文档库 最新最全的文档下载
当前位置:文档库 › 环己烯水合催化剂再生的研究和优化

环己烯水合催化剂再生的研究和优化

环己烯水合催化剂再生的研究和优化
环己烯水合催化剂再生的研究和优化

环己烯水合催化剂再生的研究和优化

吴济民1 吴亚萍2 吴爱民3 苏天宝2

(1.河南神马尼龙化工有限责任公司 2.平顶山工学院 3.平煤集团公司)

摘 要 采用气相色谱仪、重量法等分析方法,研究了环己烯水合催化剂(MH)再生过程中除油温度、H

2

O2处理温度、再生时间对水合反应的影响,结果表明最佳再生条件:除油温度100℃,H2O2处理温

度90℃,再生时间24h。对MH再生过程中除油操作、制备新MH、H

2

O2处理和水洗操作等进行优化后,MH的流失和消耗显著降低,环己醇(NOL)产量上升。

关键词 环己烯水合催化剂 环己醇 再生 优化

环己醇(NOL)是一种优良的中高沸点的有机化工产品,目前主要作为己二酸、己内酰胺等酰胺类产品的中间原料,由于其具有良好的溶解性和低挥发性,又可广泛应用于非酰胺类产品[1,2]。在涂料工业中,环己醇常用作油漆、虫胶和清漆的溶剂;环己醇作为乳液的稳定剂和均匀剂,用在皂和合成洗涤剂中;在纺织工业上可用作染料溶剂和漂煮助剂,也可用于纺织品和合成纤维织品的消光剂,此外,环己醇还用于消毒剂、香料、杀虫剂、杀菌剂、皮革柔软剂和木材防腐剂等领域[3~5]。

该公司的环己醇采用环己烯(HE)经过水合反应的生产方法;其中水合反应催化剂使用ZS M-5分子筛催化剂,其具有适宜的酸性、不溶于水、机械强度高及热稳定性好等特点[6]。关于环己烯水合催化反应[7,8]和分子筛催化剂[9,10]的研究已经有了相关报道,对水合催化剂再生的基础研究文献却很少见到。水合催化剂(MH)再生系统采用间歇再生的方法,每天需要进行一次再生操作,MH再生系统操作的稳定与优化,不仅制约着MH再生的效果,进而影响着MH 的活性和产品NOL的产量;而且MH再生系统的波动还会造成价格昂贵的进口MH流失以及消耗偏高,自1998年开车以来,通过不断地摸索和大量的实验,对再生系统进行了优化研究,取得显著效果。

1 实验部分

1.1 MH再生工艺简介

MH再生是一个间歇操作过程,每天进行一次约24h,如图1所示,每次从水合反应器(R01)抽出一部分催化剂浆料排往D601,使用中压蒸汽(S M)对MH 进行蒸发,除去MH中夹带及溶解的油分(除油);向D601的MH中加入35%的双氧水(H2O2),以分解除去MH上附着的有机物(H

2

O2处理);使用高纯水(W PH)在过滤器F602中洗涤MH中残存所生成的有机酸化合物(水洗);将再生过的MH浆料由D601送到D603,再返回反应器R01

1.2 HE转化率和NOL选择性的测试

分析仪器:岛津14BPFsc(s)气相色谱仪(毛细管柱进样口)。通过分析测试水合反应器油相中组分浓度,由积分器自动定量计算HE的转化率和NOL的选择性,从而观察MH再生后对水合反应的影响程度。

1.3 水合反应催化剂(MH)

水合催化剂为结晶型的ZS M-5分子筛催化剂,在浆液状态下用于反应;是一种硅铝酸盐催化剂,其活

性点为H+酸性,其晶型经分析测试为:Na

1.78

A l2Si31.1 O66.1。

1.4 MH再生对HE水合催化反应的影响

导致MH活性下降的主要原因是水合反应生成的微量高沸点副产物积累在催化剂上,造成催化剂的酸性点中毒以及反应分子扩散受阻引起活性逐渐下降,

542

第34卷 第4期 石油与天然气化工

在氧的存在下,这种活性下降表现尤为显著。由于有机物的积累的影响,MH 再生的主要过程就是用强氧化能力的H 2O 2氧化分解MH 表面积累覆盖的有机物,表1显示了催化剂表面覆盖的有机物对HE 水合反应的影响,而经过再生将覆盖的有机物驱除后,HE 转化率明显上升。

表1 再生前后MH 表面有机物对水合反应的影响项 目

再生前再生后MH 表面有机物,%

4.13

2.40

HE 的转化率,%8.69.5NOL 的选择性,%

99.1

99.2

2 MH 再生的研究

2.1 除油温度的影响

由图2可见,随着除油温度的提高,MH 再生后的活性———HE 的转化率明显上升,这主要是因为除油温度过低,达不到HE 的沸点83℃,催化剂夹带的油分难以有效蒸发驱除,从而影响催化剂的活性;除油温度过高,油相剧烈沸腾,又会使MH 随油相带出,造成MH 的流失。由图可见除油温度对NOL 的选择性影响不大。实践表明,适宜的除油温度以100℃为宜。

2.2 H 2O 2处理温度的影响

由图3可见,从70℃→90℃,HE 的转化率随H 2O 2处理温度的升高而显著增大,H 2O 2处理温度升高到90℃以上,HE 的转化率增幅减缓,这主要是因为

达到HE 的沸点以后,H 2O 2处理温度已趋于稳定平衡,对催化剂表面覆盖有机物的处理影响减小。H 2O 2处理温度对NOL 的选择性影响不大,均在99%左右,这是由于环己烯水合副反应是双分子反应,过渡态分子的体积较大,较难扩散进入分子筛的孔道与活性中心接触

[6]

,不利于副反应的进行,所以催化剂表面覆

盖大分子的有机物的多少对水合反应影响不大。因此,正常的H 2O 2处理温度控制在90℃。2.3 MH 再生时间的影响

MH 再生过程总的操作时间称再生时间,将MH

再生过程中每项操作按比例延长或缩短后,测试出再生时间增大或减小后的HE 转化率见表2。

表2 再生时间对水合反应的影响

再生时间,h

20222426HE 的转化率,%

9.0

9.3

9.6

9.7

由表2可知,再生时间少于24h,对HE 的转化率影响较大,随着再生时间的增加HE 转化率明显上升,这主要是再生过程中除油和H 2O 2处理彻底的缘故;再生时间大于24h,HE 转化率增长减缓,这说明再生操作已接近平衡,再生时间对水合反应影响已经不大。正常采用一天24h 再生操作一次的操作方法。

