文档库 最新最全的文档下载
当前位置:文档库 › 实变函数测试题与答案

实变函数测试题与答案

实变函数测试题与答案
实变函数测试题与答案

实变函数试题

一,填空题

1. 设1,2n A n ??=????

, 1,2n =L , 则lim n n A →∞= . 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为

3. 设E 是2R 中函数1cos ,00,0

x y x x ?

≠?=?? =?的图形上的点所组成

的 集合,则E '= ,E ?

= .

4. 若集合n

E R ?满足E E '?, 则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间, 则(),αβ满足:

, .

6. 设E 使闭区间[],a b 中的全体无理数集, 则

mE = .

7. 若()n mE f x →()0f x ??=??, 则说{}

()n f x 在E 上

.

8. 设n

E R ?, 0n x R ∈,若 ,则称0

x 是E 的聚点.

9. 设{}()n f x 是E 上几乎处处有限的可测函数列, ()f x 是

E 上 几乎处处有限的可测函数, 若0σ?>, 有

, 则称{}()n f x 在E 上依测度收敛于()f x .

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{}

()j n f x , 使得 .

二, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <. 2. 设E 为点集, P E ?, 则P 是E 的外点.

3. 点集11,2,,E n ?

?

=???

?

L L

的闭集. 4. 任意多个闭集的并集是闭集.

5. 若n

E R ?,满足*m E =+∞, 则E 为无限集合. 三, 计算证明题

1. 证明:()()()A B C A B A C --=-U I

2. 设M 是3

R 空间中以有理点(即坐标都是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集.

3. 设n

E R ?,i E B ?且i B 为可测集, 1,2i =L .根据题意,

若有

()()*0,i m B E i -→ →∞, 证明E 是可测集.

4. 设P 是Cantor 集, (

)[]3

2ln 1,(),0,1x x P f x x x P

?+ ∈?=? ∈-??.

求1

0(L)()f x dx ?.

5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0

P

的余集中长为13n 的构成区间上取值为1

6

n , ()1,2n =L , 求

1

()f x dx ?

.

6. 求极限: 1

3230lim(R)sin 1n nx nxdx n x →∞+?.

实变函数试题解答

一 填空题 1. []0,2.

2. ()()()tan ,,.2x x a x a b b a

π

π???=--∈??-??

3. {}

1(,)cos ,0(0,)1x y y x y y x ??

=≠≤????

U ; ?.

4. 闭集.

5. (),.,.G G G αβαβ? ? ?

6. b a -.

7. 几乎处处收敛于()f x 或 a.e.收敛于()f x . 8. 对0

00,(,)U x δδ?> 有{}()0E x -=?.

9. lim ()()0n n mE f x f x σ→∞

?-≥?=?? 10. ()()n f x f x → a.e.于E . 二 判断题

1. F . 例如, (0,1)A =, []0,1B =, 则A B ?且A B ≠,但

1mA mB ==.

2. F . 例如, 0(0,1)?, 但0不是(0,1)的外点.

3. F . 由于{}0E E '=?.

4. F . 例如, 在1

R 中, 1

1,1n F n n ??=-????

, 3,4n =L 是一系

列的闭集, 但是3

(0,1)n n F ∞

==U 不是闭集.

5. T . 因为若E 为有界集合, 则存在有限区间I , I <+∞,

使得E I ?, 则

**

,m E m I I ≤=<+∞ 于*m E =+∞ . 三, 计算证明题. 1. 证明如下:

()()()()()

()()()S S

S S S A B C A B C

A

B C A B C A B A C A B A C --=- = = = =-I ?U I

2. M 中任何一个元素可以由球心(,,)x y z , 半径为r 唯一确定, x ,y , z 跑遍所有的正有理数, r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集.

3. 令1

i i B B ∞

==U , 则i E B B ??且B 为可测集, 于是对于i ?, 都有i B E B E -?-, 故

()()**0i m B E m B E ≤-≤-,

令i →∞, 得到()*0m B E -=, 故B E -可测. 从而

()E B B E =--可测.

