文档库 最新最全的文档下载
当前位置:文档库 › 基于快速仿真原型的飞行器半物理仿真系统

基于快速仿真原型的飞行器半物理仿真系统

基于快速仿真原型的飞行器半物理仿真系统
基于快速仿真原型的飞行器半物理仿真系统

飞行器仿真原理

在无风、无侧滑的情况下,飞行器航迹坐标系下的运动学方程[2]为: cos()sin sin()cos cos cos cos sin()sin sin s v p t p s s t p s s t d m p Q mg d d m p Y mg d d mv p Y d θψαθαγγθθαγγ?=+Φ--????=+Φ+-????-=+Φ+?? (1) 其中m 为飞行器质量;v 为速度;p 为发动机动力;α为迎角;p Φ为发动机安装角;Q 为空间阻力;θ为俯仰角;s γ为滚转角;Y 为升力;s ψ为偏航角。 图1显示了机体坐标系下的飞行器受力情况;图2表示了地面坐标系和航迹坐标系的关系;其中,d d d Ox y z 表示地面坐标系,地面坐标系固定于地面,原点选在 地面的某一点,d y 铅直向上,d x 和d z 在水平面内。h h h Ox y z 表示航迹坐标系,航 迹坐标系原点在飞行器质心,h x 沿飞行器速度向量v ,即飞行器飞行方向,h y 在包含v 的铅垂直平面内,h z 垂直于铅垂平面。 图1 飞行器受力分析 图2 地面坐标系和轨迹坐标系 为了更清晰、简练地描述这些运动学的量,我们令 cos()/sin()cos cos /sin()cos sin /x p y p s s z p s s n p Q mg n p Y mg n p Y mg ααγγαγγ???=+Φ-??????=+Φ+??????=+Φ+???? (2) 称x n 、y n 、z n 为过载,把(2)式代入(1)式得到 []()()()()sin ()()()cos ()()cos ()()s v t z t t y t t x t d n t t g d d v t n t t g d d v t t n t g d θψθθθ?=-??????=-??????-=?? (3) 从式(3)可以明确看出:x n 、y n 、z n 反映了飞行器因主动运动而产生的加速度,而sin θ和cos θ则是由于飞行器的重力产生的加速度。

车辆综合的半实物仿真平台解决方案设计设计

车辆综合半实物仿真平台解决方案 车辆综合电子电气系统涉及到电子、总线、控制、人机交互等多个领域,功能复杂,研制难度大,研制单位往往缺乏系统级的验证平台。本方案依托国内外先进的开发工具(Tesis、Altia)以及自主研发的软硬件系统(HiGale),采用基于模型的设计理念,构建了车辆综合半实物仿真实验室,能够高效的解决用户复杂的电子系统仿真和测试的问题。 平台技术挑战 为车辆综合电子系统提供半实物仿真验证环境,以适应不同型号不同研制周期的综合电子系统设计验证、功能验证及性能测试的需要。平台建设的主要挑战如下: ?完整实现虚拟车辆动力传动系统、控制系统、车辆电器及防护系统四大系统的实时模型?通过真实物理信号实现虚拟车辆系统与综电系统的信号交换 ?系统具备故障注入功能,实现综电系统的故障注入测试及诊断功能测试 ?实现系统的友好人机交互、自动测试以及虚拟车辆运动三维及乘员视景 ?实现车际通讯指挥控制的仿真测试 平台解决方案

车辆综合半实物仿真平台按功能可划分为仿真控制中心、虚拟车辆、信号适配及故障注入系统、人在环系统四大部分。 在以上四大系统开发建设中,包含了很多先进的工具、开发流程及恒润多年积累的核心技术,主要包括:高性能仿真机系统、定制的硬件系统、定制模型开发、先进的人机交互终端解决方案、三维视景软件、实验管理系统软件等。 ?仿真控制中心 仿真控制中心为半实物仿真平台的管理中心,负责提供人机交互界面、电源管理、系统管理及仿真过程管理,可将仿真数据生成三维实时动画软件,并通过显示设备给予实验人员真实被控系统运动情况显示。