3 MH 再生的优化

3.1 除油操作的优化

除油是MH 再生过程中重要的一步,由于MH 晶粒较小,容易被油相携带而造成流失。刚开始除油过程中采用蒸汽加热升温过快,液体暴沸使MH 更容易

随油相带出,因此逐渐降低升温速度,使加热过程更加平和稳定。由表3可见,MH 流失量随着温升的减缓明显减少。因此,采用30m in 缓慢打开蒸汽阀开度

36%的操作方法。

表3 升温速度(蒸汽阀开的时间)对MH 流失的影响蒸汽阀开36%的时间,m in 6122030出口油相MH 质量分数,μg/g

69

62

54

37

3.2 制备新MH 的优化

由于催化剂的劣化和失活,必须制备、补充新的MH 添加到水合反应系统,每次制备补充新催化剂流

程为P309→D601→D603→R01(见图1),约5~6天时间,在这段时间因为D601被占用而MH 再生必须停止,R01反应系统中MH 因不能再生而活性下降,从而HE 选择率下降,NOL 产量降低。经过实验研究、论

证,将制备新MH 的过程采用新的流程:P309→D603

642环己烯水合催化剂再生的研究和优化 2005

→R01,避开经过MH 再生罐D601,D603可以通过合理调配时间,将再生和制备新MH 使用D603的时间错开,这样可以使MH 的再生和新MH 的制备同时进行,从而确保水合反应系统HE 转化率和NOL 产量不受影响,产生良好的经济效益。3.3 H 2O 2处理和水洗操作优化

H 2O 2处理操作温度为90℃,操作完后进入水洗

操作后的高纯水的温度为40℃,温差较大,容易造成

过滤器F602昂贵的滤芯冷激、破损,不仅使其中的金属离子等杂质进入MH 中,导致MH 的活性点中毒而失活,而且破损的滤芯无法使用,必须更换。因此,H 2O 2处理操作完后,对MH 浆液采用冷却盘管降温至40℃~50℃后,再进行水洗操作,确保了MH 再生操作的稳定。

3.4 MH 再生系统优化后的效果

MH 再生系统经过操作参数、操作过程的优化后,

从表4可见,MH 流失得到有效的遏制,MH 消耗逐渐降低,而且NOL 产量也有显著的增长。

表4 工艺优化前后效果对比

设计1999年2000年2001年2002年

MH 消耗,kg/t NOL

0.1840.4860.4650.4220.292

NOL 产量,t

2717219600

25500

27200

32500

4 结 论

(1)MH 再生操作的最佳条件:除油温度100℃,H 2O 2处理温度90℃,再生时间24h 。

(2)MH 除油操作、制备新MH 、H 2O 2处理和水洗

操作优化后,MH 的流失和消耗显著降低,NOL 产量上

升。

(3)MH 是一种优良的环己烯水合催化剂,选择性高,副产物少。但是,对其催化过程、催化原理尚未见系统研究报道,对其基础性试验研究工作仍是今后的工作重点。

参考文献

1 田爱国.苯部分加氢工艺生产环己醇.[J ].化工进展,2003,22(5):

529~531

2 翌 晨,连 生.环己醇、环己酮扩产将掀高潮———我国环己醇、环

己酮生产现状和发展[J ].中国石油和化工经济分析,2003,(13):

46~49

3 苏为平,叶兴凯,吴 越.制备环己酮、环己醇的新技术路线[J ].现

代化工,1992,(1):37~44

4 邹盛欧.环己烯法制造环己醇新技术[J ].广东化工,1994,(1):16~18

5 张丽芳,陈赤阳,项志军.环己烷氧化制备环己酮和环己醇工艺研究

进展[J ].北京石油化工学院学报,2004,12(2):39~43

6 王殿中,舒兴田,何鸣元.环己烯水合制备环己醇的研究.[J ].催化

学报,2002,23(6):503~506.

7 吴济民,戴新民,陈聚良等.环己烯水合反应生成环己醇工艺条件的

优化.[J ].化工进展,2003,22(11):1222~1224.

8 张结实,陈应萍.环己烯水合反应条件的探讨[J ].平顶山工学院学

报,2002,11(3):54~56.

9 张怀彬,仝 伟,李赫咺.沸石在环己烯水合反应中的催化性能[J ].

燃料化学学报,1995,23(4):344~348.

10 王殿中,舒兴田,何鸣元.MMM 分子筛的制备与表征[J ].催化学

报,2003,24(3):208~212

11 吴济民,赵丰砂,李识寒.环己醇装置水合催化剂流失原因的分析

[J ].化工科技,2004,12(3):22~24

12 马希平,胡延韶,顾书敏等.环己烯水合反应工艺研究及参数优化.

[J ].化工科技,2003,11(4):35~37

作者简介

吴济民:男,1972生。河南平顶山人,高级工程师,从事工艺技术

管理工作,已发表论文14篇。

收稿日期:2005-01-28;编辑:康 

莉阴离子交换离心分配色谱法

阴离子交换法已用于离心分配色谱中。强阴离子交换剂,如离子型液态物质氯化苄烷铵,用于石碳酸异构体的制备分离是有效的。用碘化物作交换剂可分离数克羟基苯乙烯酸的三个异构体的混合物。离子交换过程可用在狭窄的过渡区内流出物中待分析物质的浓度呈现的梯形图来描述。利用在无固定相的液-液色谱中的分配规律,数字式的分离模式作为一种工具可用于初加工过程和进一步的最优化过程。

曾文平 摘自Anal .Che m.,2004,76(21)

7

42第34卷 第4期 石油与天然气化工

ABSTRACTS

Study on Rea son s for D eacti va ti on of ZS M-5Zeolite Ca t a lyst for D istill a te Non-hydrodewax i n g

Han Xinzhu1,2,Da J ianwen2,Zhou Zhongguo2,et al (1.Research I nstitute of I ndustrial Catalysis of East Chi2 na University of Science and Technol ogy;2.Research I n2 stitute of Q ilu Petr o-Che m ical Co.).CHE M I CAL EN2 GI N EER I N G O F O I L&G AS,VOL.34,NO.4,pp229~233,2005(ISSN1007-3426,I N CH I N ESE)

Abstract:I n order t o obtain the causes of catalyst deactivati on,the fresh,the deactivated and the regenera2 ted commercial ZS M-5zeolite catalysts for distillate non -hydr ode waxing were characterized by XRD、I R、BET、TG-DT A and NH3-TP D,meanwhile reactive activities of three catalysts were esti m ated.The results showed that coke f or mati on and i m purities pois oning were t w o main reas ons,which resulted in the changes of s pecific surface and pore structure of catalyst.Te mporary deactivati on of the catalyst was caused by coke f or mati on and S-,and N -compounds depositi on and per manent deactivati on of the catalyst was caused by heavy metal depositi on. Thr ough study of the regenerati on p r ocess of the deactiva2 ted catalyst by calcinati on,it was als o f ound that te mper2 ature was the main fact or that effected regenerati on p r ocess and perfor mance of regenerated catalyst.