4. 已知0mP =, 令[]0,1G P =-, 则

()1

320

221

1

30

(L)()(L)ln 1(L)(L)()(L)(L)(R)()13

3

P

G

G

P

G

f x dx x dx x dx

f x dx

x dx x dx

f x dx

x

=++ =0+ =+ = =

=???????.

5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G ,

2G L , 其中0P 为Cantor 集, n G 是0P 的余集中一切长为1

3

n

的构成区间(共有1

2

n -个)之并. 由L 积分的可数可加性, 并

且注意到题中的00mP =, 可得

1

1

11

1

11

1()()()()()1

()6

1

12663111

2

916n

n P G P G n n

P G n n n n n

n

n n n n f x dx f x dx f x dx f x dx f x dx f x dx dx mG ∞

=∞

=∞

=-∞

==∞

==

+ =+ =

+

=0+=

? =?=

?

?

?

∑??

∑?

?

∑∑

∑U

6. 因为3

23

sin 1nx nx n x +在[]0,1上连续, 13230(R)sin 1nx nxdx n x +?存在且与13

230(L)sin 1nx nxdx n x

+?的值相等. 易知

3

2

3

232323

211sin 111nx nx nx nx n x n x n x ≤≤≤+++

由于1

在()0,1上非负可测,

且广义积分10

1?收敛,则

1

在()0,1上(L)可积, 由于3

23

lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到

1

133

23230013

2301

lim(R)sin lim(L)sin 11lim sin 100

n n n nx nx nxdx nxdx n x n x nx nx dx

n x dx →∞→∞

→∞=++?? = ?+?? ==????.

一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。 3. 若m E=0,则E 为可数集

4. 若 |f(x)| 在E 上可测,则f(x) 在E 上可测

5. 若f(x) 在E 上有界可测,则f(x) 在E 上可积 二、将正确答案填在空格内(共8分,每小题2分) 1. ______可数集之并是可数集。

A. 任意多个

B. c 势个

C. 无穷多个 D 至多可数个 2. _____闭集之并交是闭集。

A. 任意多个

B. 有限个

C. 无穷多个 D 至多可数个 3. 可数个开集之交是_____

A 开集

B 闭集

C F 型集

D G 型集

4.若 |f| 在E上可积,则_______

A. f在E上可积

B. f 在E上可测

C. f 在E上有界

D.

f在E上几乎处处有限

三、叙述有界变差函数定义、Fatou引理、Lebesgue控制收敛定理(共9分,每小题3分)。

四、证明下列集合等式(共6分,每小题3分):

1.S-S=(S-S)

2.E[f a]=E[f>a-]

五、证明:有限个开集之交是开集。举例说明无限个开集之交不一定是开集。(8分)

六、证明:设f(x),f(x)为可积函数列,f(x)f(x) 于E,且

|f|d|f|d,则对任意可测子集e E有

|f|d|f|d(7分)

七、计算下列各题:(每小题5分,共15分)

1.sin(nx)d=

2.设f(x)=求d=

3.设f(x)= n=2,3,…, 求d=

一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)

1.非可数的无限集为c势集,(不正确!如:直线上的所

有子集全体不可数,但其势大于c)。

2.开集的余集为闭集。(正确!教材已证的定理)。

3.若m E=0,则E为可数集(不正确!如contorP集外测

度为0,但是C势集)。

4.若 |f(x)| 在E上可测,则f(x) 在E上可测(不正确!

如)

5.若f(x) 在E上有界可测,则f(x) 在E上可积(不正

确!如有界可测,但不可积)

二、将正确答案填在空格内

1.至多可数个可数集之并是可数集。

A. 任意多个势个 C. 无穷多个 D 至多可数个

2.有限个闭集之并交是闭集。

A. 任意多个

B. 有限个

C. 无穷多个 D 至多可数个

3.可数个开集之交是 G型集

A开集 B闭集 C F型集 D G型集

4.若 |f| 在E上可积,则 f在E上几乎处处有限

A. f在E上可积

B. f 在E上可测

C. f 在E上有界

D. f 在E上几乎处处有限

三、叙述有界变差函数定义、Fatou引理、Lebesgue控制收敛定理(见教材,不赘述!)。

四、证明下列集合等式

=(S-S)

解:

=(S-S)

