的工件,直接淬火机油中,80℃热油对900~1000℃(碳化物析出最敏感区)工件具有较快的冷却速度。

淬火后得到细小晶粒的马氏体组织。

冷却介质为20号机械油。

选择依据:油的闪点是指油表面的蒸汽与空气自然混合时,与火接触而出现火苗的温度,它的温度的高低,对淬火零件的安全性有一定的影响。油的序号越高,则黏度越大,闪点越高。一般在150-300℃。常见矿物油的闪点见表3.4

表3.4常见矿物油的闪点

油号闪点/℃

10 165

20 170

30 180

40 190

3.3.3热处理炉的选择

根据工件的尺寸和重量,选择高温井式电阻炉,设备的技术参数见表3.5

表3.5 RJ2-80-12型高温井式电阻炉参数[2]

型号RJ2-80-12

额定功率/KW80

额定电压/V380

额定温度/℃1200

相数 3

工作空间尺寸(直径×深)/mm×mmΦ800×1000

空路升温时间/h≦3

空路损耗功率/KW≦17

最大装载量/kg800

3.3.4

通过高温回火获得具有一定的强度、硬度和良好的韧性、塑性相配合的综合机械性能。高温回火,即调制处理,得到回火索氏体。具有较低的硬度、强度和较高的塑性和韧性。

回火温度:600±10℃,取600℃。

保温时间:4-5h

依据:在空气炉中回火,见表3.6

表3.6 回火时间参考表[4] (单位:min )

注:合金钢的保温时间按上述表所列时间增加20-30%

3.3.5 冷却方式

具有第二类回火脆性的合金钢,经450-650℃回火后在油或水中进行快

冷,以免出现回火脆性。

3.3.6 热处理炉的选择

根据工件的尺寸和重量,选择低温井式电阻炉,设备的技术参数见表3.7

表3.7 RJ2-55-6型低温井式电阻炉参数[2]

型号 RJ2-55-6 额定功率/KW 55 额定电压/V 380 额定温度/℃

650 相数

3 工作空间尺寸(直径×深)/mm×mm

Φ700×900 空路升温时间/h ≦1.2 空路损耗功率/KW ≦7.0 最大装载量/kg

750

零件的有效厚度/mm ﹤25 25~50 50~75 75~100 100~125 125~150 高温回火 450~650℃

盐炉

10~30

30~45 45~75 75~90 90~120 120~150 空气炉 40~70

70~100

100~140

140~180

180~210

210~240

3.3.7高温回火工艺曲线

3.3.8得到的组织

得到回火索氏体,具有较低的硬度、强度和较高的塑性和韧性。

3.3.9检验

需要检验金相组织、表面和心部硬度、工件的抗压强度,见表3.8

表3.8 检验方法[4]

项目技术要求检验方法

金相组织细小、均匀的回火索氏体组织用金相显微镜检查

硬度检验250~280HBS 通过加载将钢球压头压入被检测的金属零件表面,根据单位压痕面积上所受的负荷大小来确定硬度值。

HB=P/F=P/DtπF:凹陷压痕的面积t:压痕凹陷的深度检测面应是光滑平面。

抗压强度检验有一定的抗压强度,

σ

bc

≥150MPa

试验在普通万能材料试验机进行,当对工件施加到

150Mpa压力时,仍未开裂的话,说明它达到技术要求

3.4渗氮

3.4.1渗氮的特点

①40CrNiMoA系中碳合金钢渗碳后,表面硬度很高,1000-1100HV,

相当于65-72(HRC),具有良好的耐磨性,这种性能可保持在600℃

左右不下降。特别是铝元素的加入,渗氮后表面硬度很高,耐磨性

很好;

②具有高的疲劳强度和抗腐蚀性

③氮化处理温度较低(450-600℃),零件的变形极小,氮化后渗层直

接获得高硬度,避免了淬火引起的变形。

3.4.2选择渗氮的目的

提高工件齿部高的耐磨性及一定得强度,同时心部要有一定的塑韧性。此件采用两段渗氮工艺,就是为了缩短渗氮周期,加快渗氮速度,降低渗层脆性。

3.4.3渗氮前的热处理

渗氮本质上是一种时效强化,是在氮化过程中完成的,所以渗氮后不需要再进行热处理,而氮化零件的心部性能是由氮化前的热处理决定的。

氮化前的热处理一般都是调质处理。在确定调质工艺时的淬火温度由钢的A c3决定,淬火介质由钢的淬透性决定,回火温度的选择不仅要根据心部

硬度要求,而且还必须考虑其对氮化结果的影响。一般来说,回火温度低,

不仅心部硬度高且氮化层硬度也较高,因而有效深层深度也会有所提高(具

体见以上淬火、回火工艺)。

3.4.4渗氮工艺参数

渗氮温度:第一段520±10℃,第二段545±10℃。

选择依据:480-570℃。常用510-560℃,渗氮温度越高,扩散速度越快,

渗层越深。当需要去应力处理时,最高去应力处理温度应低于

调质回火温度20-30℃,最高渗氮温度应低于去应力处理温度

20-30℃

渗氮时间:第一段15-20h,取18 h。第二段10-15h,取15h。

选择依据:见下表3.10气体渗氮工艺的确定原则。

表3.9渗氮时间

阶段温度/℃

时间

/h 氨分解率

(%)

深层深度/mm

1 520±10 20 25-35

0.40-0.70

2 545±10 10-15 35-50

氨分解率:第一段25-30%,第二段40-50%。

选择依据:渗氮温度一定时,氨流量增大,分解率减小;氨流量减小,

分解率增大。不同温度下氨分解率的合理范围见下表3.9

表3.10气体渗氮工艺的确定原则

渗氮温度/℃500 520 540 550 560

氨分解率%25-30 30-35 35-40 40-45 45-50

3.4.5渗氮炉中的气氛

合水<0.2%的液氨,用氨直接渗氮,使用方便。

选用RN-75-6井式气体渗氮炉,井式气体渗氮炉结构见图3.4,设备的技术参数见表3.11

表3.11 RN-75-6井式气体渗氮炉参数[2]

型号RN-75-6

额定功率/KW75

额定电压/V380

额定温度/℃650

相数 3

工作空间尺寸(直径×深)/mm×mmΦ800×1300

空路升温时间/h≦2

3.4.6渗氮工艺曲线

3.4.7渗氮后的组织

表层为氮化索氏体+细小网状氮化物,心部为索氏体。

渗氮层表面是氮化物,在100×金相显微镜下观察到亮白色的就是通常所说的白亮层,为化合物层,为ε相;次层是基体上弥散分布的γ`相,扩散层,黑色;与中心索氏体有明显交界的是α+γ`组织。