Keywords:ZS M-5zeolite,distillate non-hydr o2 de waxing,deactivati on,regenerati on,catalyst

Syn thesis of M ethyl Carbama te by Urea and M etha2 nol i n Ho m ogeneous Ca t a lysis System

Yu J ianfeng,Tang Shi m ing,Yuan Cunguang(Col2 lege of Che m istry and Che m ical Engineering,Petr oleum University).CHE M I CAL EN GI N EER I N G O F O I L& GAS,VOL.34,NO.4,pp234~237,2005(ISSN1007-3426,I N CH I N ESE)

Abstract:U sing methoxy metallic catalyst,methyl carba mate(MC)has been synthesized by the reacti on of urea and methanol in homogeneous catalysis syste m.The op ti m ized synthesis conditi ons are as f oll ows:The mol ra2 ti o of methanol and urea is1.5;the mass rati o of s olvent and urea is0.65;the quantity of catalyst is0.1mol/L; the reacti on te mperature is160℃~170℃;reacti on ti m e is6h.Under the above conditi ons,the yield of MC ex2 ceeds83%and the selectivity of MC exceeds98%.

Keywords:methyl carba mate,synthesis,homoge2 neous catalysis,methanol,urea

Reacti ve D istill a ti on Syn thesis of Butyl acet a te Ca t a2lyzed by Sulfur i c Ac i d

Yang L iuxin,Cai Bens ong,Yu jianjun(Depart m ent of Che m ical Engineering J iangsu Polytechnic University). CHE M I CAL EN GI N EER I N G O F O I L&GAS,VOL.34, NO.4,pp238~240,2005(I SSN1007-3426,I N CH I2 N ES E)

Abstract:It is studied that the p r ocess conditi ons of reactive distillati on-synthesis of butylacetate,there are many advantages including si m p licity in p r oduct treat2 ment,m ild reacti on conditi on,little byp r oduct,short reac2 ti on ti m e,high conversi on rati o and the good p r oduct quality;it can separated fr om reacti on p r oduct at the sa me ti m e.The op ti m um reacti on conditi ons are as f ol2 l ows:catalyst a mount,reacti on ti m e,reacti on te mpera2 ture,height of bed,material rati o and circumfluence rati o are5‰,1h,115℃,90c m,1:1.3and1:1.The conver2 si on rati o of acetic acid in the synthesis of butylacetate is up t o100%.

Keywords:butylacetate,reactive distillati on,cata2 lyze

The Spec i a l Effects of Ru/C Prom oter i n Hydrogena2 ti on of Benzo i c Ac i d(BA)

Zhao Rongchao(Shijiazhuang Refining&Che m ical Cooperati on).CHE M I CAL EN GI N EER I N G O F O I L& GAS,VOL.34,NO.4,pp241~244,2005(ISSN1007-3426,I N CH I N ESE)

Abstract:CO,which is a by-p r oduct in hydr ogen2 ati on of BA,pois ons catalyst and reduces its hydr ogena2 ti on activity.A s a p r omoter,Ru/C possesses hydr ogen2 ability of CO,t o p r oduces hydr ocarbons such CH4etc., eli m inating CO in the react or.A l ot of experi m ent of ap2 p lying Ru/C p r omoter was carried out in the laborat ory. The testing result showed that catalytic activity and life of the catalyst is i m p r oved after app lying Ru/C p r omoter t o used Pd/C catlyst.Good effects have been obtainted in commercial app licati on of the p r omoter,which showed that Ru/C is a p r os pect additive for hydr ogenati on of ben2 z oic acid.

Keywords:catalyst,p r omoter,hydr ogenati on of benz oic acid,palladium/c

Study and O pti m i za ti on of Regenera ti on of Cyclohex2 ene Hydra ti on Ca t a lyst

W u J i m in1,W u Yap ing2,W u A i m in3,et al(1.Henan Shen ma Nyl on Che m ical Co.L td;2.Pingdingshan I nstitute of Technol ogy;3.Pingdingshan Coal I ndustry Gr oup Company).CHE M ICAL EN GI N EER I N G O F O I L&G AS,

1

A ug.2005,V ol.34,N o.4 CHE M I CAL EN GI N EER I N G O F O I L&G AS

VOL.34,NO.4,pp245~247,2005(ISSN1007-3426, I N CH I N ESE)

Abstract:This paper studies the influences of te m2 perature of re moving oil,H2O2treating te mperature,re2 generati on durati on on hydrati on reacti on during regenera2 ti on of cycl ohexene hydrati on catalyst by gas chr omat ogra2 phy and gravi m etry,etc..The result shows that op ti m um regenerati on conditi ons are:100℃of re moving oil te mper2 ature,90℃of H2O2treating te mperature and24hours of regenerati on durati on.During MH regenerati on,the l oss and consump ti on of MH decrease considerably and NOL out put increases after op ti m izati on of re moving oil,p re2 paring ne w MH,H2O2treating and water washing opera2 ti on.

Keywords:cycl ohexene hydrati on catalyst,regener2 ati on,op ti m izati on

The Appli ca ti on of A spen Eng i n eer i n g Software on the D esi gn of the M ethanol Recti f i ca ti on

Chen Yinsheng,Yin Yuzhou(Shanghai Coking and Che m ical Cor porati on).CHE M ICAL EN GI N EER I N G O F O I L&G AS,VOL.34,NO.4,pp251~252,2005(I SSN 1007-3426,I N CH I N ESE)

Abstract:The A s pen engineering s oft w are is ap2 p lied on the si m ulati on of the methanol aqueous s oluti on rectificati on.The aqueous s oluti on contains of acet on, ethanol,p r opanol,butanol,pentanol,water,and metha2 nol.It is investigated that the ideal gas la w and the Hen2 ry la w are suitable f or the p r ocess.Ethanol can’t be sepa2 rated fr om methanol with the NRT L or UN I Q UAC p r operty method.The si m ulati on results with the W I L S ON p r oper2 ty method are consistent with design.The methanol mass fracti on on the t op of rectificati on t o wer is up t o99.99%.

