文档库 最新最全的文档下载
当前位置:文档库 › 泵用干气密封详细介绍

泵用干气密封详细介绍

泵用干气密封详细介绍

一、 干气密封

干气密封概述 干气密封

干气密封是二十世纪六十年代末期从气体动压轴承的基础上发展起来的一种新型非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触运行。经过数年的研究,英国的约翰克兰公司于七十年代末期率先将干气密封干气密封

干气密封应用到海洋平台的气体输送设备上,并获得成功。干气密封

干气密封最初是为解决高速离心压缩机轴封问题而出现的,由于密封非接触运行,因此密封摩擦副材料基本不受PV 值的限制,特别适合作为高速、高压设备的轴封。随着干气密封干气密封

干气密封技术的日益成熟,其应用范围也越来越宽广,目前,干气密封

干气密封正逐渐在离心泵及搅拌器上得到应用。总之,凡使用机械密封的场合均可采用干气干气密封密封。与机械密封相比,干气密封干气密封

干气密封具有如下优点: 1、密封使用寿命长、运行稳定可靠;

2、密封功率消耗小,仅为接触式机械密封的5%左右;

3、与其他非接触式密封相比,干气密封干气密封

干气密封气体泄漏量小; 4、可实现介质的零逸出,是一种环保型密封;

5、密封辅助系统简单、可靠,使用中不需要维护

二、离心泵用干气密封干气密封

离心泵输送的介质为液体。根据不同工况条件,可采用以下几种密封形式:

1、 双端面干气密封干气密封

双端面干气密封干气密封

干气密封可以用在绝大多数离心泵的轴封上,它具有以下特点: 1)用“气体阻塞”替代传统的“液体阻塞”原理,即用带压密封气替代带压密封液,保证工艺介质实现“零逸出”;

2)整套密封非接触运行,其功率消耗仅为传统双端面密封的5%,使用寿命比传统密封长5倍以上;

3)结构简单的辅助系统,保证工艺介质不受污染及工艺介质不向大气泄漏,彻底摆脱了传统双端面机械密封对油系统的依赖。密封气采用工业氮气或工业仪表风,其压力高于介质0.15—0.2MPa 。

泵用双端面干气密封干气密封

干气密封的不足之处是: 1)需要一定压力的气源,气源压力至少高于介质压力0.2MPa;

2)有微量气体进入工艺流程。

2、串联式干气密封干气密封

泵用串联式干气密封干气密封

干气密封具有如下特点: 1)干气密封干气密封干气密封与接触式机械密封串联使用,机械密封为主密封,干气密封干气密封

干气密封为次密封; 2)干气密封干气密封

干气密封与主密封间通入氮气,保证主密封具有一定背压,极大地延长主密封的使用寿命;

3)主密封泄漏的工艺介质随密封气排入火炬,保证工艺介质不向大气泄漏,是一种环保型密封;

4)主密封失效后,干气密封

干气密封短时间内起到主密封作用,防止工艺介质向大气大量泄漏。 5)长沙三昌泵业告知该类密封使用寿命取决于机械密封的使用寿命,一般在2—3年左右。

6)该密封主要用于易挥发介质的场合,如液态烃类介质;对密封气压力要求不高。 该密封的不足之处是:

1)该密封还不是完全意义上的干气密封干气密封干气密封,其总体性能介于机械 密封和干气密封干气密封

干气密封之间。 2)该密封适用于易挥发介质的场合,使用范围较窄。

浅谈泵用双重机械密封与泵用干气密封的选型对比

浅谈泵用双重机械密封与泵用干气密封的选型对比 【摘要】通过对神华某煤化工项目净化装置主洗泵密封的选型方案的对比,分析泵用双重机械密封与泵用干气密封的特点,比较两种密封形式的优缺点,通过分析比较发现:两者密封形式均没有绝对的优势。干气密封在公用工程条件稳定,装置运行稳定的场合具有一定优势;双重机械密封在新建、改建项目具有一定优势。 【关键词】泵双重机械密封干气密封对比 在煤制油化工装置中,存在许多有毒、有害、易燃、易爆介质,如甲醇、乙烯、硫化氢一氧化碳、轻烃等。机泵输送此类介质对密封要求较高,按照现代的管理要求,不允许泄露。目前,使用技术一般有三类,采用无泄漏泵如屏蔽泵、磁力泵、隔膜泵等,对于必须使用离心泵时,采用双重机械密封或干气密封。基本上大部分适用双封的场合都可以使用干气密封,在技术上来讲都是可行的。那么双重密封与干气密封,哪个更好,常常困扰许多使用者。本文以神华某煤化工项目净化装置煤化工净化装置主洗泵为例,对双重密封和干气密封进行一下简单的对比,希望能为更多在此领域的用户提供选择的参考。 1 机械密封 1.1 机械密封原理 机械密封的基本概念。 机械密封是指由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力(或磁力)的作用下以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。 机械密封主要有以下四类部件组成。主要密封件:1静环、2动环;辅助密封件:6旋转辅助密封圈、8静止辅助密封圈;压紧件:3弹簧;传动件:4弹箕座及5键或固定螺钉,7防转销、9压盖。 机械密封中流体可能泄漏的途径有如图1中的A、B、C、D四个通道。C、D泄漏通道分别是静止环与压盖、压盖与壳体之间的密封,二者均属静密封。B 通道是旋转环与轴之间的密封,当端面摩擦磨损后,它仅仅能追随补偿环沿轴向作微量的移动,实际上仍然是一个相对静密封。因此,这些泄漏通道相对来说比较容易封堵。静密封元件最常用的有橡胶O形圈或聚四氟乙烯V形圈,而作为补偿环的旋转环或静止环辅助密封,有时采用兼备弹性元件功能的橡胶、聚四氟乙烯或金属波纹管的结构.A通道则是旋转环与静止环的端面彼此贴合作相对滑动的动密封,它是机械密封装置中的主密封,也是决定机械密封性能和寿命的关键。

离心式压缩机干气密封系统浅析

离心式压缩机干气密封系统浅析 1 干气密封简介 目前国内外石油化工行业普遍使用离心式压缩机来输送各种气体,主要是因为运转周期长、性能稳定。实际生产要求离心式压缩机在高转速、大气量、大压力,尤其是在压缩易燃、有害、有毒气体的条件下工作,为了防止这些气体沿压缩机轴端泄漏至大气中,就必须采用各种密封方式,保证压缩机的正常工作,保证人身和设备的安全,防止造成环境污染,同时也决定了密封装置向高密封效率、低能耗的方向发展。 在压缩机领域,轴端干气密封正逐步替代迷宫密封、浮环密封和油润滑机械密封[1]。对密封的基本要求是要保证结合部分的密闭性、工作可靠性、使用寿命长,密封装置的系统简单、结构紧凑、制造维修方便。衡量密封好坏的主要技术指标是泄漏量、寿命和使用条件[2]。 干气密封是一种新型的非接触轴向密封,由它来密封旋转机器中的气体或液体介质。与其它密封方式相比,干气密封具有泄漏量少,寿命长,能耗低,磨损小,维修量低,操作简单可靠,被密封的流体不受油污染等特点。 目前,干气密封主要应用在离心式压缩机上和轴流压缩机、透平膨胀机上。干气密封已经成为离心式压缩机正常运转和操作可靠的重要元件。 2 干气密封工作原理

图1 动环端面结构示意图 干气密封是由动环、静环、弹簧、密封圈、弹簧圈和轴套组成。动环和静环配合表面的平面度和光洁度很高,动环面上加工有一系列的螺旋形流体动压槽,槽深仅有几微米,外深内浅,如图1所示。干气密封在非运转状态时,动环与静环的密封面靠弹簧力贴合在一起。运转时,气体随着动环的旋转,被吸入动压槽内,被送到螺旋槽的根部,根部以外的一段无槽区称为密封坝,即动压槽末端没有通道。螺旋槽间为密封堰。密封坝和密封堰起到节流和密封的作用。