3.4.8检验

检验,如表3.11所示。

表3.11渗氮后的检验方法[4] 检验项目检验内容与方法

渗氮层深度的测定金相法:在垂直表面的方向上做一金相磨面,腐蚀后,既可在放大镜下,也可在显微镜下做渗层的测定,测定为0.35-0.55mm,符合要求

渗氮层硬度

的测定

用维式硬度计或表面化洛氏硬度计测定,为850-950HV

渗氮层脆性的测定根据维式硬度压痕的形状来确定渗氮层的脆性,一般定义一边或一角有碎裂为2级,测定为2级,合格

原始组织渗氮前原始组织为回火索氏体

4热处理工序中材料的组织、性能分析

4.1淬火工艺中的组织转变

①正常加热冷却:工件加热到940℃后珠光体转变成奥氏体,保温时

组织不变,晶粒细化,出炉油冷至室温时,得到马氏体+残余奥氏体

+碳化物(少量),具有很高的耐磨性和硬度。

②加热温度不足时,即不能完全奥氏体化,会显著降低工件的硬度。

③加热温度过高时,表面粗大马氏体+过多的残余奥氏体,心部粗大马

氏体+铁素体+索氏体,残余奥氏体过多,零件尺寸不确定,硬度及

耐磨性降低,磨削时易于开裂。

④冷却速度过大时,大量的过冷残余奥氏体冷却到室温易发生分解,

工件易开裂。

⑤冷却速度过小时,可能出现贝氏体转变,表面硬度会降低,韧性增

大。

4.2回火工艺中的组织转变

①正常加热冷却:工件加热到650℃后组织为马氏体+碳化物,保温时

组织发生分解,析出碳化物。室温时组织为回火索氏体。硬度高,

塑性有所提高,但依然较低。

②加热温度不足时,回火马氏体+大量的残余奥氏体+碳化物,表现出

明显的脆性。加热温度过高时,回火索氏体或回火屈氏体,强度、

硬度降低,韧性显著提高,可能出现二次回火脆性。

③冷却速度过大的,大量的残余奥氏体来不及分解,强度、硬度降低;

冷却速度过小时,残余奥氏体的含量减少,回火马氏体的量增加,

工件易开裂。

4.3渗氮工艺中的组织转变

正常加热冷却:表层Fe4N相高度弥散分布在回火索氏体心部,调质回火索氏体组织。

化合物层是由铁和氮的金属化合物组成的薄层。主要有γ′、γ′+ε、ε、ε+γ′+Fe3C、ε+Fe3C和ε+γ′+Fe3O4等几种形式。γ′相是面心立方晶格的金属间化合物Fe4N,具有足够的耐磨性和良好的韧性。ε相是六方晶格的金属间化合物Fe2-3N,具有良好的耐磨性、抗蚀性和一定的韧性。一般认为,单相的化合物层不但具有高硬度,而且具有较好的韧性,其中γ′相的韧性又胜过ε相,但若出现混合相γ′+ε的化合物层则是脆性的。

在化合物层以内,随着氮的扩散而形成扩散层。扩散层基本由氮αN+γ′+Fe3C 组成。

5热处理缺陷及措施

5.1淬火缺陷及其产生的原因及预防措施

①硬度不足

产生原因:亚共析钢加热不足,有未溶铁素体;冷却速度不够;在淬火介质中停留时间不够;氧化和脱碳导致淬火后的硬度降低。

预防措施:正确选择并严格控制加热温度,保留时间和炉温的均匀性;合理选择淬火介质;控制淬火介质的温度不超过最高使用温度;定期检查或更换淬火介

质。正确控制在淬火介质中的停留时间。采取防氧化脱碳措施;采用下线

加热温度;在600℃左右预热,然后再加热到淬火温度,缩短高温加热时

间。

②软点

产生原因:原材料中存在带状组织或大块铁素体组织;冷却不均。

预防措施:合理选材,对有缺陷的钢材进行预备热处理,以消除缺陷;加热工件与介质的相对运动或对介质进行搅拌;保持淬火介质的清洁;合理选择淬火介

质。

③畸变和开裂

产生原因:淬火过程中某一瞬间热应力和组织应力的综合作用大于钢的屈服强度时,就会产生畸变;当两种应力的综合作用超过钢的抗拉强度时,则引起开裂。预防措施:合理选择钢材与正确设计结构;正确锻造和进行预备热处理;采用去应力退火;合理的热处理规范。

5.2回火缺陷及其产生的原因及预防措施

①回火硬度偏高或偏低

产生原因:回火温度或低或高;保温时间短;淬火组织中有非马氏体组织(偏低)。预防措施:提高或降低回火温度;按规定时间保温;改进淬火工艺,重新淬火。

②硬度不均匀

产生原因:回火温度不均匀;装炉量大。

预防措施:采用有气流循环的设备回火;适当减小装炉量。

③回火畸变

产生原因:由回火内应力而引起。

预防措施:采用回火校正法校正。

④回火脆性

产生原因:回火间脆性回火;高温回火引起第二类回火脆。

预防措施:避开第一类回火脆性区回火;高温回火后快速冷却。

⑤回火开裂

产生原因:淬火后未及时回火行程显微裂纹,在回火过程中开裂。

预防措施:减小淬火应力,淬火后及时回火。

5.3退火缺陷及其产生的原因及预防措施

①过烧

产生原因: 加热温度过高,使晶界局部熔化。

预防措施: 报废。

②过热

齿轮热处理工艺【详尽版】

齿轮热处理工艺【详细介绍】 内容来源网络,由深圳机械展收集整理! 一、工作条件以及材料与热处理要求 1.条件: 低速、轻载又不受冲击 要求: HT200 HT250 HT300 去应力退火 2.条件: 低速(<1m/s)、轻载,如车床溜板齿轮等 要求: 45 调质,HB200-250 3.条件: 低速、中载,如标准系列减速器齿轮 要求: 45 40Cr 40MnB (5042MnVB) 调质,HB220-250 4.条件: 低速、重载、无冲击,如机床主轴箱齿轮 要求: 40Cr(42MnVB) 淬火中温回火HRC40-45 5.条件: 中速、中载,无猛烈冲击,如机床主轴箱齿轮 要求: 40Cr、40MnB、42MnVB 调质或正火,感应加热表面淬火,低温回火,时效,HRC50-55 6.条件: 中速、中载或低速、重载,如车床变速箱中的次要齿轮 要求: 45 高频淬火,350-370℃回火,HRC40-45(无高频设备时,可采用快速加热齿面淬火) 7.条件: 中速、重载 要求: 40Cr、40MnB(40MnVB、42CrMo、40CrMnMo、40CrMnMoVBA)淬火,中温回火,HRC45-50.

8.条件: 高速、轻载或高速、中载,有冲击的小齿轮 要求: 15、20、20Cr、20MnVB渗碳,淬火,低温回火,HRC56-62.38CrAl 38CrMoAl 渗氮,渗氮深度0.5mm,HV900 9.条件: 高速、中载,无猛烈冲击,如机床主轴轮. 要求: 40Cr、40MnB、(40MnVB)高频淬火,HRC50-55. 10.条件: 高速、中载、有冲击、外形复杂和重要齿轮,如汽车变速箱齿轮 (20CrMnTi淬透性较高,过热敏感性小,渗碳速度快,过渡层均匀,渗碳后直接淬火变形较小,正火后切削加工性良好,低温冲击韧性也较好) 要求: 20Cr、20Mn2B、20MnVB渗碳,淬火,低温回火或渗碳后高频淬 火,HRC56-62.18CrMnTi、20CrMnTi(锻造→正火→加工齿轮→局部镀同→渗碳、 预冷淬火、低温回火→磨齿→喷丸)渗碳层深度1.2-1.6mm,齿轮硬度HRC58-60,心部硬度HRC25-35.表面:回火马氏体+残余奥氏体+碳化物.中心:索氏体+细珠光体 11.条件: 高速、重载、有冲击、模数<5 要求: 20Cr、20Mn2B 渗碳、淬火、低温回火,HRG56-62. 12.条件: 高速、重载、或中载、模数>6,要求高强度、高耐磨性,如立车重要螺旋锥齿轮 要求: 18CrMnTi、20SiMnVB 渗碳、淬火、低温回火,HRC56-62 13.条件: 高速、重载、有冲击、外形复杂的重要齿轮,如高速柴油机、重型载重汽车,航空发动机等设备上的齿轮. 要求: 12Cr2Ni4A、20Cr2Ni4A、18Cr2Ni4WA、20CrMnMoVBA(锻造→退火