Keywords:A s pen engineering s oft w are,methanol aqueous s oluti on,rectificati on,si m ulati on

Study on the Ref i n i n g of D i esel by Com plex i n g D esul2 fur i za ti on

Sun Z ongli,W ang Enyang,Xu Huilin,et al(Nan2 yang W ax Fine Che m ical Fact ory,Henan O ilfield). CHE M I CAL EN GI N EER I N G O F O I L&GAS,VOL.34, NO.4,pp255~257,2005(ISSN1007-3426,I N CH I2 N ES E)

Abstract:Based on the p rinci p le of that metal chl o2 ride and organic sulfide can p r oduce water-s olubility comp lexing compound which can be extracted,after com2 paring the desulfurizing effect of the DMS O and DMF, DMF is chosen as extracting agent f or more experi m ents. After evaluating the desulfurizati on ability of N i Cl2,FeCl3 and CuCl2,the corr osive nature and the p rice,FeCl3was screened out as the op ti m um comp lexing agent.U sing the unif or m design experi m ental method,the op ti m um co m2 p lexing and extracting conditi on is that97.6%DMF, 1.1%FeCl3and1.2%polar s olvent after the regressi on equati on was established and mathe matical analysis was carried out.It als o shows it is difficult t o contr ol the sul2 fur concentrati on bel ow400ppm thr ough comp lexing and extracting desulfurizati on.

Keywords:comp lexing extracti on,diesel refining, unif or m design,desulfurizati on

D esulphur i za ti on Technolog i es of Na tura l Ga s and Ref i n ery Fuel Ga s w ith M ed i u m-si ze Sulphur Throughputs

L iu Yong1,L iu Rong2,Tu Yan1(1.R I N GT,Pet2 r oChina Southwest O il and Gasfield Company;2.Sichuan Pengzhou City Nancheng M iddle School).CHE M I CAL EN GI N EER I N G O F O I L&G AS,VOL.34,NO.4,pp258~261,2005(ISSN1007-3426,I N CH I N ES E)

Abstract:This paper su mmarizes five types of treat technol ogies of natural gas and refinery fuel gas with me2 diu m-size sul phur thr oughputs.They include a m ine/ clause/TGT combinati ons,ir on-base liquid redox p r ocess,a m ine/liquid redox p r ocess co mbinati ons,bi o2 l ogical gas desul phurizati on p r ocess and nonaqueous crys2 tal sul phur p r ocess.Typ ical p r ocess fl ows first are re2 vie wed and discussed,then advantages and li m itati ons of p r ocesses are analyzed.

Keywords:medium-size sul phur thr oughputs, natural gas,refinery fuel gas,desul phurizati on technol ogy

Co m prehen si ve Eva lua ti on of Q i n gha i Crude O il

I.Conven ti ona l Eva lua ti on

Zhang Juntao,L iang Shengr ong,He L i,et al(I nsti2 tute of Che m ical Engineering,Xi’an Petr oleum Universi2 ty).CHE M I CAL EN GI N EER I N G O F O I L&G AS,VOL. 34,NO.4,pp262~264,2005(I SSN1007-3426,I N CH I N ES E)

Abstract:The p r operties of Q inghai crude oil and vari ous distillates were analyzed and evaluated comp re2 hensively.The results indicated that this crude oil has the characteristics of high s pecific gravity index,high s olidif2 ying point,high characterizing fact or,high wax content and l ow sulfur content.It bel ongs t o a l ow sulfur paraffin base crude oil.Its initial boiling point is less than30℃. The yield of gas oline fracti on(boiling range l ow than 200℃)is13.91%.The yield of jet fuel fracti on(140℃~240℃)is10.61%.The yield of light diesel fracti on (200℃~300℃)is14.39%.The yield of diesel frac2 ti on(300℃~350℃)is10.83%.The t otal yield of fracti on at boiling range less than350℃is39.13%.The yield of neutral lube st ocks(300℃~500℃)is

2 CHE M ICAL EN GI N EER I N G O F O I L&G AS A ug.2005,V ol.34,N o.4

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

催化剂再生步骤

轻烃重整装置催化剂再生方案 一、再生的目的及时机 1、再生的目的 催化剂在运转一段时间后,因为积碳或微量元素中毒,造成催化剂活性及选择性与新鲜催化剂相比出现明显地下降,从而影响到产品的分布,甚至产品不能达到理想的要求,此时就要安排恢复催化剂活性的再生过程。本装置的催化剂再生是采用空气高温烧焦的方法进行,以除去催化剂所积聚的焦炭和其它杂质,最大限度地恢复催化剂的活性和选择性。 2、再生的时机 当气相中碳四含量有较大幅度的升高(超过10%)或烯烃含量快速上升,已经不能达到用户的需求,同时液相中硫含量及烯烃含量超标,且反应温度已经达到570℃,这时就应考虑再生。 二、再生前应具备的条件 1、待再生系统温度已降至50℃以下; 2、所有再生的盲板已加装完毕,并已编号,再生系统与正常的反应系统进行了完全的隔离; 3、所有仪表包括在线氧含量测定表已经调校完毕,具备投用条件;要特别注意空气注入调节阀要完好、灵活、好用。 4、反应系统的低点已无油排出,即整个再生系统液相已倒空完毕; 5、循环气压缩机及辅助系统具备投用条件; 6、公用工程系统正常运行; 7、其它各设备均匀正常待用; 8、消防设施准备齐全,完好备用。 三、再生前的准备 1、吹扫空气管线至合格; 2、将反应喷射器系统卸压(目前为3kg/cm3); 3、用气抽将喷射器系统抽成负压0.09MPa; 4、用氮气置换喷射器系统,分析系统中的可燃气含量要小于0.1%,氧含量要

小于0.2%,系统采样要多点进行,重点是反应器的上下部位。 5、系统可燃气置换分析合格后,系统充压至0.3MPa,然后将压力调节阀投入自动。按正常步骤启动循环气压缩机,进行系统氮气循环。一段时间后,对以上部位再次分析,确认系统可燃气含量分析合格且低点无油排出后进行下一步的工作。此项工作必须按步骤进行,要结合液相的低点吹扫过程,要特别确认系统低点无液相排出。 四、反应系统再生 (一)、系统升温 调整循环气压缩机流量至80%负荷,稳定后按正常步骤点炉升温,控制升温速度在30~50℃。反应器温度达到250℃后,要注意观察反应器的温升情况,如果没有出现飞温的情况,继续将温度升至350℃,停止升温,保持系统稳定运行。 (二)、催化剂再生 1、350℃烧焦 (1)、拆除仪表风空气的盲板,确认室内及室外调节阀已关闭; (2)、缓慢打开前后阀,按≤10℃/小时升温,观察反应器各床层温度; (3)、如果出现温升,说明烧焦已经开始。注意控制氧含量为0.2%,将反应器中的油气烧净后,D-409下没有油,开始排水时,将氧含量升至0.5%. (4)、维持350℃恒温,当CO 含量及系统反应温度不再变化,系统无水切 2 出时,提高氧含量至1.0%. (5)、当氧含量逐步升至1.0%,注意温升情况,当CO 含量下降,入、出 2 口温升≤20℃及系统无水切出时,本阶段烧焦结束。 2、400℃烧焦 (1)关闭补充空气调节阀按≤10℃/小时升温,观察反应器各床层温度; (2)将反应器温度升至400℃,控制氧含量提为0.5%~1%,注意反应器温升及系统切水; (3)维持400℃恒温,反应器入、出口温升≤20℃,本阶段烧焦结束。 (4)保持系统氧含量为1.0%,再进行下一步升温450℃。 3、 450℃烧焦 (1)按≤10℃/小时升温,观察反应器各床层温度;