2。E[f a]=E[f>a-]

证明:

所以,同理,故

五、证明:有限个开集之交是开集。举例说明无限个开集之交不一定是开集。

证明:(分析法证明)设

要证为开集,只须证明

事实上,取时,自然有

故为开集。

无限个开集之交不一定是开集。反例:设,则

=既不是开集,又不是闭集。

六、证明:设f(x),f(x)为可积函数列,

f(x)f(x) 于E,

且|f|d|f|d,

则对任意可测子集e E有

|f|d|f|d

证明:因为f(x)f(x) 于E,对任意由Fatou引理知

|f|d≤|f|d

而已知|f|d|f|d,则对任意由Fatou引理知:

一方面|f|d= |f|d≤|f|d

另一方面,|f|d= |f|d≤|f|d |f|d= |f|d= |f|d- |f|d |f|d

故|f|d≤|f|d≤|f|d

即|f|d=|f|d

七、计算下列各题:

1.sin(nx)d=?

解:因为sin(nx) 0于[0,1]

第 3页共 4 页

且||≤1

则由Lebesgue控制收敛定理知:

sin(nx)d=sin(nx)d=0 2.设f(x)=求d=?

解:

所以

3.设f(x)= n=2,3,…, 求

d =? 解:因为f(x)=

n=2,3,…,在

上非负可

测,所以由Lebesgue 逐块积分定理知:

d =

一、选择题 (共10题,每题3分,共30分)

1.设Q 是R 中有理数的全体,则在R 中Q 的导集Q '是 【 】

(A) Q (B) φ (C) R (D)Q R - 2.设{}n F 是一列闭集,Y ∞

==1

n n

F F ,则

F

一定是

【 】

(A)开集 (B)闭集 (C) δG 型集 (D) σ

F 型集 3.设E

R

中有理数全体,则=mE

【 】

(A) 0 (B)1 (C)+∞ (D)-∞

4.下面哪些集合的并组成整个集合的点 【 】

(A) 内点,界点,聚点 (B) 内点,界点,

孤立点

(C) 孤立点,界点,外点 (D) 孤立点,聚点,外点

5.设

P

是Cantor 集,则

【 】

(A) P 与n R 对等,且P 的测度为0 (B) P 与n R 对等,且P 的测度为1

(C) P 与n R 不对等,P 的测度为0 (D)

P

与n R 不对

等,P 的测度为1

6. 设)

(x f 与

)

(x g 在

E

上可测,则[]g f E ≥是

【 】

(A) 可测集 (B) 不可测集 (C)空集

(D) 无法判定

7. 设)(x f 在可测集E 上有定义,{}n x f x f n ),(m in )(=,则)(x f n 是

(A) 单调递增函数列 (B) 单调递减函数列 (C) 可积函数列

(D) 连续函数列

8. 设E 是任一可测集,则 【 】

(A) E 是开集 (B) E 是闭集 (C) E 是完备集

(D) 对任意0>ε,存在开集E G ?,使ε<-)(E G m 9

??

?-∈+∈=Q

Q ]1,0[21]1,0[2sin )(x,x x,x x f I ,则

=?

]

10[,f(x)dx

【 】 (A) 1 (B) 2 (C) 3 (D) 4

10.设{}n f 是E 上一列几乎处处有限的可测函数,若对任意

0>σ,有下面条件成立,则{})(x f n 依测度收敛于

)(x f . 【 】

(A) []0)()(lim >≥-∞→σx f x f mE n n (B) []0)()(lim <≥-∞

→σx f x f mE n n (C) []0)()(lim ==-∞

→σx f x f mE n n (D) []0)()(lim =≥-∞

→σx f x f mE n n

二、定理叙述题(共2题,每题5分,共10分)

1.鲁津定理 引理

三、判断改正题(正确的打对号,错误的打错号并改正,共5题,每题4分,共20分) 1. 若

E

与它的真子集对等,则

E

一定是有限

集. 【 】

2. 凡非负可测函数都是

L

可积

的. 【 】 3.设

A

1

R 空间中一非空集,若

.

a A ≤'则.a A ≤

【 】

4.设E 为可测集,则存在δG 型集F ,使得E F ?,且

0)(=-F E m . 【 】

5.