常用齿轮材料的选择及其热处理工艺设计

齿轮材料的选择及其热处理工艺 1、齿轮材料的选择原则 齿轮材料的种类很多,在选择时应考虑的因素也很多,下述几点可供选择材料时参考: 1)齿轮材料必须满足工作条件的要求。例如,用于飞行器上的齿轮,要满足质量小、传递功率大和可靠性高的要求,因此必须选择机械性能高的合金银;矿山机械中的齿轮传动,一般功率很大、工作速度较低、周围环境中粉尘含量极高,因此往往选择铸钢或铸铁等材料;家用及办公用机械的功率很小,但要求传动平稳、低噪声或无噪声、以及能在少润滑或无润滑状态下正常工作,因此常选用工程塑料作为齿轮材料。总之,工作条件的要求是选择齿轮材料时首先应考虑的因素。 2)应考虑齿轮尺寸的大小、毛坯成型方法及热处理和制造工艺。大尺寸的齿轮一般采用铸造毛坯,可选用铸钢或铸铁作为齿轮材料。中等或中等以下尺寸要求较高的齿轮常选用锻造毛坯,可选择锻钢制作。尺寸较小而又要求不高时,可选用圆钢作毛坯。 齿轮表面硬化的方法有:渗碳、氨化和表面淬火。采用渗碳上艺时,应选用低碳钢或低碳含金钢作齿轮材料;氨化钢和调质钢能采用氮化工艺;采用表面淬火时,对材料没有特别的要求。 3)正火碳钢,不论毛坯的制作方法如何,只能用于制作在载荷平稳或轻度冲击下工作的齿轮,不能承受大的冲击载荷;调质碳钢可用于制作在中等冲击载荷下工作的齿轮。 4)合金钢常用于制作高速、重载并在冲击载荷下工作的齿轮。 5)飞行器中的齿轮传动,要求齿轮尺寸尽可能小,应采用表面硬化处理的高强度合金钢。 6)金属制的软齿面齿轮,配对两轮齿面的硬度差应保持为30~50HBS或更多。当小齿轮与大齿轮的齿面具有较大的硬度差(如小齿轮齿面为淬火并磨制,大齿轮齿面为常化或调质);且速度又较高时,较硬的小齿轮齿面对较软的大齿轮齿面会起较显著的冷作硬化效应,从而提高了大齿轮齿面的疲劳极限。因此,当配对的两齿轮齿面具有较大的硬度差时,大齿轮的接触疲劳许用应力可提高约 20%,但应注意硬度高的齿面,粗糙度值也要相应地减小。 2、齿轮材料的选择 齿轮齿条是现代机械中应用最广泛的一种机械传动零件。齿轮传动通过轮齿互相啮合来传递空间任意两轴间的运动和动力,并可以改变运动的形式和速度。齿轮传动使用范围广,传动比恒定,效率较高,使用寿命。在机械零件产品的设计与制造过程中,不仅要考虑材料的性能能够适应零件的工作条件,使零件经久耐用,而且要求材料有较好的加工工艺性能和经济性,以便提高零件的生产率,降低成本,减少消耗。如果齿轮材料选择不当,则会出现零件的过早损伤,甚至失效。因此如何合理地选择和使用金属材料是一项十分重要的工作。 满足材料的机械性能,材料的机械性能包括强度、硬度、塑性及韧性等,反映材料在使用过程中所表现出来的特性。齿轮在啮合时齿面接触处有接触应力,齿根部有最大弯曲应力,可能产生齿面或齿体强度失效。齿面各点都有相对滑动,会产生磨损。齿轮主要的失效形式有齿面点蚀、齿面胶合、齿面塑性变形和轮齿折断等。因此要求齿轮材料有高的弯曲疲劳强度和接触疲劳强度,齿面要有足够的硬度和耐磨性,芯部要有一定的强度和韧性。 例如,在确定大、小齿轮硬度时应注意使小齿轮的齿面硬度比大齿轮的齿面硬度高30-50HBS,是因为小齿轮受载荷次数比大齿轮多,且小齿轮齿根较薄,强度低于大齿轮。为使两齿轮的轮齿接近等强度,小齿轮的齿面要比大齿轮的齿面硬一些。 另一方面,根据材料的使用性能确定了材料牌号后。要明确材料的机械性能或材料硬度,然后我们可以通过不同的热处理工艺达到所要求的硬度范围,从而赋予材料不同的机械性能。如材料为40Cr合金钢的齿轮,当840-860℃油淬,540-620℃回火时,调质硬度可达28-32HRC,可改善组织、提高综合机械性能;当860-880℃油淬,240—280℃回火时,硬度可达46-51HRC,则钢的表面耐磨性能好,芯部韧性好,变形小;当500-560℃氮化处理,氮化层0.15 -0.6mm时,硬度可达52-54HRC,则钢具有高的表面硬度、高的耐磨性、高的疲劳强度,较高的抗蚀性和抗胶合性能且变形极小;当通过电镀或表面合金化处里后,则可改善齿轮工作表面摩擦性能,提高抗腐蚀性能 3、齿轮常用材料 齿轮常用材料摘要:齿轮依靠结构尺寸材料强度承受载荷要求材料具有强度韧性耐磨性齿轮形状复杂齿轮精度要求要求材料工艺常用材料锻钢铸钢铸铁锻钢硬度分为大类HB称为软齿称为硬度HB工艺过程锻造毛坯正火粗车调质加工常用材料SiMnCr 液体动静压轴承常用轴壳配轴承轴承的密封类型精密轴承工序间防锈新工艺轴承寿命强化

(工艺技术)钢的热处理工艺设计经验公式

钢的热处理工艺设计经验公式 1钢的热处理 1.1 正火加热时间 加热时间t=KD (1) 式中t为加热时间(s); D使工件有效厚度(mm); K是加热时间系数(s/mm)。 K值的经验数据见表1。 表1 K值的经验数据 1.2 正火加热温度 根据钢的相变临界点选择正火加热温度 低碳钢:T=Ac3+(100~150℃)(2) 中碳钢:T=Ac3+(50~100℃)(3) 高碳钢:T=A Cm+(30~50℃)(4) 亚共析钢:T=Ac3+(30~80℃)(5) 共析钢及过共析钢:T=A Cm+(30~50℃)(6) 1.3 淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a· K ·D︱ (不经预热) (7) t=(a+b)· K ·D︱(经一次预热) (8) t=(a+b+c)· K ·D︱(经二次预热) (9) 式中t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D︱--工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~1.5min/mm;b 为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b=2.5~3.6;二次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加热时,当炉温较淬火加热温度高出100~150℃时,系数a约为1.5~20秒/毫米,系数b不用另加。若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。工件装炉修正系数K的经验值如表2: 表2 工件装炉修正系数K