钌催化剂催化苯加氢制环己烯反应条件的对比研究

钌催化剂催化苯加氢制环己烯反应条件的对比研究 摘要研究了以金属钌催化剂在不同的反应温度、氢气压力、搅拌速率对苯转化率、环己烯选择性及收率的影响,所用催化剂为浸渍法制得的钌锌催化剂。试验结果表明,反应的最佳条件为:反应温度为140 ℃、氢气压力为6 MPa、搅拌速率为900 r/min、固定反应时间为20 min时,苯转化率可达49.31%,环己烯选择性为43.52%,环己烯收率为21.45%。 关键词钌催化剂;苯加氢;环己烯;反应条件;对比 苯加氢反应是典型的有机催化反应,无论在理论研究还是在工业生产上,都具有十分重要的意义。而环己烯作为重要的有机中间体,水合可得环己醇,进一步氧化制环己酮和己二酸,缩短了尼龙66盐的生产工艺,是重要的化工原料;由苯在液相条件下选择加氢一步制备环己烯可使工艺流程缩短、效率提高、设备投资减少,而且对于环保也有积极的作用,并且原料苯来源丰富,成本低廉。因此,苯选择加氢制备环己烯技术的开发和应用具有重要的意义和广阔的应用前景。但是,由于苯比较稳定,而且环己烷的热力学稳定性比环己烯的要高得多,生成环己烯阶段,大部分生成最终产物环己烷,所以苯加氢反应很难被控制[1-6]。钌系催化剂在苯加氢催化反应中的动力学及反应机理前人已做过研究,本试验采用化学还原法制备负载型钌催化剂进行苯选择加氢制环己烯,探讨不同反应条件对催化剂的催化活性及环己烯选择性和收率的影响,以得到最适宜的反应条件,为进一步的工业生产提供依据。 1材料与方法 1.1试验原料及仪器 三氯化钌:钌含量(37.0±0.3)%,湖南信力金属有限公司生产;ZrO2载体,纯度大于等于99.95%,平均粒径0.5 μm,自制;苯:分析纯,北京化工厂生产;硫酸锌:分析纯,北京平谷双燕化工厂生产;氯化锌:分析纯,天津市环威精细化工有限公司生产;GSH-1 1L高压反应釜,山东威海化工厂制;HP5890Ⅱ型气相色谱仪。 1.2催化剂及载体制备方法 1.2.1催化剂。以ZnCl2水溶液作为前体,采用浸渍法在载体上先负载1.2%(质量分数)的Zn,经烘干并在500 ℃下焙烧,再负载Ru,以RuCl3·xH2O的盐酸溶液作浸渍液,每次负载5%(质量分数)的Ru。当W(Ru)>5%时,采用分步浸渍法。最后浸

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

催化裂化废催化剂磁分离技术的原理、现状与发展概要

催化裂化废催化剂磁分离技术的原理、现状与发展 李中新 (中国石油化工股份有限公司洛阳分公司研究所) 摘要: 本文全面介绍了炼油催化裂化废催化剂磁分离回收利用技术(以下简称“磁分离技术”)的发展历史、原理、优势和经济价值,重点分析了国内已经开发成功的磁分离技术,指出了今后磁分离技术的开发方向和应用前景。 关键词: 催化裂化废催化剂磁分离回收再利用 1 磁分离技术的基本原理 随着原油性质的不断变重,为了增加轻质油品的产量,催化裂化工艺装置的数量和加工能力不断增加。截止1999年底,我国炼油原油一次加工能力达到276 Mt/a,当年实际加工了176 Mt,我国石油、石化两大集团的催化裂化加工能力占原油一次加工能力的34.5%[1]。 在炼油厂催化裂化生产过程中,原料油在与催化剂混合反应时,原料油中所含的金属杂质连同生焦物质在高温条件下沉积在催化剂粒子上。在再生过程中,催化剂粒子上的焦碳被烧掉,而金属杂质保留了下来,随着催化剂的不断循环使用,金属杂质就在催化剂粒子上积累增加,从而使催化剂的活性和选择性下降,生产上为了保持催化剂具有适当的活性和选择性,必须经常向装置补充新鲜催化剂并卸出一些平衡催化剂。 在卸出的平衡催化剂中含有使用寿命长短不一的催化剂粒子。那些使用寿命短的催化剂粒子,由于其与原料油的反应次数少,其上面沉积的金属杂质就少,因此他们仍然保持较高的活性和选择性,如果设法把他们与那些使用寿命长、污染严重、活性和选择性低的催化剂粒子进行有效分离,将它们返回催化装置继续使用,就能达到节约新鲜催化剂的目的。 由于污染催化裂化催化剂的金属杂质主要是铁、镍和钒,它们均具有较强的磁性。因此那些使用寿命短的催化剂粒子,由于铁、镍和钒杂质含量低,磁性就弱;而那些使用寿命长的催化剂粒子,由于铁、镍和钒杂质含量高,磁性就强。在一定强度的磁场存在下,可以做到使后者吸着,而前者不被吸着,从而实现两者的分离,这就是磁分离技术的基本原理。 2 废催化剂磁分离技术的现状 2.1 废催化剂磁分离技术的发展历史[2][3] 在催化裂化装置的生产成本中,消耗催化剂的费用一直占很大比例。随着原油不断变重,催化剂的单耗也逐渐增加,特别是渣油催化裂化装置的大量出现,使这一问题更为突出,直接威胁到炼油厂的经济收益,促使炼油工作者想方设法降低催化剂的单耗。将仍有很大价值的废催化剂加以再生或者分离,使其活性得到一定恢复后返回催化装置继续使用,是降低催化剂单耗的重要途径。与废催化剂的化学再生法相比,由于磁分离技术具有工艺过程简单、操作费用低、不使用有毒有害化学品、对环境不增加污染等多方面的优势,使其优先得到开发和使用。 美国Ashland公司和日本石油株式会社分别于20世纪70年代后期至80年代初期利用电磁场成功地实现了催化裂化废催化剂的有效分离,80年代后期Ashland公司采用稀土永磁材料,开发成功永久磁铁型式的废催化剂分离技术。1989年日本石油株式会社开发成功永磁型连续式在线磁分离技术,并在其属下的横滨炼油厂进行了工业化,取得了节约新鲜催化剂20%的显著效果。1996年Ashland公司 收稿日期:2002-11-10 作者简介:李中新,湖南大学毕业,高级工程师,现从事科研管理,炼油、高分子材料的研究开发和分析测试工作。