?虚拟车辆 虚拟车辆为仿真平台的核心,提供基于实时仿真计算机系统的动力系统、武器系统、电器系统、防护系统、环境系统的实时模型,并连接各种真实电器设备,包括控制开关、电控单元及各类执行设备,为电子控制系统提供了闭环测试环境、各类负载及显示环境。 ?虚拟实时仿真系统 虚拟实时仿真系统采用了国外仿真机和恒润自主研发的实时仿真机HiGale。其中,HiGale实时仿真系统基于高实时性、高可靠性的操作系统,提供了兵器行业专用的板卡,同时能够实现自动化测试的功能。 ?实时车辆仿真模型 实时车辆仿真模型是整个半实物仿真系统的核心,依靠先进的建模方法和丰富的建模经验,搭建了装甲车辆模型、伺服电机系统模型、武器系统模型以及三防系统模型。 ?信号适配及故障注入系统 信号适配及故障注入设备是半实物仿真系统与测试环境间的接口,不但提供了各种输入/输出信号的调理、负载模拟功能,同时也提供了进行常见电气故障注入的功能以及用于系

半物理仿真平台介绍资料

TY-RTSIM-2013 半物理仿真平台简介 TY-RTSIM-2013是由苏州同元软控信息技术有限公司研发的半物理仿真平台,致力于为各领域产品开发提供由数字化设计至试验测试过程的一体化设计方法和工具,以及提供产品全模型实时仿真、快速原型设计和硬件在回路测试的解决方案。 全模型实时仿真 快速原型开发 硬件在回路测试

TY-RTSIM-2013支持用户基于Matlab/Simulink、MWorks、Dymola等图形化建模环境进行模型设计,实现了控制、液压、机械等多领域建模工具与实时仿真目标机的紧密集成,提供一个高易用性、高可靠性、高实时性的产品设计、仿真及测试验证平台。 TY-RTSIM-2013是具有自主知识产权、国内领先的半物理仿真平台产品,在航空、航天、兵器、船舶、车辆等领域具有广泛应用。 1.系统架构 TY-RTSIM-2013采用“主机-目标机”的系统架构,由建模软件、平台综合管理软件、三维视景软件、仿真目标机与信号板卡、分布式组件等构成。

2.系统主要功能/性能/特点 (1).支持多种建模环境,包括Matlab/Simulink、MWorks、Dymola等; (2).x86多核处理器,PCI系统总线,Linux/RTAI实时操作系统; (3).高实时性仿真,仿真周期≤1ms,具备任务优先级、线程、硬件中断等控制方式; (4).支持绝大多数主流厂商常规板卡和传感器板卡; (5).仿真机硬件系统开放性,支持用户自制板卡; (6).单/多模光纤反射内存方式数据通信,支持多节点的“星形”和“环形”分布式仿真架构; (7).软件易用性,主要体现于综合管理软件,包括: ●显示界面中,控件拖拽操作 ●拖放式操作实现变量与显示控件关联、板卡通道与显示控件关联 ●用户简单操作实现专用仿真程序界面开发 ●具备批量试验、特定工况试验操作 ●具备多组曲线数据自动输入等功能 ●物理数据与电信号数据比例关系控制功能 ●板卡电信号输出范围锁定设置 ●提供软件外部功能扩展接口 (8).半物理仿真数据同步驱动的场景动画; (9).兼用于信号测试系统。 3.主要技术参数 3.1建模软件 TY-RTSIM-2013支持的建模环境包括Matlab/Simulink、MWorks、Dymola 等。 此外,用于半物理仿真的建模软件还包括: ●SimRTI 信号板卡接口功能模块库,集成于Matlab/Simulink和MWorks软件环境中。

Multisim数电仿真半加器和全加器

(Multisim数电仿真)半加器和全加器

————————————————————————————————作者:————————————————————————————————日期:

实验3.5 半加器和全加器 一、实验目的: 1.学会用电子仿真软件Multisim7进行半加器和全加器仿真实验。 2.学会用逻辑分析仪观察全加器波形: 3.分析二进制数的运算规律。 4. 掌握组合电路的分析和设计方法。 5.验证全加器的逻辑功能。 二、实验准备: 组合电路的分析方法是根据所给的逻辑电路,写出其输入与输出之间的逻辑关系(逻辑函数表达式或真值表),从而评定该电路的逻辑功能的方法。一般是首先对给定的逻辑电路,按逻辑门的连接方法,逐一写出相应的逻辑表达式,然后写出输出函数表达式,这样写出的逻辑函数表达式可能不是最简的,所以还应该利用逻辑代数的公式或者卡诺图进行简化。再根据逻辑函数表达式写出它的真值表,最后根据真值表分析出函数的逻辑功能。 例如:要分析如图3.5.1所示电路的逻辑功能。 图3.5.1 1.写输出函数Y 的逻辑表达式: B AB AB A W =.......................................... 3.5.1 C WC WC W X =......................................... 3.5.2 D XD XD X Y =.......................................... A B C D Y X W &&&&&&& &&& & &