)

(x f 在[]b a ,上

L

可积,则

)

(x f 在[]

b a ,R

可积且

(

四、证明题(共4题,每题10分,共40分)

1.开集减闭集后的差集为开集,闭集减开集后的差集为闭集.

2.n R 上全体有理数点集的外测度为零.

3.设函数列}{n f 在E 上依测度收敛f ,且h f n ≤e a .于E ,则h f ≤e

a .于E .

4.设)(x f 在[]εε+-b a ,上可积,则0)()(lim

0=-+?→dx x f t x f b

a t .

判断题(每题2分,共20分) 1.

a

大的基数。

( ) 2.

( ) 3.若0

=mE ,则

E

是至多可列集。

( ) 4.

( )

5.两集合的外测度相等,则它们的基数相等。 ( )

6.若)(x f 在E 的任意子集上可测,则)(x f 在可测集E 上可测。 ( )

7.

E

上可测函数列的极限函数在

E

上不一定可测。

( ) 8.

)

(x f 是

E

上的可测函数,则

)

(x f 可积。

( )

9.若0)(≥x f 且?=E dx x f 0)(,则f ..0)(e a x =于E 。 ( )

10.若

|

)(|x f 在

E

上可积,则)

(x f 在

E

上也可积。

( )

二、填空题(每题2分,共20分)

1.设Λ,2,1),,0(==n n A n ,则=?∞

=n n A 1 ,=?∞

=n n A 1 。 2.设{}1,,,3,2,1R n A ?=ΛΛ,则=0A ,='A 。 3.设B 是开区间)2,0(中有理点的全体,则=mB 。

4.单调函数的不连续点集的基数是 。

5.设E 是]1,0[上的Cantor 集,则=E 。

6.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件

是 。 7. 狄利克雷函数函数

)

(x D 是 可积的,

=?dx x D )(]

1,0[ 。

三、计算题(每题10分,共20分). 1.计算dx

x n x

n R n ?

+∞

→1

02

42

12

1)(lim 。(提示:使用Lebesgue 控制收敛定

理) 2. 设

???∈∈=02

0\]1,0[,;,)(P x x P x x x f ,其中0P 是Cantor 集,试计算

?

]

1,0[)(dx x f 。

四、证明题(每题8分,共40分) 1. 证明:}1|{}0|{1n

x x x x n >=>∞

=Y

2. 设M 是平面上一类圆组成的集合,中任意两个圆不相交,证明M 是是至多可列集。

3. 如果0=mE ,则E 的任何子集也可测且测度为零。

4.设)(x f 在E 上可积,且..).()(e a x g x f =于E ,证明:)(x g 也在E 上可积。

5. 可测集E 上的函数)(x f 为可测函数充分必要条件是对任何有理数r ,集合])([r x f E <是可测集。 一、单项选择题(3分×5=15分)

1、1、下列各式正确的是( )

(A )1lim n k n n k n A A ∞

→∞===??; (B )1lim n k n k n n A A ∞

==→∞=??; (C )1lim n k n n k n A A ∞

→∞===??; (D )1lim n k n k n n A A ∞

==→∞

=??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D)

P P =ο

3、下列说法不正确的是( )

(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测

(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成

立的是( )

(A )若()()n f x f x ?

, 则()()n f x f x → (B) {}sup ()n n

f x 是可

测函数

(C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?

,则()f x 可

5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )

(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数

(C ))('

x f

在],[b a 上

L 可积 (D) ?-=b

a a f

b f dx x f )()()('

二. 填空题(3分×5=15分)

1、()(())s s C A C B A A B ??--=_________

2、设

E

是[]0,1上有理点全体,则

'

E

=______,o

E =______,E =______. 3、设

E

n

R 中点集,如果对任一点集

T

都有

_________________________________,则称E 是L 可测的

4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.

(填“充分”,“必要”,“充要”)

5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使___________________________,则称()f x 为 [],a b 上的有界变差函数。

三、下列命题是否成立若成立,则证明之;若不成立,则举反例说明.

1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。

2、若0=mE ,则E 一定是可数集.