浅谈脱硝催化剂再生方案及应用

浅谈脱硝催化剂再生方案及应用 摘要:随着《关于加强废烟气脱硝催化剂监管工作的通知》和《废烟气脱硝催化剂危险废物经营许可证审查指南》等一系列文件的正式发布,明确将废烟气脱硝催化剂列入《国家危险废物名录》,规范了废催化剂危险废物经营许可证(下称“危废许可证”)的办理和审批流程,统一了对废催化剂的认识、理解和做法。脱硝催化剂再生虽然在国内是全新的业务,但中国的SCR脱硝装置大量使用再生催化剂是大势所趋。关键词:废烟气脱硝催化剂,废催化剂再生,解决方案,蜂窝式催化剂 环保部2014年8月正式发布《关于加强废烟气脱硝催化剂监管工作的通知》(下称《通知》)和《废烟气脱硝催化剂危险废物经营许可证审查指南》(下称《指南》),将废烟气脱硝催化剂纳入危险废物进行管理。此《通知》和《指南》明确将废烟气脱硝催化剂(下称“废催化剂”)列入《国家危险废物名录》,规范了废催化剂危险废物经营许可证(下称“危废许可证”)的办理和审批流程,统一了对废催化剂的认识、理解和做法,为提升废催化剂再生、利用行业的整体水平,促进脱硝催化剂再生行业在中国的持续健康发展提供了政策保障。 福建龙净环保股份有限公司(龙净环保600388)从2012年11月开始正式涉足脱硝催化剂再生业务,与美国CoaLogix公司合资在2013年1月注册成立龙净科杰环保技术(上海)有限公司(下称“龙净科杰”),在2013年10月注册成立江苏龙净科杰催化剂再生有限公司(位于盐城环保产业园区,下称“盐城工厂”)。至2014年12月,盐城工厂一期15000立方米/年脱硝催化剂再生生产线将正式投产。盐城工厂正式投产前将完成危废许可证的取证,上海实验中心届时也将全面投入使用。 目前国内催化剂再生处于起步阶段,面临很多的问题。龙净环保作为国内环保产业的领军企业,有责任对此行业的良性健康发展起到引领和示范作用。经过两年多不断的探索实践,结合国外脱硝催化剂再生的经验,并对最新出台的《通知》、《指南》以及危险废物的相关政策法规进行认真学习,反复推敲,向各位领导及专家汇报如下: ?催化剂再生具有显著的经济效益和社会效益。 ?废催化剂纳入危险废物管理,其收集、贮存、运输、再生、利用和处置均须严格按危 险废物的规定执行,禁止现场再生。 ?龙净科杰的技术优势。 ?推荐脱硝催化剂采用“更换”方案而非“加层”方案。

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

浅谈连续重整催化剂反应再生控制(茂名石化)

浅谈连续重整催化剂再生的控制与实现 倪海梅 (茂名石化炼油分部仪表车间,广东茂名525011) 摘要介绍了催化剂再生控制在茂名石化连续重整装置中的应用,着重论述几种特殊控制方案的 使用,并以装置中闭锁料斗的一些复杂控制方案为例论述控制方案的先进性。 关键词连续重整装置催化剂再生控制CRCS控制方案 目前炼油重整工艺普遍采用的美国环球油公司(UOP)的连续再生式流程工艺,该工艺通过催化剂的连续再生,使反应器中的催化剂经常保持高活性,从而提高了产品的质量和收率。若没有催化剂再生段,反应段就不得不为催化剂再生而停车,烧去焦炭,以恢复催化剂的活性和选择性。有了催化剂再生段,重整装置在操作铂重整反应段时就不必为催化剂再生而停车,通过催化剂再生段中催化剂的连续再生以及铂重整反应段的连续操作实现连续重整工艺流程。该工艺对过程自动化控制提出了相当高的要求,目前催化剂的连续再生控制应用国外的催化剂再生控制系统CRCS。 2006年茂名石化新建一套1.00Mt/a连续重整装置,其中催化剂再生部分由一套与反应部分密切相连又相对独立的设备组成。其作用之一是实现催化剂连续循环,之二是在催化剂循环的同时完成催化剂氧化再生。来自第四重整反应器积炭的待生催化剂被提升至再生部分,依次进行催化剂的烧焦、氯化(补氯和金属的再分散)、干燥、冷却。再生后的催化剂经闭锁料斗循环、提升至重整反应器顶部的还原段进行催化剂还原(氧化态变为还原态),然后再进入重整第一反应器。催化剂的循环和再生控制采用了自适应控制、斜坡控制、逻辑顺序控制、智能仪表等先进控制仪表和手段。 1连续重整催化剂再生控制系统的组成 1.1催化剂再生控制系统方框图(见图1) 图1催化剂再生控制系统方框图 1.2催化剂再生控制系统的组成及其功能 连续重整催化剂控制系统CRCS是由两个程序电子系统(PES)组成,一个控制PES,一个保护PES。

催化剂的再生方案二

催化剂的再生方案二 1、再生目的 GZ-10催化剂在正常运转过程中,催化剂上的积碳量会逐渐增加。催化剂上的积碳量达到一定程度时,需要进行催化剂再生以除去积碳恢复催化剂的活性。 2、再生方法 GZ-10催化剂再生方法有两种,一为器内再生,即催化剂在反应器中不卸出,直接采用含氧气体介质再生;另一种为器外再生方法,它是将待再生的失活催化剂从反应器中卸出,运送到专门的催化剂再生工厂进行再生。结合本装置以下论述器内蒸汽再生方法。 水蒸气再生 (1)反应系统准备工作 (a)液化气改进另一反应器,再生反应器切除,从安全阀付线或再生气线缓慢泄压,反应器底排污油,按再生流程拆加盲板。 (b)再生炉点火,蒸汽脱水进再生炉,蒸汽量在 4 000kg/h~7000kg/h. .(c)再生水蒸气至换热器管线配管完成并安装好孔板流量计、校好蒸汽、净化风流量表以及加热炉、反应器各温度点。 (d)在反应器出口装上两个气体采样口。 (e)联系调度、供热、供气保证瓦斯、蒸汽、风的供应,且蒸汽压力≮0.8MPa,净化风压力≮0.5MPa。 (2)水蒸气再生流程