半实物仿真简介

半实物仿真平台简介 2.1组成 半实物仿真平台主要由主控计算机、仿真计算机、控制计算机(原型机)、A/D接口、D/A接口及相关能源设备、记录设备等组成,如图1所示。 其中被控对象采用数学仿真,由dSPACE仿真计算机通过软件实现;控制计算机用仿真实物实现,即用dSPACE标准组件作为控制计算机的快速原型机,实现控制计算机功能;仿真计算机通过A/ D、 D/A等输入输出口与控制系统实物相互,实现数字控制器与外界设备的信息交换。输入和输出信息分别从转接口和dSPACE引出,通过记录仪进行记录。 2.2主控计算机 主控计算机是整个仿真系统的上位机,采用有多个ISA总线的工控机,安装MATLAB6.5系列软件、dSPACE软件,用于构建控制系统Simulink框图、进行系统参数优化和数字仿真、控制仿真过程、编译下载仿真软件、输入输出仿真结果等。 根据控制系统设计和建模结果,利用MATLAB/Simulink构建系统数字仿真框图,进行数字仿真和控制参数优化。在数字仿真的基础上,利用dSPACE提供的RTI软件,将被控对象的Simulink框图生成实时代码并自动下载到dSPACE仿真计算机中;将控制器控制方程的Simulink框图生成实时代码并自动下载到dSPACE快速原型机中。

用dSPACE提供的综合试验与测试环境软件ControlDesk、自动实验及参数调整软件MLIB/MTRACE、PC与实时处理器通信软件CLIB 以及实时动画软件RealMotion等实现试制和参数测量。该软件环境可以方便地实成、下载和试验调试等工作。 2.3仿真计算机 用dSPACE标准组件系统DS1005PPC处理器板作为仿真计算机,用以模拟被控对象。DS1005PPC处理器与主控机之间用光缆连接交换数据。 DS1005PPC板主频480MHz;片内数缓存均为32KwordS;通过32位PHS总16块I/O板,通过ISA总线与主机进行并具有相当强的计算能力。由于PHS总线实时应用设计,所以它不存在其他外部传输协议的总线所存在的内含软件问题。 2.4控制原型机 在数字控制系统的控制计算机实物以前,dSPACE提供了良好的仿真实物。dSPACE单板系统DS1103控制器板作为用来实现控制器的控制算法。 DS1103板卡把处理器和I/O集成到一块板子上,形成一个完整的实时仿真系统。使用时将DS1103插到主控计算机ISA槽,通过I SA总线与主控机和仿真机交换数据。用这种板卡作为控制计算机的原型机可以完全模拟数字控制算法,大大缩短研制周期。 2.5输入输出接口 为了满足半实物仿真需要,采用了D转换板和DS2103 D/A转换板

基于Modelica的起落架半物理仿真设计与实现

2015年11月第11卷第4期 系统仿真技术System Simulation Technology Nov.,2015Vol.11,No.4 中图分类号:TP 391.9 文献标识码:A 基于Modelica 的起落架半物理仿真设计与实现 董 政1,张洪昌1,2*,丁建完1 (1.华中科技大学CAD 中心,湖北武汉 430074;2.苏州同元软控信息技术有限公司,江苏苏州 215123)摘 要:飞机起落架系统涉及机械、液压和控制等多个领域,采用传统的单一领域仿真软件无法实现其系统级建模及半物理仿真分析。通过研究建立基于Modelica 语言的起落架半物理仿真平台,为起落架系统开发提供统一的多领域系统建模仿真环境,实现了起落架的系统级统一建模,并实现了支持Modelica 模型的半物理仿真应用,可以用来指导起落架的总体设计及验证。 关键词:起落架;Modelica ;多领域建模;半物理仿真;MWorks Hardware-in-Loop SimUlation of Aircraft Landing Gear Using Modelica LangUage DONG Zheng 1,ZHANG Hongchang 1,2,DING Jianwan 1 (1.CAD Center ,Huazhong University of Science and Technology ,Wuhan 430074,China ; 2.Suzhou Tongyuan Software ﹠Control Technology Co.,Ltd.,Suzhou 215123,China ) Abstract :Aircraftlandinggearrelatestothemechanical,hydraulicandcontrolfields,isunabletorealize theoverallmodeling, simulationandanalysisbytraditionalsinglefieldsimulationsoftware.Ahardware-in-loopsimulationplatformbasedonModelicalanguage,providesauniformenvironmentforlanding gearsystemmodelingandsimulation, realizethesystemlevelmodelingofthelandinggear,canbeusedtoguidetheoveralldesignoflandinggear. Key words :landinggear;Modelica;multi-domainmodeling;hardware-in-loop;MWorks 基金项目:国家科技支撑计划项目(No.2012BAF16G02)1 引 言 飞机起落架系统是飞机在地面停放和起降 滑跑时用于支持飞机重量、吸收撞击能量的部 件,作为飞机的关键部件之一,其工作性能直接 影响到飞机起飞、着陆性能与飞行安全[1]。飞机起落架系统是典型的复杂机电产品,由液压、机械、控制等多个领域子系统组成,从方案设计到 系统测试的整个研发过程十分复杂。随着仿真 技术的发展和应用,在起落架的设计开发过程中,越来越多的采用了数字仿真和半物理仿真技术[2,3]。但是,仅仅通过AMESim 、Matlab /Simulink 等单一领域的数字仿真工具,很难实现对起落架进行系统级建模仿真;并且,基于Matlab /Simulink 的半物理建模工具具有很大的局限性,根本无法支持机械、液压和控制等领域模 型的半物理仿真应用。