3、若|()|f x 是可测函数,则()f x 必是可测函数。 4.设()f x 在可测集E 上可积分,若,()0x E f x ?∈>,则

()0E

f x >?

四、解答题(8分×2=16分).

1、(8分)设

2,()1,x x f x x ?=??为无理数

为有理数

,则()f x 在[]0,1上是否R -可

积,是否L -可积,若可积,求出积分值。

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数历年考试真题汇总

第 1 页 共 6 页 陇东学院2011—2012学年第一学期实变函数(A) 一.填空.(每空2分,共20分) 1给出自然数集+N 与整数集Z 之间的一一对应关系 . 2设B A ,是两集合,B A <是指 . 3?? ?????????????=≠==0,00,1sin ),(x x x y y x E ,在2 R 内求= E ,='E , 4.设, ,(),[0,1]\. x x x P f x e x P ∈?=? ∈?其中P 是Cantor 集,则[] =?1,0)(dx x f ________. 5.设n E R ?,则称E 是L 可测的是指: . 6.设()sin f x x =,[0,2]x π∈,则()f x + = ; ()f x -= . 7.称)(x f 为可测集E 上的简单函数是指 8.设⑴mE <∞;⑵ {}()n f x 是 E 上一列几乎处处有限的可测函数;⑶ lim ()()n n f x f x →∞ =..a e 于E ,且()f x <∞..a e 于E .则0δ?>,E E δ??,使得 mE δδ<,而{}()n f x 在 上一致收敛于()f x . 二.选择(每题2分,共10分) 1.若A 是有限集或可数集,B 是不可数集,则以下不对的是( ). A .A B 是可数; B .A B 是不可数; C .A B c =; D .A B B = 2.设E 是任一可测集,则( ). A .E 是开集; B .0ε?>,存在开集G E ?,使得(\)m G E ε<; C .E 是闭集; D . E 是 F σ型集或 G δ型集. 3.下列关系式中成立的是( ) ①()A B B A =\ ,②()A B B A = \,③()B A B A ''=' , ④() B A B A =,⑤()B A B A =,其中B A ,是二集合. A .①② B .③④⑤ C .③⑤ D .①②③④⑤ 4. 设n E R ?,mE <+∞,{}()n f x 在E 上几乎处处收敛于()f x .则( ). A .{}()n f x 在E 上处处收敛于()f x ; B .存在{}()n f x 的子列{}()i n f x ,使得{} ()i n f x 在E 上一致收敛于()f x . C . {}()n f x 在E 上一致收敛于()f x ; D . {}()n f x 在 E 上依测度收敛于()f x ; 5.设q R E ?为可测集,{}()n f x 是E 上的一列非负可测函数,则( ) A ??∞→∞ →≤E n n n E n dx x f dx x f )(lim )(lim B ??∞→∞ →≥E n n n E n dx x f dx x f )(lim )(lim C ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim D ??∞→∞ →=E n n n E n dx x f dx x f )(lim )(lim 三.判断题(每题2分,共10分) 1. 0mE =E ?是有限集或可数集. ( ) 2. 若开集1G 是开集2G 的真子集,则12mG mG < ( ) 3. 直线上的开集至多是可数多个互不相交的开区间的并 ( ) 4. 设()f x ,()g x 是可测集E 上的可测函数,则()()f x g x 也是E 上的可测函数 ( ) 5.可测函数)(x f 在E 上L 可积?)(x f 在E 上L 可积 ( ) 四.证明题(每题8分,共40分) 1.证明: 设()f x 是(,)-∞+∞上的实值连续函数,则a R ?∈,{} ()E x f x a =>是 试 卷 密 封 装 订 线 院 系 班 级 姓 名 学 号