反应器 空气 (3)再生操作条件 压力:常压 介质:水蒸汽+空气 最高床层温度:<450℃ 注意:反应系统引入水蒸气前提条件是反应器催化剂床层温度必须大于200℃,禁止有液态水进入反应器内水击催化剂。 (4)操作步骤 (a)再生炉按规程点火升温,当炉膛温度升到300℃时,蒸汽先脱水,然后改入再生炉、经反应器在出口通过再生气除焦罐在高点放空,蒸汽量逐步提高到要求值。 (b)当反应器入口温度升到360℃时,开始升温,并缓慢通入空气,逐步提高氧含量到0.4~0.6v%,此时要严密注视温升变化。 (c)当床层温升≯10℃时,可以逐渐增加氧含量,每次增加0.2v%,最高≯1v%。 (d)当床层温升基本消失后,恒温1小时,确保温升基本消失,氧含量逐渐降至0.2v%,反应器入口以25~30℃/h的速度升至420℃恒温。 (e)床层温度基本稳定后,氧含量逐步增加到0.6~0.8v%,此时

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

环己烯的制备实验报告

OH H 3PO 4+ H 2O 实验八 环己烯的制备 一、实验目的: 1、学习以浓磷酸催化环己醇脱水制备环己烯的原理和方法; 2、初步掌握分馏、水浴蒸馏和液体干燥的基本操作技能 二、实验原理:书P158 烯烃是重要的有机化工原料。工业上主要通过石油裂解的方法制备烯烃,有时也利用醇在氧化铝等催化剂存在下,进行高温催化脱水来制取,实验室里则主要用浓硫酸,浓磷酸做催化剂使醇脱水或卤代烃在醇钠作用下脱卤化氢来制备烯烃。 本实验采用浓磷酸做催化剂使环已醇脱水制备环已烯。 主反应式: 一般认为,该反应历程为E 1历程,整个反 应是可逆的:酸使醇羟基质子化,使其易于离去而生成正碳离子,后者失去一个质子,就生成烯烃。 可能的副反应:(难) 三、主要试剂、产物的物理和化学性质 化学物相对分子质相对密度沸点/℃ 溶解度 /g(100g OH H OH 2-H 2 O

20水)-1 质量/d 4 环己醇100 0.96161.1 3.620℃ O(213℃) 2340 磷酸 98 1.83-1/2H 2 环己烯 82.14 0.89 83.3微溶于水 环己醚 182.3 0.92 243微溶于水 共沸物数据: 四、实验装置 仪器:50mL圆底烧瓶、分馏柱、直型冷凝管,100mL分液漏斗、100mL锥形瓶、蒸馏头,接液管。 试剂:10.0g(10.4mL,0.1mol)环已醇,4mL浓磷酸,氯化钠、无水氯化钙、5%碳酸钠水溶液。 其它:沸石 六、预习实验步骤、现场记录及实验现象解释 1、投料 在50ml干燥的圆底烧瓶中加入10g环己醇、4ml浓磷酸和几粒沸石,充分摇振使之混

合均匀,安装反应装置。 2、加热回流、蒸出粗产物产物 将烧瓶在石棉网上小火空气浴缓缓加热至沸,控制分馏柱顶部的溜出温度不超过90℃,馏出液为带水的混浊液。至无液体蒸出时,可升高加热温度(缩小石棉网与烧瓶底间距离),当烧瓶中只剩下很少残液并出现阵阵白雾时,即可停止蒸馏。 3、分离并干燥粗产物 将馏出液用氯化钠饱和,然后加入3—4ml 5%的碳酸钠溶液中和微量的酸。将液体转入分液漏斗中,振摇(注意放气操作)后静置分层,打开上口玻塞,再将活塞缓缓旋开,下层液体从分液漏斗的活塞放出,产物从分液漏斗上口倒入一干燥的小锥形瓶中,用1—2g无水氯化钙干燥。 4、蒸出产品 待溶液清亮透明后,小心滤入干燥的小烧瓶中,投入几粒沸石后用水浴蒸馏,收集80—85℃的馏分于一已称量的小锥形瓶中。 六、产品产率的计算 注意事项: 1、投料时应先投环己醇,再投浓磷酸;投料后,一定要混合均匀。 2、反应时,控制温度不要超过90℃。

催化裂化装置三废处理

催化裂化装置三废处理 第一节主要污染物排放叙述 一、装置污染物来源及去向 1、废水 装置生产过程中排除的废水主要有含油污水、含硫污水及生活污水。含油污水主要来源于装置内电脱盐单元和机泵冷却水、工艺切水等。含硫污水主要来源于装置分馏塔顶冷凝水及系统内注水。 2、废气 装置生产中的废气主要有再生烟气、脱硫醇尾气、酸性气和非正常工况下排放的烃类气体两类。再生烟气来自以再生器催化剂再生产生的烟气,其主要污染物是SO、CO和催X2化剂粉尘。 脱硫醇尾气来自脱硫醇碱液再生时的多余空气,其主要污染物为二硫化物。 酸性气来自液化气和干气脱出的硫化氢,其主要污染物为硫化氢。. 非正常工况下安全阀起跳排放的主要污染物是烃类,密闭送往火炬系统。 3、固体废物 废渣有废催化剂和碱渣,废液主要是废脱硫剂N-甲基二乙醇

胺。 4、噪音 噪音的污染主要来源于大机组运行、临时放空、以及机泵、空冷器运行等。 表14-1 催化裂化三废排放情况

气分三废排放情况表14-2

第二节环保治理措施 一.废水治理 我装置对生产过程中产生的各类废水治理以清污分流、分类处理为原则,选择经济和技术上可行的处理方案,将各类污水处理到符合当地环保标准的要求以达到保护环境的目的。 1.含硫污水处理 装置内含硫污水经V22302收集后,送硫回收装置处理。 含油污水 2.含油污水在装置内汇集后排入含油污水管道,送至污水处理场进行处理,处理合格后排放。 3.生活污水 生活污水经化粪池处理后,直接排入排至污水处理场。 二.废气治理 1.再生烟气 再生器烧焦产生的烟气,经三旋、烟机和烟气除尘后排放,排放的烟气中含有二氧化硫、碳氧化物及少量催化剂粉.尘,经120米烟囱排放,烟气中污染物的排放浓度符合《工业窑炉大气污染物排放标准》(GB9078—1996)的要求,各项污染物排放量满足《大气污染物综合排放标准》(GB16297—1996)中二级标准的要求。 为保证监测要求,烟气管线上设永久采样、监测口和采样监测平台,便于环保监测及管理。