虚拟驾驶半物理仿真平台研究

Abstract The simulation platform of virtual driving has a wide range of applications in driver training, ergonomics design research, vehicle product development and other fields. But there are some problems in the traditional virtual driving platform, such as high hardware costs, poor interaction, single type of vehicle simulation, low versatility, etc. This thesis shows how to design a hardware-in-loop simulation platform of virtual driving. Basing on the traditional virtual driving platform, hardware-in-loop simulation system is added. At the same time, this thesis also designs intelligent driving algorithms for vehicles and pedestrians so that the platform can better simulate the actual process of driving. This article mainly completed the following work. (1) This thesis proposes and designs a new platform framework combining virtual reality technology and hardware-in-loop simulation technology. This framework reduces the development cost of the traditional virtual driving platform and provides new ideas for the development of low-cost and simple virtual driving platform. (2) This thesis focuses on designing and completing the construction of virtual scenes. The setting of scene is based on the real world things, such as buildings, roads, and plants. At the same time, this thesis adds the traffic light system, street light system, 24-hour time change system, weather system. Those systems can increase the authenticity of the platform. (3) This thesis analyzes and completes the establishment of the vehicle dynamics model, such as the driving dynamics model, the braking dynamic model and the steering dynamics model. The platform simulates more realistic vehicle movements. V ehicle attributes also can be changed according to user requirements, making the platform expandable. (4) This paper has designed intelligent driving algorithms for vehicles and pedestrians. The vehicle can realize the functions of autonomous path finding, autonomous overtaking, and autonomous identification of traffic lights. Pedestrians walk freely and cross the crosswalk function according to traffic lights. Intelligent driving algorithm makes this platform more intelligent. V

配电系统物理仿真平台--北京丹华昊博电力科技有限公司

配电系统物理仿真平台 一、概述 由于电力系统暂态及稳态的复杂性,在进行理论研究的同时也必须进行试验研究,二者缺一不可。电力系统的试验可以在原型上进行,也可以在模型上进行,电力系统的物理模拟试验是电力系统研究的重要方法。目前配网自动化全面建设,无论是理论还是实际运行,都存在许多问题,各种配网自动化设备都需要试验、检测,配电系统物理仿真平台就是解决这些问题的重要方法。 北京丹华昊博电力科技有限公司结合杨以涵教授30年小电流接地选线研究心得,率先与华北电力大学合作,建成国家重点试验室——“1:1 10kV高压物理模拟试验室”,又与中国电力科学研究院合作,建成配电系统物理仿真平台——动模测试系统(原型测试系统PRS)。目前两套系统在配电系统物理仿真平台建设和配电网接地故障模拟试验领域,均处于领先水平。 二、配电系统物理仿真平台 配电系统物理仿真平台能够真实再现电力系统的各种运行工况、能够真实模拟电力系统设备和线路的运行情况,为电力用户提供全方位的培训、仿真、研发平台,为配网自动化设备的检测提供了全新的解决方案。 配电系统物理仿真平台具备的功能主要包括:配电系统参数模拟、配电系统运行数据模拟、配电系统故障模拟、配网自动化设备测试、状态监视、数据采集、图形显示、事件告警、数据统计、录波分析等。 目前,仿真平台主要有3类,分别为380V配电系统物理仿真平台、10kV配电系统物理仿真平台和RTDS数字仿真平台,三种平台的对比如表 1所示。 表 1仿真平台对比表