干气密封操作规程

干气密封操作规程 干气密封作为精密,贵重的设备附件,操作过程中,必须加强责任心,并精心操作方能使其处于完好状态。采用自产保护氮气操作注意事项如下 一、干气密封说明 二、操作细则 1.启动前先确认干气机械密封氮气瓶压力必须满足≥ 2.0MPa,同时备用氮气钢 瓶应当是满瓶。 2.检查氮气钢瓶减压阀是否完好,氮气密封气连接管线是否完好无泄漏。 3.检查氮气仪表箱内的压力表,流量计,调节阀是否完好。 4.启动循环泵前将氮气控制箱内压力调节阀压力调至0.7MPa之间,同时将氮 气钢瓶出口压力表与氮气控制箱内的调节阀后压力表进行对比,如偏差较大应进行校对或更换新表。 5.检查并确认氮气流量计后端的压力表是否完好,指示读数是否准确,同时再 与压力调节阀上的压力表进行对比,并定期进行校验。 6.调节氨气控制箱内的流量计调节阀,确保保护气流量充足,(理论上轴径小 于25mm的单端面干气密封的保护气流量应小于0.5~1.33L/min(0.03~0.08m 3/h)氮气不能过小,将会造成免气气量不足,分不开密封端面,造成密封端面损坏;密封气流量也不要过大,以免泵运行起来后造成进入系统的气量过多,形成气蚀现象或空管现象。 7.启动循环泵之前,开启10分钟干气密封氮气。(目的,确保干气密封的密封 面被气压吹起分离,防止密封面磨损),再向泵内灌料,让泵内先充满物料,打开自循环阀门,再启动泵,待泵运行稳定后,再开M702进料泵,并慢慢关闭自循环阀门。 8.泵密封气电接点压力开关已经设定在0.5MPa,如果系统氮气压力低于 0.5MPa,循环泵P704将自行停泵,压力高于0.5MPa时,才可以接通压力开 1

干气密封类型及介绍

干气密封 一干气密封选型: 干气密封具有很强的适应性。根据压缩机的工艺参数和介质成分,采用鼎名公司的 TMO2D型串联式干气密封。TMO2D型是串联式带中间迷宫进气的干气密封,适用于介质为易燃易爆的气体,不允许介质气体泄漏到大气中,同时也不允许其它气体进入机组内的气体工况。 二干气密封的原理: 典型的干气密封结构是由静环、动环组件、副密封O形圈、静密封、弹簧和弹簧座(腔体)等组成。静环的材质为碳,动环组件的材质为硬质合金,轴套、推环、弹簧座、锁紧套材质为不锈钢,O型圈为氟橡胶,定位环为PTFE。 密封的核心技术为与静环表面配合的动环级组件表面上加工的一系列的螺旋槽,螺旋槽可以分为以下几个区域:螺旋槽、反向螺旋槽、密封堰、和坝。如下: 干气密封运转时,动环的旋向为逆时针。气体被向内送到螺旋槽的根部,根部以外的无槽区称为密封堰。密封堰对气体的流动产生阻力,增加气体的膜压力。使动环和静环分开,产生一微小间隙,所以干气密封是非接触式密封。反向螺旋槽对气体进一步起到增压作用,增加了气体的膜厚度。 三密封设计方案 密封结构 河南开祥化工有限公司甲醇装置氨冷冻压缩机采用TMO2D型干气密封,密封方案结构简图如下: 密封工作原理简介: 1.一级密封进气(A路):采用压缩机出口介质气或新氢,大部分气体通过前置 迷宫进入机内,阻止机内的介质气扩散污染一级密封摩擦副的端面,少量气体经一级密封磨擦的端面泄漏至放火腔C。 2.二级密封气(B路):二级进气采用氮气。在部分气体通过中间迷宫进入放火 腔C,它阻止一级密封泄漏出的介质气体进入二级密封面并泄漏大气,少量气体经二级密封摩擦副的端面泄漏至放空腔C。 3.放火线(C路):火炬气的主要成分是一级密封泄漏的介质和在部分的二级氮气。 放火炬的目的是考虑工艺气排放的安全性和环保的要求。 高点放空(S路):从二级密封泄漏出的是没有任何危险氮气,随部分隔离气高点放空。