40Cr机床齿轮热处理工艺设计课程设计论文

工业大学 材料工艺学课程设计(论文)题目:40Cr机床齿轮热处理工艺设计

课程设计(论文)任务及评语

前言 现代工业的飞速发展对机械零部件及热处理对锻造机械加工的顺利进行和保证加工效果起着重要作用,而且在改善或消除加工后缺陷,提高工件的使用寿命等方面起着重要作用。为获得理想的组织与性能,保证零件在生产过程中的质量稳定性和使用寿命,就必须从工件的特点﹑要求和技术条件,认真分析产品在使用过程中的受力状况和可能失效形式,正确选择材料;再根据生产规模﹑现场条件﹑热处理设备提出几种可行的热处理方案。 由于块规在使用过程中易磨损和碰撞,另外块规本身尺寸精确,因此要求块规具有高的硬度,高的耐磨性和高的尺寸稳定性以及一定的韧性。但块规没有单独专用的钢种,为了满足上述性能要求,块规选用,低合金工具钢(40Cr)。 40Cr机床齿轮规采用淬火及低温回火热处理工艺,其组织是回火马氏体和残余奥氏体,并残存一定的淬火应力。这种组织状态在长期放置和使用过程中,将发生变化,从而使块规的尺寸也发生变化,对于高精度的块规,这种变化是不允许的。尺寸变化的原因主要是残余奥氏体转变为马氏体使尺寸增大,以及残留应力在量具内部重新分布和消失所引起的组织变化。为使40Cr机床齿轮规尺寸和形状稳定,确保其精度,对要求较高的精密的,淬火温度应低些。同时在淬火后立即将其冷却到-80℃左右,甚至在液氮中进行冷处理,然后取出再进行正常回火。为了进一步提高40Cr机床齿轮规尺寸稳定性,在精磨或研磨前,必须进行时效处理,进一步消除内应力,必要时,这种处理要重复多次[1]。 本设计是在课堂学习热处理知识后的探索和尝试,其内容讨论如何设计40Cr 机床齿轮规淬火回火时效热处理工艺技术,重点是制定合理的热处理规程,并按此设计40Cr机床齿轮规热处理工艺方法。

课程设计论文热处理工艺设计

目录 第一章 热处理工设计目的 (1) 第二章 课程设计任务 (1) 第三章 热处理工艺设计方法 (1) 3.1 设计任务 (1) 3.2 设计方案 (2) 3.2.1 12CrNi3叶片泵轴的设计的分析 (2) 3.2.2 钢种材料 (2) 3.3设计说明 (3) 3.3.1 加工工艺流程 (3)

3.3.2 具体热处理工艺 (4) 3.4分析讨论 (11) 第四章 结束语 (13) 参考文献 (14)

12CrNi3叶片泵轴的热处理工艺设计 一. 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是: (1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。 (2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。 (3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 二. 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。 三. 热处理工艺设计的方法 1. 设计任务 12CrNi3叶片泵轴零件图如图3.1

图3.1 12CrNi3叶片泵轴 2、设计方案 2.1.工作条件 叶片泵是由转子、定子、叶片和配油盘相互形成封闭容积的体积变化来实现泵的吸油和压油。叶片泵的结构紧凑,零件加工精度要求高。叶片泵转子旋转时,叶片在离心力和压力油的作用下,尖部紧贴在定子内表面上。这样两个叶片与转子和定子内表面所构成的工作容积,先由小到大吸油再由大到小排油,叶片旋转一周时,完成两次吸油与排油。泵轴在工作时承受扭转和弯曲疲劳,在花键和颈轴处收磨损。因此,要求轴有高的强度,良好的韧性及耐磨性。 2.1.1失效形式 叶片泵轴的主要失效形式是疲劳断裂,在花键和轴颈处可能发生工作面的磨损、咬伤,甚至是咬裂。 2.1.2性能要求 根据泵轴的受力情况和失效分析可知 ,叶片泵轴主要是要求轴具有高的强度,良好的韧性及耐磨性,以保证轴在良好的服役条件下长时间的工作。 2.2钢种材料 12CrNi3A钢属于合金渗碳钢,比12CrNi2A钢有更高的淬透性,因此,可以用于制造比12CrNi2A钢截面稍大的零件。该钢淬火低温回火或高温回火后都具有良好的综合力学性能,钢的低温韧性好,缺口敏感性小,切削加工性能良好,当硬度为HB260~320时,相对切削加工性为60%~70%。另外,钢退火后硬度低、塑性好,因此,既可以采用切削加工方法制造模具,也可以采用冷挤压成型方法制造模具。为提高模具型腔的耐磨性,模具成型后需要进行渗碳处理,然后再进行淬火和低温回火,从而保证模具表面具有高硬度、高耐磨性而心部具有很好的韧性,该钢适宜制造大、中型塑料模具。12CrNi3高级渗碳钢的淬透性较高 ,退火困难。由于不渗碳表面未经镀铜防渗 ,因此渗碳后进行低温回火 , 降低硬度 , 便于切去不渗碳表

常用齿轮材料及热处理

常用齿轮材料及热处理: 为了保证齿轮工作的可靠性,提高其使用寿命,齿轮的材料及其热处理应根据工作条件和材料的特点来选取。 对齿轮材料的基本要求是:应使齿面具有足够的硬度和耐磨性,齿心具有足够的韧性,以防止齿面的各种失效,同时应具有良好的冷、热加工的工艺性,以达到齿轮的各种技术要求。 常用的齿轮材料为各种牌号的优质碳素结构钢、合金结构钢、铸钢、铸铁和非金属材料等。一般多采用锻件或轧制钢材。当齿轮结构尺寸较大,轮坯不易锻造时,可采用铸钢。开式低速传动时,可采用灰铸铁或球墨铸铁。低速重载的齿轮易产生齿面塑性变形,轮齿也易折断,宜选用综合性能较好的钢材。高速齿轮易产生齿面点蚀,宜选用齿面硬度高的材料。受冲击载荷的齿轮,宜选用韧性好的材料。对高速、轻载而又要求低噪声的齿轮传动,也可采用非金属材料、如夹布胶木、尼龙等。 钢制齿轮的热处理方法主要有以下几种: 1.表面淬火常用于中碳钢和中碳合金钢,如45、40Cr钢等。表面淬火后,齿面硬度一般为40~55HRC。特点是抗疲劳点蚀、抗胶合能力高,耐磨性好。由于齿心部末淬硬,齿轮仍有足够的韧性,能承受不大的冲击载荷。 2.渗碳淬火常用于低碳钢和低碳合金钢,如20、20Cr钢等。渗碳淬火后齿面硬度可达56~62HRC,而齿心部仍保持较高的韧性,轮齿的执弯强度和齿面接触强度高,耐磨性较好,常用于受冲击载荷的重要齿轮传动。齿轮经渗碳淬火后,轮齿变形较大,应进行磨齿。 3.渗氮渗氮是一种表面化学热处理。渗氮后不需要进行其他热处理,齿面硬度可达700~900HV。由于渗氮处理后的齿轮硬度高,工艺温度低,变形小,故适用于内齿轮和难以磨削的齿轮,常用于含铬、铜、铅等合金元素的渗氮钢,如38CrMoAlA。 4.调质调质一般用于中碳钢和中碳合金钢,如45、40Cr、35SiMn钢等。调质处理后齿面硬度一般为220~280HBS。因硬度不高,轮齿精加工可在热处理后进行。 5.正火正火能消除内应力,细化晶粒,改善力学性能和切削性能。机械强度要求不高的齿轮可采用中碳钢正火处理,大直径的齿轮可采用铸钢正火处理。 一般要求的齿轮传动可采用软齿面齿轮。为了减小胶合的可能性,并使配对的大小齿轮寿命相当,通常使小齿轮齿面硬度比大齿轮齿面硬度高出30-50HBS。对于高速、重载或重要的齿轮传动,可采用硬齿面齿轮组合,齿面硬度可大致相同。 来源:https://www.wendangku.net/doc/ef3461074.html,