三、380V配电系统物理仿真平台 1.系统规模 1)实验室要求:长10m,宽4m,面积40m2; 2)实验室分配:独立使用; 3)模拟35kV/10kV变电站1座、主变1台、10kV线路6条,系统如图 1所示; 4)户内柜体式,配置6面柜体,配置后台监控系统,按变电站规范设计,所有操作分远 方和就地,设备布置如图 2所示。 图 1380V配电系统物理仿真平台系统图 2.系统参数 1)系统供电电源:三相、380V、100A、50Hz; 2)系统电压:380V; 3)系统满负荷工作电流:10A; 4)线路短路电流(多匝线圈):800、1600A;

PSCAD的电力系统仿真大作业

电力系统分析课程报告姓名 ******* 学院自动化与电气工程学院 专业控制科学与工程 班级 ******* 指导老师 ******* 二〇一六年五月十三

一、同步发电机三相短路仿真 1、仿真模型的建立 选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef 与Tm均为定常值,且发电机空载。当运行至时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。 图1 同步发电机三相短路实验仿真模型 2、发电机参数对仿真结果的影响及分析 衰减时间常数Ta对于直流分量的影响 三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=)。 图3 同步发电机模型参数Ta对应位置

1)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。 图4 Ta=发生短路If波形 2)Ta=时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。 图5 Ta=发生短路If波形 短路时刻的不同对短路电流的影响 由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。 Pscad模型中对短路时刻的设置如图6所示 图6 Pscad对于短路时刻的设置 1)当在t=时发生三相短路,三相短路电流波形如图7所示。 图7 t=时三相短路电流波形 2)当在t=时发生三相短路,三相短路电流波形如图8所示。 图8 t=6时三相短路电流波形 Xd、Xd`、Xd``对短路电流的影响 1) Xd的影响 Pscad中对于Xd的设置如图9所示: 图9 Pscad对于D轴同步电抗Xd的设置 下面验证不同Xd时A相短路电流的稳定值。 i.Xd=(标幺制,下同)时,仿真波形如图10所示 图10 Xd=时A相短路电流波形 ii.Xd=10时,仿真波形如图11所示 图11 Xd=时A相短路电流波形 2)Xd`的影响 在Pscad中暂态电抗Xd`的设置如图13所示: 图13 Pscad对于暂态电抗Xd的设置 下面验证不同Xd`时A相短路电流的暂态过程。 i.Xd`=时A相短路电流的波形如图14所示:

多物理场仿真软件技术参数

多物理场仿真软件技术参数 一、技术规格要求(*必须满足) 1. 软件的功能需求 1.1 使用有限元算法。 1.2 具有多物理场(三个及以上)一次性同时求解的直接耦合功能。 1.3 图形化用户界面,预置前处理、求解器,以及后处理功能。 1.4 具有App 开发器。 1.5 具有热传递仿真功能。 1.6 具有结构力学仿真功能。 1.7 具有CFD 仿真功能。 1.8 具有与Excel 的双向调用功能。 1.9 具有几何建模功能。 1.10 具有半导体仿真功能。 1.11 具有波动光学仿真功能。 1.12 具有材料库功能。 1.13 具有案例模型。 2. 基本功能 2.1 所有数值计算均基于有限元方法。 2.2 任意指定多物理场耦合,并且可以一次性同时求解的直接耦合功能。 2.3 提供前处理器、求解器和后处理器。 2.4 提供图形化自定义偏微分方程接口(系数型、广义型、弱解型),不需要用户编写程序就可以求解自己的方程,并可以与预置的物理场接口耦合。 2.5 可以导入/导出数组文件、表格、文件等。 2.6 自带网格剖分功能,可以智能或者手动剖分网格,创建结构化和非结构化网 格。 3. 半导体仿真功能 3.1 可以仿真分析双极晶体管、金属半导体场效应晶体管 (MESFET)、金属氧化物半导 体场效应晶体管 (MOSFET)、绝缘栅双极晶体管 (IGBT)、肖特基二极管和 P-N 结等。 3.2 可以分析包含光跃迁来模拟诸如太阳能电池、发光二极管(LED) 以及光电二 极管等一系列器件。 3.3 可以求解电子和空穴的浓度以及伏安特性曲线。 4. 波动光学仿真功能 4.1 提供专用的工具来模拟线性和非线性光学介质中的电磁波传播,实现精确的元件仿 真和光学设计优化。 4.2 可以在光学结构中进行频域或时域的高频电磁波仿真。 4.3 可以进行特征频率模式分析、频域和时域电磁仿真。例如计算传输和反射系数。 5. 材料库功能 5.1 材料库中包含 2500 种材料的数据,包括化学元素、矿物、金属合金、热绝缘材料、半导体和压电材料等。 5.2 不仅可以绘制和检查这些函数的定义,而且还可以进行添加或更改。也可以在其他 依赖材料属性函数的物理场耦合中调用这些函数。 6. 几何建模功能 * * * * * * * * * * * * * * * * * * * * *