实变函数测试题与答案

实变函数测试题 一,填空题 1. 设1,2n A n ??=????, 1,2n =L , 则lim n n A →∞ = 、 2. ()(),,a b -∞+∞:,因为存在两个集合之间的一一映射为 、 3. 设E 就是2R 中函数1cos ,00,0 x y x x ?≠?=?? =?的图形上的点所组成的 集合,则E '= , E ?= 、 4. 若集合n E R ?满足E E '?, 则E 为 集、 5. 若(),αβ就是直线上开集G 的一个构成区间, 则(),αβ满足: , 、 6. 设E 使闭区间[],a b 中的全体无理数集, 则mE = 、 7. 若()n mE f x →()0f x ??=?? , 则说{}()n f x 在E 上 、 8. 设n E R ?, 0n x R ∈,若 ,则称0x 就 是E 的聚点、 9. 设{}()n f x 就是E 上几乎处处有限的可测函数列, ()f x 就是E 上 几乎处处有限的可测函数, 若0σ?>, 有 , 则称{}()n f x 在E 上依测度收敛于()f x 、

10. 设()()n f x f x ?,x E ∈, 则?{}()n f x 的子列{} ()j n f x , 使得 、 二, 判断题、 正确的证明, 错误的举反例、 1. 若,A B 可测, A B ?且A B ≠,则mA mB <、 2. 设E 为点集, P E ?, 则P 就是E 的外点、 3. 点集11,2,,E n ??=???? L L 的闭集、 4. 任意多个闭集的并集就是闭集、 5. 若n E R ?,满足*m E =+∞, 则E 为无限集合、 三, 计算证明题 1、 证明:()()()A B C A B A C --=-U I 2、 设M 就是3R 空间中以有理点(即坐标都就是有理数)为中心, 有理数为半径的球的全体, 证明M 为可数集、 3、 设n E R ?,i E B ?且i B 为可测集, 1,2i =L 、根据题意, 若有 ()()*0,i m B E i -→ →∞, 证明E 就是可测集、 4. 设P 就是Cantor 集, ()[]32ln 1,(),0,1x x P f x x x P ?+ ∈? =? ∈-?? 、 求1 0(L)()f x dx ?、 5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x , 而在0P 的余

第三版实变函数论课后答案

1. 证明:()B A A B -=的充要条件是A B ?. 证明:若() B A A B -=,则()A B A A B ?-?,故A B ?成立. 反之,若A B ?,则()()B A A B A B B -?-?,又x B ?∈,若x A ∈, 则 ()x B A A ∈-,若x A ?,则()x B A B A A ∈-?-.总有 () x B A A ∈-.故 ()B B A A ?-,从而有()B A A B -=。 证毕 2. 证明c A B A B -=. 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?. 另一方面, c x A B ?∈,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-. 综合上两个包含式得c A B A B -=. 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理 9. 证明:定理4中的(3):若A B λλ?(λ∈∧),则 A B λλλλ∈∧ ∈∧ ? . 证:若x A λλ∈∧ ∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(?λ∈∧) 成立 知x A B λλ∈?,故x B λλ∈∧ ∈,这说明 A B λλλλ∈∧ ∈∧ ? . 定理4中的(4): ()()( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 证:若 () x A B λ λλ∈∧ ∈ , 则 有 'λ∈∧ ,使 ''()( )()x A B A B λλλλλλ∈∧ ∈∧ ∈?. 反过来,若()( )x A B λλλλ∈∧ ∈∧ ∈则x A λλ∈∧ ∈或者x B λλ∈∧ ∈ . 不妨设x A λλ∈∧ ∈,则有'λ∈∧使'' '()x A A B A B λλλλλλ∈∧ ∈?? . 故( )()()A B A B λλλ λλλλ∈∧ ∈∧ ∈∧ ? . 综上所述有 ()( )( )A B A B λ λλλλλλ∈∧ ∈∧ ∈∧ =. 定理6中第二式()c c A A λλλλ∈∧ ∈∧ = . 证:( )c x A λλ∈∧ ?∈,则x A λλ∈∧ ? ,故存在'λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ?? 从而有( )c c A A λλλλ∈∧ ∈∧ ? . 反过来,若c x A λλ∈∧ ∈ ,则'λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴? ,从而()c x A λλ∈∧ ∈

实变函数复习题

1.若E有界,则m*E<正无穷 2.可数点集的外测度为零 3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c 4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En 5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0 7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B) 8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e

9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。 10.设是一列可测集,证明和都是可测集且

11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0 12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A) 13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则 定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。 设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。 次可数可加性证明

卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限

1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

相关文档