齿轮传动轴的热处理工艺

渤海船舶职业学院 毕业设计(论文)题目:42CrMo齿轮传动轴的热处理工艺 系:材料工程系专业:金属材料与热处理姓名:吴超指导教师:王学武 班级:11G541 评阅教师: 学号:17 完成日期:

42CrMo齿轮传动轴的热处理工艺 摘要:本文阐明42CrMo齿轮传动轴热处理工艺路线的选用及工艺参数的确定,具体包括,材料的选择、正火、调制处理、低温回火及齿轮的感应淬火等工艺内容。满足轧机齿轮传动轴的基本技术要求。热处理工艺的制定有利于提高传动轴的质量及加工效率。 关键词:42CrMo齿轮传动轴;调制处理;感应淬火

目录 2 42CrMo齿轮传动轴热处理工艺设计 (5) 2.1 齿轮传动轴的服役条件、失效形式及性能要求 (5) 2.1.1 服役条件、失效形式 (5) 2.1.2 性能要求 (5) 2.2 齿轮轴材料的选择 (5) 2.3 42CrMo齿轮传动轴的热处理工艺设计 (6) 2.3.1 42CrMo的工艺流程 (6) 2.3.2 42CrMo钢的热处理工艺设计 (7) (1)预备热处理工序--正火 (7) 感应加热淬火工艺原理 (9) 2.4选择设备 (10) 2.6 42CrMo齿轮传动轴热处理质量检验项目、内容及要求 (12) 2.8 42CrMo齿轮传动轴热处理常见缺陷的预防和补救方法 (13) 2.8.1加热时常见的缺陷的预防及补救方法 (13) (1)过热现象及其预防、补救 (13) 2.8.2调质时常见的缺陷的预防及补救方法 (14) 2.8.3感应加热淬火缺陷与预防、补救 (15) 3.结论 (16) 4.致谢 (17) 5.参考文献 (19)

HT250机床齿轮的热处理工艺设计

攀枝花学院 学生课程设计(论文) 题目:HT250机床齿轮的热处理工艺设计学生姓名: 学号: 所在院(系):材料工程学院 专业:级材料成型及控制工程 班级:材料成型及控制工程 指导教师:职称:讲师 2013年12月18日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 注:任务书由指导教师填写。

课程设计(论文)指导教师成绩评定表

摘要 本课设计了HT250机床齿轮的热处理工艺设计。主要的工艺过程包括粗车、精车、插齿、滚齿倒棱、清洗、渗碳淬火、磨内空端面、磨齿、清洗、强化喷丸、清洗等过程。通过各种不同的工艺过程进行恰当的处理可以获得各种性能良好的材料并且满足各项性能的要求。HT250强度、耐磨性、耐热性均较好,减震性良好,铸造性能较优,但需要进行人工时效处理提高其力学性能。可用于要求强度和一定耐腐蚀能力壳、容器、塔器、法兰、填箱料本体及压盖、碳化塔、硝化塔等;还可以制作机床床身、立柱、气缸、齿轮以及需要经表面淬火的零件。因其受热变形量较小,常用于高温场合。 机床齿轮是连续啮合传递运动和动力的机械元件。其作用是能将一输出轴的转动传递给另一根轴可以实现减速、增速、变向和换向等作用,从而使机床能够按指定要求工作。 关键词:HT250 灰口铸铁;退火或正火工艺;中或高频淬火;力学性能

目录 摘要 (Ⅰ) 1、设计任务 (3) 1.1设计任务 (3) 1.2设计的技术要求 (3) 2、设计方案 (4) 2.1 机床齿轮设计的分析 (4) 2.1.1工作条件 (4) 2.1.2失效形式 (4) 2.1.3性能要求 (4) 2.2钢种材料 (5) 3、设计说明 (6) 3.1加工工艺流程 (7) 3.2具体热处理工艺 (8) 3.2.1预备热处理工艺 (9) 3.2.2渗碳工艺 (9) 3.2.3淬火回火热处理工艺 (10) 4、分析与讨论 (11) 5、结束语 (12) 6、热处理工艺卡片 (13) 参考文献 (14)

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

常用齿轮材料及热处理

常用齿轮材料及热处理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

常用齿轮材料及热处理: 为了保证齿轮工作的可靠性,提高其使用寿命,齿轮的材料及其热处理应根据工作条件和材料的特点来选取。 对齿轮材料的基本要求是:应使齿面具有足够的硬度和耐磨性,齿心具有足够的韧性,以防止齿面的各种失效,同时应具有良好的冷、热加工的工艺性,以达到齿轮的各种技术要求。 常用的齿轮材料为各种牌号的优质碳素结构钢、合金结构钢、铸钢、铸铁和非金属材料等。一般多采用锻件或轧制钢材。当齿轮结构尺寸较大,轮坯不易锻造时,可采用铸钢。开式低速传动时,可采用灰铸铁或球墨铸铁。低速重载的齿轮易产生齿面塑性变形,轮齿也易折断,宜选用综合性能较好的钢材。高速齿轮易产生齿面点蚀,宜选用齿面硬度高的材料。受冲击载荷的齿轮,宜选用韧性好的材料。对高速、轻载而又要求低噪声的齿轮传动,也可采用非金属材料、如夹布胶木、尼龙等。 钢制齿轮的热处理方法主要有以下几种: 1.表面淬火常用于中碳钢和中碳合金钢,如45、40Cr钢等。表面淬火后,齿面硬度一般为40~55HRC。特点是抗疲劳点蚀、抗胶合能力高,耐磨性好。由于齿心部末淬硬,齿轮仍有足够的韧性,能承受不大的冲击载荷。 2.渗碳淬火常用于低碳钢和低碳合金钢,如20、20Cr钢等。渗碳淬火后齿面硬度可达56~62HRC,而齿心部仍保持较高的韧性,轮齿的执弯强度和齿面接触强度高,耐磨性较好,常用于受冲击载荷的重要齿轮传动。齿轮经渗碳淬火后,轮齿变形较大,应进行磨齿。