西安交大物理仿真实验实验报告(良导体热导率的动态法测量)

西安交通大学 大学物理仿真实验报告 姓名:杨萌 班级:核工程23 学号:2120302084 日期:2013.11.25

实验名称:良导体热导率的动态法测量 一.实验目的 1.通过实验学会一种测量热导率的方法。 2.解动态法的特点和优越性。 3.认识热波,加强对拨动理论的理解。 二.实验原理 实验采用热波法测量铜、铝等良导体的热导率。简化问题,令热量沿一维传播,周边隔热,如图1所示。根据热传导定律,单位时间内流过某垂直于传播方向上面积A 的热量,即热流为 x T KA t q ??-=?? (1) 其中K 为待测材料的热导率,A 为截面积,文中x T ??是温度对坐标x 的梯度,负号表示热量流动方向与温度变化方向相反.dt 时间内 通过面积A 流入的热量 d x d t x T KA dt t q t q dq dx x x 22??=?? ??????? ????-??? ????=+ 图1 棒 元 若没有其他热量来源或损耗,据能量守恒定律,dt 时间内流入面积A 的热量等于温度升高需要的热量dt t T Adx c dq ?? ? ????=ρ,其中C ,ρ分别为材料的比热容与密度。所以任一时刻棒元热平衡方程为 (2)

dx x T K t T dx C 22??=??ρ 由此可得热流方程 22x T D t T ??=?? (3) 其中ρC K D =,称为热扩散系数. 式(3)的解将把各点的温度随时间的变化表示出来,具体形式取决于边界条件,若令热端的温度按简谐变化,即 t T T T m ωsin 0+= (4) 其中T m 是热端最高温度,ω 为热端温度变化的角频率。另一端用冷水冷却,保持恒定低温o T ,则式(3)的解也就是棒中各点的温度为 )sin(202x t e T x T T D x m D ωωαω-?+-=- (5) 其中T 0是直流成分,α是线性成分的斜率,从式(5)中可以看出: 1) 热端(x=0)处温度按简谐方式变化时,这种变化将以衰减波的形式在棒内向冷端传播,称为热波. 2) 热波波速:ωD V 2= (6) 3) 热波波长:ωπλD 22= (7) 因此在热端温度变化的角频率已知的情况下,只要测出波速或波长就可以计算出 D .然后再由ρ C K D =计算出材料的热导率K .本实验采用.式(6)可得 ωρC K V 22= 则T C V f C V K πρπρ4422== (8) 其中,f 、T 分别为热端温度按简谐变化的频率和周期.实现上述测量的关键是: 1) 热量在样品中一维传播.2) 热端温度按简谐变化. 三.实验仪器

物流仿真大作业.doc

物流系统仿真 期末作业 题目:Manufacturing System Planning and Scheduling 班级:物流工程131 学号:1311393003 1311393008 姓名:黎宇帆张力夫 日期:2015-09-19 成绩:

制造系统规划与调度 翻译 2.1引言 现代生产调度工具是非常强大的,提供了广阔的范围内调整工具的行为的真实过程要求的选项和参数。 然而,更多的选项的存在,它就在实践中找到的工具的最佳配置更加困难。 即专家们经常无法预测的多种可能性的影响。 测试甚至一小部分在现实中可能的配置,对实际生产过程的影响可能需要几个月的时间,可能会严重降低整体性能。 因此,这样的试验在实践中是不可行的。 优化的生产调度仿真模型比使用真正的过程更安全,更便宜,更快,更容易测试。为了在一个中等规模的制造公司充分使用先进的调度工具的优势,找到它的一个最佳的规则和参数的优化配置。 模块化仿真模型的整个业务的制造系统和生产过程中阳极氧化阶段是建立以测试不同的调度配置的影响。调度工具的配置测试和优化进行了离线使用的仿真模型。实际生产过程不受干扰,可以非常快速、低成本的找到最优配置。 2.2问题描述 位于英国的一个中型制造商,生产一系列的不同的小压铝零件和一系列大批量的其他面向消费者的产品。典型的应用包括香水的喷雾组件和哮喘患者的分配器。这是一个高度竞争的行业,成功取决于是否能实现高效率和低成本制造。所以生产调度是非常重要的。 在过去,该公司安装的软件工具可以支持生产过程中的各个区域调度。全面提高公司绩效,增加产量和减少产品的交货时间,他们计划建立自动电抗器的供应链规划服务器–总调度系统协调当地所有的业务和生产区。为了提供最好的解决方案,调度工具供应商,预优国际(https://www.wendangku.net/doc/f110738475.html,)决定使用模拟求解调度工具的优化配置。 问题是建立一个仿真工具,它将接受的到来客户订单和生产订单排序以满足这些需求。一个重要的地方是模型的生产过程本身,以确保它的主要阶段的最佳时刻加载。阳极氧化阶段是整个生产过程中特别重要的,因此,它必须是非常详细的模拟,以测试到整体订单的交货时间可以通过阳极氧化过程阶段优化减少到什么程度。 在这种情况下的研究主要目标是以下几个: (1)为了确定公司模型间的相关业务和生产过程和确定订单和交货时间, (2)在规划部门分析和优化业务流程,为了处理传入的需求和规划生产订单。 (3)测试的整体生产时间,提高灵敏度,特别是确定是否引入特定排序规则的生产订单将减少在阳极氧化处理阶段总的处理时间。

基于飞行力学的惯导轨迹发生器及其在半实物仿真中的应用--欢迎下载并发表

收稿日期:201X-xx-xx ; 修回日期:201X-xx-xx 基金项目:国家自然科学基金(90816027);航空科学基金(20135853037);航天技术支撑基金(2013-HT-XGD-15) 基于飞行力学的惯导轨迹发生器及其在半实物仿真中的应用 陈凯,卫凤,张前程,于云峰,闫杰 (西北工业大学 航天学院,西安710072) 摘 要:讨论了在高超声速飞行器半实物仿真中,使用飞行器六自由度模型生成捷联惯导轨迹发生器的方案,使半实物仿真中的捷联惯导系统与飞行力学模型和飞行控制系统有机地融合到一起。介绍了六自由度模型的坐标系定义,描述了发射坐标系下由32个方程组成的高精度六自由度模型。指出了六自由度模型中惯性器件测量的比力和角速率理论值,比力和角速率是由飞行器飞控系统作用后所产生各种力和力矩的综合结果,而不同于传统轨迹发生器中由事先设定的速度和姿态变换获得。将发射坐标系下的导航信息推导到高超声速飞行器需求的当地水平导航坐标系下。高超声速飞行器数字仿真表明,提出的轨迹发生器满足半实物仿真算法精度要求;半实物仿真表明,导航系统与六自由度模型、飞行控制与制导系统能够有机结合,导航结果精度满足指标要求,支撑了高超声速飞行器飞控系统性能指标评估。 关键词:轨迹发生器;捷联惯导;六自由度模型;高超声速飞行器;半实物仿真 中图分类号:V249.3 文献标识码:A 文章编号: Trajectory Generator of Strapdown Inertial Navigation System on Flight Dy-namics with Application in Hardware-in-the-Loop Simulation CHEN Kai, WEI Feng, ZHANG Qian-cheng, YU Yun-feng, Y AN Jie (School of Astronautics, Northwestern Polytechnical University, Xi ’an 710072, China ) Abstract : How to generate trajectory profile of strapdown inertial navigation system (SINS) based on flight dy-namics is discussed in the hypersonic vehicle hardware-in-the-loop (HWIL) simulation, which makes SINS work together in harmony with hypersonic vehicle six-degree-of-freedom (6DoF) model and flight control and guidance system. Firstly, the definition of coordinate system in 6DoF model is introduced. Then the high precision 6DoF model consists of 32 equations is described in launch centered earth-fixed (LCEF) coordinate system. The theoreti-cal value of the specific force and the angular velocity measured by inertial measurement unit (IMU) in 6DoF mod-el is pointed out. The specific force and the angular velocity is a combined result of a variety of forces and mo-ments by flight control system during flight, which is different with a traditional trajectory generator whose specific force and angular velocity is obtained from velocity and attitude change sets in advance. The navigation informa-tion in LCEF frame is converted to local ENU frame to meet hypersonic vehicle demand. The hypersonic vehicle digital simulation result reveals that the 6DoF model, the flight control and guidance system, and SINS can work together. The HWIL simulation indicates that the accuracy of SINS satisfies the requirement of hypersonic vehicle and can support the evaluation of the hypersonic vehicle flight control system performance. Keywords :Trajectory generator; Strapdown inertial navigation system (SINS); Six-degree-of-freedom model; Hypersonic vehicle; Hardware-in-the-loop (HWIL) simulation 0 引 言 捷联惯导系统具有导航信息全、自主性高、连续性好、更新率高等优点,是飞行器飞行控制系统的关键部件之一,各种飞行器都在广泛使用。如 X-43A 高超声速飞行器验证机采用LN-100LG 组合导航系统,在飞行试验过程中采用纯捷联惯导导航[1] 。在对捷联惯导的研究和实验中,离不开轨迹发生器的使用和研究。最为经典的轨迹发生器就是PROFGEN ,PROFGEN 提供当地水平坐标系下的位