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

炼油厂废催化裂化催化剂的再生技术分析

炼油厂废催化裂化催化剂的再生技术分析 摘要:由炼油厂催化裂化生产过程中将会遇到重金属物质,从而对催化剂的活性产生一定程度的影响。本文主要是对炼油重油催化裂化阶段硅铝催化剂失活因素展开了有效的分析与研究,并且提出了回流浸取方法进行催化剂的再生技术的开发。通过该再生技术能有效降低催化剂中的重金属含量以及使得催化剂的活性恢复到原有活性的九成以上,从而实现催化剂的再生以及再次使用。 关键词:炼油厂;废催化剂;重金属;再生 前言 在进行对重油催化裂化的操作过程中,一般情况下利用的是硅铝类型的催化剂。因为重质油内具有一定数量的重金属,并且在其进行催化反映的阶段催化剂表面会产生一定的积碳,从而对催化剂的活性造成直接性的影响导致催化反映效率降低甚至不发进行有效的催化反映。如果催化剂的活性降低到一定程度成为了废催化剂,对其进行该部分催化剂处理时将其投放到自然环境中,一方面废催化剂堆在密度上相对较小,因此在进行处理的过程中对于土地资源的占用上相对较大。另一方面对于废催化剂内存在一些具有一定有毒有害的重金属物质。除此之外废催化剂的颗粒相对较小很容易受外部环境的影响从而对大气环境造成污染。因此关于炼油厂废催化裂化催化剂来讲其再生技术具有重要的意义所在。 一、关于催化剂失活因素的探究 1.1重金属含量方面的因素 对于催化剂内存在的重金属含量来讲,利用铵盐溶样—空气乙炔火焰原子对于光谱的吸收手段进行科学的测量。通过BC-1型表面积测定设备进行对催化剂比表面积予以科学的测定。通过ASTMD 3907—8O微反应活性设备展开对催化剂的微反活性进行有效的评价。由于重金属对于催化剂活性方面存在着直接影响的作用。特别是重金属中的镍对于催化剂的活性的影响程度相对较大。结合我国石油的特点来讲,我国石油大部分属于陆相沉积生成的,其中对于重金属镍的含量通常相对较高。尽管钒对于催化剂的影响相对较大然而其含量相比镍金属的含量要少的多。 1.2积碳对于催化剂造成的影响 在进行催化反映过程中,催化剂在经过一段时间的使用之后其表面会产生一定的积碳。将新催化剂和废催化剂进行扫描电镜照片的比较能够发现:新催化剂其表面相对较为粗糙并且其表面多空。但是对于废催化剂来将其表面通常会因为积碳的存在导致其表面相对较为光滑并且其孔道大多数被堵塞住。所以对于废催化剂来讲其往往会由于积碳的原因从而严重的影响了催化剂的活性。 二、关于催化剂再生试验分析 2.1关于试验流程 关于废催化剂再生试验流程通常是:焙烧—酸浸—水洗—活化—干燥。对于废催化剂的焙烧阶段指的是吧废催化剂至于电阻炉内将其设定到合适的稳定然后停留两个小时,然后停止加热操作并且对其进行有效的降温。对于该过程来讲其主要的意义在于进行对催化剂表面的积碳进行有效的去除,并且一定程度上使其内孔得到恢复。对于废催化剂的回流酸浸的过程中其主要是对催化剂内的镍和钒进驻的有效去除。把经过焙烧以后的催化剂置于具有回流以及搅拌功能的设备的反应装置内,然后添加草酸和一些氧化剂混合液,将其温度设置到一定范围进行有效的加热经过1小时的反映从而令催化剂内的重金属物质溶解到混合酸液体内进

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

环己烯催化剂

苯选择加氢制环己烯反应中新型催化剂的研究 摘要苯选择加氢制环己烯的反应,在现代化工行业具有广泛的应用。而如何提高环己烯的选择性和收率,成为现代化学行业研究的方向。新型催化剂的研究,在很大程度上解决了这一问题。本综述就简述了几种新型的催化剂,并对它们各自的优缺点做了简单的总结,并对未来的研究方向提出了自己的建议和看法。 关键词RuCoB/γ-Al2O3;Ru/Al2O3-ZrO2/cordierite;Ru/SiO2;Ru-B/SiO2;无添加剂;非晶态合金 引言 以苯为原料,利用催化技术实现苯部分加氢生产环己烯,同时也包括环己烯进一步水合生产环己醇。中间产品为环己烯,主要产品为环己醇,副产品为环己烷。 环己烯不仅可以直接水合生产环己醇,而且它是重要的有机合成中间体,被广泛用于己二酸、尼龙6、尼龙66、聚酰胺、聚酯和其它精细化学品的生产。环己烯及其下游产品,具有重要的工业用途和广阔的市场前景,因而苯选择加氢制环己烯具有巨大的工业经济价值。 苯选择加氢生产环己烯的关键在于:高活性高选择性催化剂和催化技术的开发。通过翻译,阅读和学习,四篇有关苯选择加氢制环己烯反应中新型催化剂研究的文献以及查阅其它文献,我了解了一些相关的最新研究,鉴于学习的需要,我对其进行了适当的概括和总结。虽然参考的文献数量有限,但对于我们进一步的学习和应用还是会有一定积极作用的。 2.1苯在RuCoB/γ-Al2O3和无添加剂条件下选择加氢制环己烯 这种催化剂是通过浸渍法制得的。相比较与传统的催化剂(如添加硫酸锌并以亲水性物质为载体的Ru基催化剂),本催化剂拥有非常明显的优点。对于传统催化剂,虽然硫酸锌的存在可以大大提高环己烯的产量,但是在催化剂中Ru含量非常高,并且催化剂的稳定性在工业应用中也不能令人满意。并且由于硫酸锌水解产生酸溶液,结果导致对反应器严重腐蚀,以及使催化剂快速钝化。因此,一些化学家正在努力开发一些新的无添加剂的催化体系,但环己烯在这些新的系统中产量很低。而在本研究中,我们解决了这一问题,提出一个Ru (3.8%)低加载量的新催化剂RuCoB/γ- Al2O3 ,它在水溶液中对苯对于苯的选择加氢非常高效,环己烯收率可达28.8%,并且不需要任何添加剂。钴和硼氧化物在催化剂中共同作用不仅提高了Ru分散度,而且还使Ru成为缺电子状态,在催化剂表面有利于环己烯的吸附和脱附。 本研究中,该催化剂在保持了苯选择加氢制环己烯高选择性和高收率的条件下,解决了添加剂所带来的一些问题。但是Co和B比率的控制,在一定程度上也影响了该催化剂的性能和应用,应该成为我们进一步研究的方向。

相关文档