3.渗氮渗氮是一种表面化学热处理。渗氮后不需要进行其他热处理,齿面硬度可达700~900HV。由于渗氮处理后的齿轮硬度高,工艺温度低,变形小,故适用于内齿轮和难以磨削的齿轮,常用于含铬、铜、铅等合金元素的渗氮钢,如38CrMoAlA。 4.调质调质一般用于中碳钢和中碳合金钢,如45、40Cr、35SiMn钢等。调质处理后齿面硬度一般为220~280HBS。因硬度不高,轮齿精加工可在热处理后进行。 5.正火正火能消除内应力,细化晶粒,改善力学性能和切削性能。机械强度要求不高的齿轮可采用中碳钢正火处理,大直径的齿轮可采用铸钢正火处理。 一般要求的齿轮传动可采用软齿面齿轮。为了减小胶合的可能性,并使配对的大小齿轮寿命相当,通常使小齿轮齿面硬度比大齿轮齿面硬度高出30- 50HBS。对于高速、重载或重要的齿轮传动,可采用硬齿面齿轮组合,齿面硬度可大致相同。

齿轮热处理

1 齿轮热处理概述众所周知,齿轮是机械设备中关键的零部件,它广泛的 用于汽车、飞机、坦克、齿轮传动是近代机它具有传动准确、结构紧凑使用寿命长等优点。轮船等工业领域。是机械产品重要器中最常见的一种机械振动是传递机械动力和运动的一种重要形式、基础零件。它与带、链、摩擦、液压等机械相比具有功率范围大,传动效率高、圆周速度高、传动比准确、使用寿命长、尺寸结构小等一系列优点。因此它已成为许多机由于齿轮在工业械产品不可缺少的传 动部件,也是机器中所占比例最大的传动形式。得益于近年来汽车、风电、. 发 展中的突出地位,使齿轮被公认为工业化的一种象征据大规格齿轮加工机床的需求增长十分耀眼。核电行业的拉动,汽车齿轮加工机床、近年来涉及齿轮加工机床制造的企业也日益增随着齿轮加工机床需求的增加,了解,多。无论是传统的汽车、船舶、航空航天、军工等行业,还是近年来新兴的高铁、铁对齿轮加工机床制都对机床工具行业的快速发展提出了紧迫需求,路、电子等行业,万吨。但 我国齿轮的质量年将达到200 2012 造商提出了新的要求。据权威部门预测主要 表现在齿轮的平均使用寿与其他发达国家的同类产品相较还是具有一定的差距,本设计是在课堂学习热处理知识后的探索和单位产品能耗、生产率这几方面上。命、并按重点是制定合理的热处理规程,尝试,其内容讨论如何设计齿轮的热处理工艺,此设计齿轮的热处理方法。齿轮是机械工业中应用最广泛的重要零件之一。其主要作用是传递动力,改变运 动速度和方向。是主要零件。其服役条件如下:齿轮工作时,通过齿面的接触来传递动力。两齿轮在相对运动过程中,既有滚动,(1)在齿根部位受因此,齿轮 表面受到很大的接触疲劳应力和摩擦力的作用。又有滑动。到很大的弯曲应力作用;word 编辑版. ⑵高速齿轮在运转过程中的过载产生振动,承受一定的冲击力或过载;⑶在一些特殊环境下,受介质环境的影响而承受其它特殊的力的作用。因此,齿轮的表面有高的硬度和耐磨性,高接触疲劳强度,有较高的齿根抗弯强度,高的心部 抗冲击能力。齿轮常用材料有。20Cr ,20CrMnTi, 18Cr2Ni4WA①20Cr降温直接淬火对渗碳时有晶粒长大倾向,有较高的强度及淬透性,但韧性较差。可切削性良好,冲击韧性影响较大,因而渗碳后进行二次淬火提高零件心部韧性;20Cr 为珠光体,焊接性较好,焊后一般不需热处理。但退火后较差;②20CrMnTi 20CrMnTi是性能良好的渗碳钢,淬透性较高,经渗碳淬火后具有高的强度和 韧性,特别是具有较高的低温冲击韧性,切削加工性良好,加工变形小,抗疲劳性能好。 ③18Cr2Ni4WA

45钢车床主轴的热处理工艺设计

《金属学与热处理》课程设计报告 45钢车床主轴的热处理工艺设计 学 院化学工程与现代材料 专 业 金属材料工程 姓 名 高治峰 学 号 指导教师 张美丽 完成时间 目录 2. 2. 2 45号钢的性能 ................................................................... ..4 2.3 热处理技术条件 .......................................... .. (5) 2.3.1加工工艺路线 .................................... 5 3热处理工艺分析 3.1 锻坯正火 ........................................................ .5 (5) 3.1.2 热处理工艺 ......................................... ..…….5 3.1.3 操作技巧 ............................................ ......5 3.2 调质 .................................................. .. (6) 3.2.1 调质目的 ...................................................... 6 3.2.2 热处理工艺 .................................................. .6 摘要 ....... 1引言…… 2设计分析 2 . 1 析 ........ 2.2 45 号钢的成分及性能点 ........ 2.2.1 45 号钢的元素成分及其作用 车床的使用工况及性能 ? (1) ….2 .4

齿轮材料热处理规范及其质量要求

齿轮材料热处理规范及其质量要求 正确选择齿轮固然很重要,但如果没有选择好适宜的热处理,那将是前功尽弃,可以说材料选择是前提,热处理方法得当是关键。 一、齿轮热处理方式与其性能特性 1、调质处理: 调质处理使材料获得优良的综合性能,这种热处理常常用于中碳钢和中碳合金钢,如45#、40Cr或40MnB材料,如果齿轮受到的冲击应力和齿面接触应力不是很大的情况下,这种热处理是适宜的,这种材料强韧性使得齿轮齿根抗弯曲能力强,抗疲劳能力也是优良的。但是调质处理齿轮齿面硬度不够,耐磨性偏差。 2、调质处理+表面淬火: 这种热处理方式补充单一调质处理的不足,使齿轮齿面硬度得到提高,耐磨性也随之增强,但是另一个问题仍未解决,就是中碳钢和中碳合金钢材料经过处理后,其冲击韧性尚不能令人满意,在高冲击应力的场合下仍不宜使用。 表面淬火有两种工艺:火焰淬火和高频淬火。 3、正火+渗碳淬火回火 这种热处理是针对低碳合金渗碳钢(如20CrMnTi、20CrNiMo等)而使用的,正火是用以改善原材料组织,便于齿轮粗加工;渗碳使齿面含碳量提高,在其后淬火回火中获得高硬度的回火马氏体组织,以提高齿轮的耐磨性。同时齿轮心部在淬火回火中获得低碳回火马氏体,强度高、韧性好,不仅可以承受高的载荷、大的冲击应力,而且抗疲劳性能也十分优异。 这种热处理也不是没有缺点,首先齿轮在渗碳淬火回火还要精加工,硬度过高会给精加工带来了困难;其次,渗碳淬火回火为了得到回火马氏体,回火温度低(200-300℃),热处理应力未能完全消除,在以后的使用中会逐渐释放造成齿轮微小变形,所以不能用于精密传动的齿轮。 这里的渗碳淬火回火,也包含碳氮共渗淬火回火。 4、调质+渗氮

轴类零件的材料与热处理

轴类零件的材料与热处理 一般轴类零件常用中碳钢,如45钢,经正火、调质及部分表面淬火等热处理,得到所要求的强度、韧性和硬度。 对中等精度而转速较高的轴类零件,一般选用合金钢(如40Cr等),经过调质和表面淬火处理,使其具有较高的综合力学性能。对在高转速、重载荷等条件下工作的轴类零件,可选用20CrMnTi、20Mn2B、20Cr等低碳合金钢,经渗碳淬火处理后,具有很高的表面硬度,心部则获得较高的强度和韧性。对高精度和高转速的轴,可选用38CrMoAl 钢,其热处理变形较小,经调质和表面渗氮处理,达到很高的心部强度和表面硬度,从而获得优良的耐磨性和耐疲劳性。 附:钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。淬火能显著提高2钢的强度和硬度。如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。所以,淬火和回火是密不可分的两道热处理工艺。