半实物仿真

dSPACE实时仿真系统介绍 2010-06-11 15:24:04 来源:与非网 关键字:dSPACE实时仿真系统硬件在回路 dSPACE简介 dSPACE实时仿真系统是由德国dSPACE公司开发的一套基于MATLAB/Simulink的控制系统开发及半实物仿真的软硬件工作平台,实现了和MATLAB/Simulink/RTW的完全无缝连接。dSPACE实时系统拥有实时性强,可靠性高,扩充性好等优点。dSPACE硬件系统中的处理器具有高速的计算能力,并配备了丰富的I/O支持,用户可以根据需要进行组合;软件环境的功能强大且使用方便,包括实现代码自动生成/下载和试验/调试的整套工具。dSPACE软硬件目前已经成为进行快速控制原型验证和半实物仿真的首选实时平台。 实现快速控制原型和硬件在回路仿真 RCP(Rapid Control Prototyping)—快速控制原型 要实现快速控制原型,必须有集成良好便于使用的建模、设计、离线仿真、实时开发及测试工具。 dSPACE 实时系统允许反复修改模型设计北京汉阳,进行离线及实时仿真。这样,就可以将错误及不当之处消除于设计初期,使设计修改费用减至最小。 使用 RCP 技术,可以在费用和性能之间进行折衷;在最终产品硬件投产之前,仔细研究诸如离散化及采样频率等的影响、算法的性能等问题。通过将快速原型硬件系统与所要控制的实际设备相连,可以反复研究使用不同传感器及驱动机构时系统的性能特征。而且,还可以利用旁路( BYPASS )技术将原型电控单元( ECU : Electronic Control Unit )或控制

器集成于开发过程中,从而逐步完成从原型控制器到产品型控制器的顺利转换。 RCP 的关键是代码的自动生成和下载,只需鼠标轻轻一点,就可以完成设计的修改。 HILS(Hardware-in-the-Loop Simulation)—半实物仿真 当新型控制系统设计结束,并已制成产品型控制器,需要在闭环下对其进行详细测试。但由于种种原因如:极限测试、失效测试,或在真实环境中测试费用较昂贵等nc.qoos.ipi,使测试难以进行,例如:在积雪覆盖的路面上进行汽车防抱死装置( ABS )控制器的小摩擦测试就只能在冬季有雪的天气进行;有时为了缩短开发周期,甚至希望在控制器运行环境不存在的情况下(如:控制对象与控制器并行开发),对其进行测试。 dSPACE 实时仿真系统的 HIL 仿真将助您解决这一问题。 dSPACE开发流程 开发人员在进行控制系统开发时,常常需要同时面临许多难以解决的问题,而开发的时间却要求愈来愈紧迫。因此,只有高度集成的系统才能满足这一切要求, dSPACE 系统设计不仅仅是进行控制方案的设计和离线仿真,还包括实时快速控制原型、已验证的设计向产品型控制器的转换和硬件在回路测试。 dSPACE 为 RCP 和 HILS 提供了一套计算机辅助控制系统设计的工具 -CDP ( Control Development Package )。 CDP 主要基于下列工具:MathWorks 公司 Simulink :用来进行基于方框图的离线仿真 MathWorks 公司 Real-Time-Workshop: 用来从方框图生成 C 代码 dSPACE 公司 Real-Time Interface (RTI): 用来产生与硬件系统相关的代码,使代码可以在单处理器 / 多处理器目标系统中运行 dSPACE 系列软件工具:用来对闭环试验进行交互操作(自动/手动)

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

相关文档