车床主轴加工工艺过程分析 ⑴ 主轴毛坯的制造方法 锻件,还可获得较高的抗拉、抗弯和抗扭强度。 ⑵ 主轴的材料和热处理 45钢,普通机床主轴的常用材料,淬透性比合金钢差,淬火后变形较大,加工后尺寸稳定性也较差,要求较高的主轴则采用合金钢材料为宜。 ①毛坯热处理 采用正火,消除锻造应力,细化晶粒,并使金属组织均匀。 ②预备热处理 粗加工之后半精加工之前,安排调质处理,提高其综合力学性能 ③最终热处理 主轴的某些重要表面需经高频淬火。 最终热处理一般安排在半精加工之后,精加工之前,局部淬火产生的变形在最终精加工时得以纠正。 加工阶段的划分 ①粗加工阶段

用大的切削用量切除大部分余量,及时发现锻件裂纹等缺陷。 ②半精加工阶段 为精加工作好准备 ③精加工阶段 把各表面都加工到图样规定的要求。 粗加工、半精加工、精加工阶段的划分大体以热处理为界。 工序顺序的安排 毛坯制造——正火——车端面钻中心孔——粗车——调质——半精车表面淬火——粗、精磨外圆——粗、精磨圆锥面——磨锥孔。 在安排工序顺序时,还应注意下面几点:①外圆加工顺序安排要照顾主轴本身的刚度,应先加工大直径后加工小直径,以免一开始就降低主轴钢度。 ②就基准统一而言,希望始终以顶尖孔定位,避免使用锥堵,则深孔加工应安排在最后。但深孔加工是粗加工工序,要切除大量金属,加工过程中会引起主轴变形,所以最

常用齿轮材料的选择及其热处理工艺

第11卷第5期2006年10月 新 余 高 专 学 报JOURNAL OF X I N Y U C OLLEGE Vol .11,NO.5 Oct .2006 —105 — 常用齿轮材料的选择 及其热处理工艺 ●李玉平  (新余高等专科学校 工程系, 江西 新余 338000) 摘 要:齿轮是机械传动中应用最广泛的零件之一,它在工作中的受力情况比较复杂。在齿轮的制造过程中,合理选择 材料与热处理工艺,是提高承载能力和延长使用寿命的必要保证。就常用齿轮材料锻钢、铸钢、铸铁、有色金属、非金属材料等的选择及热处理工艺进行了分析。 关键词:齿轮材料;热处理;锻钢;铸钢;铸铁;有色金属;非金属材料中图分类号:TG162.73 文献标识码:A 文章编号:1008-6765(2006)05-0105-02 收稿日期:2006-08-28 作者简介:李玉平(1965-),女,江西丰城人,副教授,主要从事机械制造的研究。 1前言 齿轮是机械传动中应用最广泛的零件之一,它的功用是按规定的速比传递动力和运动。在工作中,它的受力情况比较复杂,齿轮的齿根部受交变弯曲应力,齿面承受大的接触应力并产生强烈的摩擦,在换挡、启动和啮合不良时,齿轮还承受一定的冲击载荷。齿轮的主要失效形式是疲劳断齿、疲劳点蚀以及齿面的过量磨损。根据齿轮的受力情况和失效分析可知,齿轮一般都需经过适当的热处理,以提高承载能力和延长使用寿命,齿轮在热处理后应满足下列性能要求: 1)高的弯曲疲劳强度和接触疲劳强度(抗疲劳点蚀)。2)齿面具有较高的硬度和耐磨性。3)齿轮心部具有足够的强度和韧性。 齿轮的材料及热处理对齿轮的内在质量和使用性能都有很大的影响。锻钢、铸钢、铸铁、有色金属及非金属材料都可用来制造齿轮,各种热处理方法,如渗碳、渗氮、碳氮共渗、表面淬火、调质和正火等,在齿轮制造中都被应用,因此,齿轮的选材和热处理方法的选用较其它零件复杂。这就需要设计人员根据齿轮承载能力的不同,合理选择材料和毛坯及热处理工艺,并制定相应的工艺路线,用最经济的办法最大限度地发挥材料的潜能,做到“物尽其用”。2常用齿轮材料及热处理工艺的选择2.1锻钢 锻钢应用最广泛,通常重要用途的齿轮大多采用锻钢制作。根据承载能力的大小不同,选择的材料及热处理工艺又有所不同。 (1)高承载能力的重要齿轮这类齿轮有汽车、拖拉机、摩托车、矿山机械及航空发动机等齿轮。 1)汽车、拖拉机等齿轮主要分装在变速箱和差速器中。在变速箱中,通过它来改变发动机、曲轴和主轴齿轮的转速; 在差速器中,通过齿轮来增加扭转力矩,且调节左右两车轮的 转速,并将发动机动力传给主动轮,推动汽车、拖拉机运行,所以传递功率、冲击力及摩擦压力都很大,工作条件比较恶劣。因此在耐磨性、疲劳强度、心部强度和冲击韧性等方面的要求均比较高。实践证明,选用渗碳钢经渗碳、淬火及低温回火后使用最为合适。渗碳齿轮一般采用合金渗碳钢,而不采用碳素钢,因为碳素钢渗碳后淬火时要用水作淬火剂,变形量大。小模数齿轮一般采用20Cr 和20Cr M nTi,而较大模数齿轮采用30Cr M nTi 钢。其工艺路线一般为: 备料———锻造———正火———机械粗加工、半精加工———渗碳+淬火+低温回火———喷丸———校正———精加工 该工艺中正火的目的是为了均匀和细化组织,消除锻造应力,改善切削加工性;渗碳后表面含碳量提高,保证淬火后得到高的硬度(58~62HRC ),提高耐磨性和接触疲劳强度,心部硬度可达30~45HRC,并具有足够的强度和韧性;喷丸可增大渗碳表层的压应力,提高疲劳强度,并可清除氧化皮。 2)航空发动机齿轮承受高速和重载,比汽车、拖拉机齿轮的工作条件更为恶劣,除要求高的耐疲劳性外,还要求齿轮的心部具有高的强度和韧性,一般多采用12Cr N i3A 、12Cr2N i4A 或18Cr2N i4WA 等高级渗碳钢制造,为了节约镍,可用15Cr M n2Si M oA 代替18Cr2N i4WA 。这两种钢的切削加工性能较差,其工艺路线一般为: 备料———锻造———调质处理———机械粗加工、半精加工———渗碳———高温回火———机械加工———淬火+低温回火———机械精加工———检验 在此工艺中,由于12Cr N i3A 、12Cr2N i4A 、18Cr2N i4WA 等高级渗碳钢的淬透性较高,退火困难,一般采用调质处理,使硬度降低到35HRC 以下,改善切削加工性能。由于不渗碳表面未经镀铜防渗,因此渗碳后进行高温回火,降低硬度,便于切去不渗碳表面的渗碳层。

齿轮材料及热处理

齿轮材料及热处理 常用的齿轮材料是各种牌号的优质碳素钢、合金结构钢、铸钢和铸铁等。齿轮毛坯一般多采用锻件或轧制钢材,当齿轮较大(例如直径大于400~600mm)而轮坯不易锻造时,可采用铸钢;开式低速传动可采用灰铸铁;球墨铸铁有时可代替铸钢。列出了常用的齿轮材料及其热处理后的硬度。 齿轮常用的热处理方法有以下几种: 1.表面淬火一般用于中碳钢和中碳合金钢,例如45钢、40Cr等。表面淬火后轮齿变形不大,可在不磨齿的情况下达到7级精度,齿面硬度可达52~56HRC。由于齿面接触强度高,耐磨性好,而齿芯部未淬硬仍有较高的韧性,故能承受一定的冲击载荷。表面淬火的方法有高频淬火和火焰淬火等。 2.渗碳淬火渗碳钢为含碳量0.15%~0.25%的低碳钢和低碳合金钢,例如20、20Cr等。渗碳淬火后齿面硬度可达56~62HRC,齿面接触强度高、耐磨性好,而齿芯部仍保持有较高的韧性,常用于受冲击载荷的重要齿轮传动。通常渗碳淬火后变形较大,需要磨齿。 3.调质调质一般用于中碳钢和中碳合金钢。例如45、40Cr、35SiMn等。调质处理后齿面硬度一般为220~260HBS。因硬度不高,故可在热处理以后精切齿形,且在使用中易于跑合。 4.正火正火能消除内应力、细化晶粒、改善力学性能和切削性能。机械强度要求不高的齿轮可用中碳钢正火处理。大直径的齿轮可用铸钢正火处理。 5.渗氮渗氮是一种化学热处理。渗氮后不再进行其他热处理,齿面硬度可达60~62 HRC。因氮化处理温度低,齿的变形小,因此适用于难以磨齿的场合(例如内齿轮)。氮化层一般不厚且较脆,故不宜用于有冲击的场合。常用的渗氮钢为38CrMoAlA。 上述五种热处理中,调质和正火后的齿面硬度较低(HBS≤350),为软齿面齿轮;其他三种的齿面硬度较高,为硬齿面齿轮。软齿面工艺过程较简单,适用于一般传动。当大小齿轮都是软齿面时,考虑到小齿轮齿根较薄,且受载次数较多,弯曲强度较低,一般应使小齿轮齿面硬度比大齿轮高20~50HBS。硬齿面齿轮承载能力高,但需专门设备磨齿,常用于要求结构紧凑或生产批量大的齿轮。 常用的齿轮材料 类别牌号热处理硬度(HBS或HRC) 优质碳素钢 35正火150~180HBS 调质180~210HBS 表面淬火40~45HRC 45正火170~210HBS

汽车齿轮热处理工艺

汽车、拖拉机的变速箱齿轮多半用低碳渗碳钢制造,而机床变速箱多半用中碳(合金) 2011-4-10 21:07 提问者:991495331|浏览次数:289次 我来帮他解答 2011-4-11 11:10 满意回答 合金渗碳钢 1. 用途主要用于制造汽车、拖拉机中的变速齿轮,内燃机上的凸轮轴、活塞销等机器零件。这类零件在工作中遭受强烈的摩擦磨损,同时又承受较大的交变载荷,特别是冲击载荷。 2. 性能要求 (1) 表面渗碳层硬度高,以保证优异的耐磨性和接触疲劳抗力,同时具有适当的塑性和韧性。 (2) 心部具有高的韧性和足够高的强度。心部韧性不足时,在冲击载荷或过载作用下容易断裂;强度不足时,则较脆的渗碳层易碎裂、剥落。 (3) 有良好的热处理工艺性能在高的渗碳温度(900℃~950℃)下,奥氏体晶粒不易长大,并有良好的淬透性。 3. 成分特点 (1) 低碳:碳含量一般为0.10%~0.25%,使零件心部有足够的塑性和韧性。 (2) 加入提高淬透性的合金元素:常加入Cr、Ni、Mn、B等。 (3) 加入阻碍奥氏体晶粒长大的元素:主要加入少量强碳化物形成元素Ti、V、W、Mo等,形成稳定的合金碳化物。 4.钢种及牌号 20Cr低淬透性合金渗碳钢。这类钢的淬透性低,心部强度较低。 20CrMnTi中淬透性合金渗碳钢。这类钢淬透性较高、过热敏感性较小,渗碳过渡层比较均匀,具有良好的机械性能和工艺性能。 18Cr2Ni4WA和20Cr2Ni4A高淬透性合金渗碳钢。这类钢含有较多的Cr、Ni 等元素,淬透性很高,且具有很好的韧性和低温冲击韧性。 5. 热处理和组织性能 合金渗碳钢的热处理工艺一般都是渗碳后直接淬火,再低温回火。热处理后,表面渗碳层的组织为合金渗碳体+回火马氏体+少量残余奥氏体组织,硬度为 60HRC~62HRC。心部组织与钢的淬透性及零件截面尺寸有关,完全淬透时为低碳回火马氏体,硬度为40HRC~48HRC;多数情况下是屈氏体、回火马氏体和少量铁素体,硬度为25HRC~40HRC。心部韧性一般都高于700KJ/m2。 1 汽车齿轮热处理工艺概述

20CrMnMo齿轮热处理

目录 1 绪论 (1) 1.1 热处理工艺课程设计的目的 (1) 1.2 课程设计的任务 (1) 1.3 热处理工艺设计的方法 (1) 2 热处理工艺课程设计内容和步骤 (1) 2.1 课题工件简图 (1) 2.2 技术要求: (2) 2.3 特点 (2) 2.4 适用范围 (2) 2.5 齿轮的性能要求及为何选用20CrMnMo (2) 2.6 化学成分作用 (3) 2.7 20CrMnMo钢的淬透性曲线 (4) 2.8 淬透性 (5) 2.9 渗碳热处理工艺规范 (5) 2.10 钢的等温转变和连续冷却转变 (5) 3 热处理工艺方案以及参数论述 (6) 3.1 热处理工艺流程 (6) 3.2 热处理工艺方案论证 (6) 3.2.1 20CrMnMo处理温度以及冷却方式 (6) 3.2.2 热处理方案制定 (6) 3.3 热处理方案 (6) 3.3.1 正火 (7) 3.3.2 正火工艺曲线 (7) 3.3.3 正火冷却 (8) 3.4 20CrMnMo的渗碳工艺 (8) 3.4.1 渗碳的目的 (8) 3.4.2 渗碳过程 (8) 3.5 20CrMnMo的淬火工艺 (9) 3.5.1 渗碳后一次重新加热淬火的目的 (9) 3.5.2 淬火事项 (9) 3.6 低温回火工艺 (10) 3.6.1 回火的目的 (10) 3.6.2 回火温度 (11) 3.6.3 加热介质 (11) 3.6.4 保温时间 (11) 3.6.5 回火工艺曲线 (11) 3.6.6 冷却方式 (12) 4 总的热处理工艺曲线 (12) 4.1 热处理总工艺曲线 (12) 4.2 选择加热设备 (12) 4.2.1 装置选择:井式电阻炉 (12) 4.2.2井式炉示意图 (13)

相关文档
相关文档 最新文档