干气密封系统介绍

干气密封系统: (1)简介 干气密封是一种气膜润滑的流体动、静压结合型非接触式机械密封,主要应用于天然气管线、炼油、石油化工、化工等行业的透平压缩机、透平膨胀机等旋转机械。干气密封最早是由螺旋槽气体轴承转化而来的,和其他机械密封相比,其主要区别是在旋转环或静止环端面上(或者同时在这两个端面上)刻有浅槽,当密封运转时,在密封端面形成气膜,使之脱离接触,因而端面几乎无磨损。其可靠性高,使用寿命长,密封气泄漏量小,功耗极低,工艺回路无油污染,工艺气也不污染润滑油系统。 (2)工艺流程及说明 (a)氮气流程 氮气从氮气罐引出经粗滤器与精滤器,过滤精度达到1u后分为四路。 两路前置密封气(缓冲气):一路经孔板进入高压端密封腔,另一路经孔板进入低压端密封腔。进入前置密封腔体内氮气主要是防止机体内介质气污染密封端面,用孔板控制氮气消耗量。两路主密封气:一路经流量计进入高压端主密封腔,另一路经流量计进入低压端主密封腔。压缩机运转时,依靠刻在动环上螺旋槽的泵送作用,打开密封端面并起润滑、冷却作用。一套主密封氮气正常消耗量≤1NM3/h。 (b)仪表风流程 仪表风从装置仪表风管网引出经过滤器,过滤到3u精度后,至干气密封柜,作为隔离气。两路后置密封气(隔离气):一路经孔板进入低压端后置密封腔,另一路经孔板进入高压端后置密封腔。进入后置密封腔体内仪表风主要是防止润滑油污染密封端面,用孔板控制仪表风消耗量。 (3)报警联锁说明 主密封气与前置缓冲气压差正常值:≥0.3Mpa;低报:0.1Mpa;低低报:0.05Mpa。 (4)操作规程 干气密封投用: (a)运行前要对管路进行彻底吹扫,防止管内焊渣等杂质进入、密封腔,清洁度lu,并将所有阀门关闭,处于待命状态。 (b)在机组油运前至少十分钟,必须先通后置隔离气,且在机组运行中不可中断,在机组进气前,投用缓冲气,当机组进气后,前置密封气压力应比平衡管处压力高0.05 Mpa。 (c)开机前必须投用主密封气。 干气密封停用: (a)压缩机停车后需降低润滑油总管压力防止润滑油进入密封腔,造成密封损坏。 (b)压缩机正常停车后,缓冲气及主密封气不能立即停用,须等机体内无压力后,且介质气置换完全后,才可停用。 (c)压缩机正常停车后,后置密封隔离气必须在润滑油循环停止十分钟后,才可关闭。 精密流量计投用: 投用顺序:流量计副线阀开—流量计下游阀开一流量计上游阀开一流量计副线阀关(5)日常操作要求 过滤器差压是测量粗过滤器与精过滤器是否堵塞,差压为60Kpa报警,此时需更换过滤器芯;更换前应先打开另一路过滤器前后的阀门,再关闭己堵过滤器前后的阀门,放空后既可更换。 (6)干气密封事故处理 停氮气:则干气密封停机联锁动作,按紧急停气压机组处理。

干气密封基本原理及投用步骤

1、干气密封基本原理 干气密封动静环表面平面度和光洁度很高,动环组件配合表面上有一系列的螺旋槽,随着转动,气体被内泵送到螺旋槽的根部,根部以外的一段无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。该密封坝的内侧还有一系列的反向螺旋槽,这些反向螺旋槽起着反向泵送、改善配合表面压力分布的作用,从而加大开启静环与动环组件的能力。反向螺旋槽的内侧还有一段密封坝,对气体流动产生阻力作用,增加气体膜压力。配合表面间的压力使静环表面与动环组件脱离,保持一个很小的间隙,一般为3微米左右。当由气体压力和弹 簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。 2、干气密封投用步骤 注意事项:a、严禁在不投用干气密封的情况下,打开压缩机的出入口阀。 b、干气密封应依次投用一级密封气,二级密封气,后置隔离气。 c、严禁在不投用干气密封的情况下,启动压缩机润滑油泵。 d、必须确保排放火炬和放空的背压小于进入干气密封的密封气压力。 e、在开机后应尽量避免在干气密封在低于3000转以下长时间 运行。 f、严禁在增压泵活塞杆漏气大于50KPa的情况下启动增压泵。 步骤:干气密封系统安装后,在一级,二级,后置隔离气入口法兰端口处接上洁净的仪表风或低压氮气连续吹扫4~6小时以上,直到用细纱漂白布贴近六个出口吹扫5分钟以上,用眼仔细观察确无灰尘、油污、水分等杂质为合格。吹扫干净后关闭所有阀门,处于待命状态。 打开系统所有常开取压阀,投用现场压力表、变送器、压力开关,液位计等并检查各管线,活接头连接情况。 打开低压N气去干气密封系统阀门,充分脱液后进行氮气置换,时间为四小时,并通过一级密封气和平衡管差压控制阀 调节一级密封高低压端流量不低于117Nm3/h(柴油不低于250Nm3/h) 二级密封高低压端流量不低于2.9Nm3/h(柴油不低于6.5Nm3/h)排放火炬流量7-11Nm3/h,(柴油5-8Nm3/h),并通过自力调节阀使阀后压力不低于0.185MPa(柴油0.1 MPa) 后置隔离气高低压端,流量不低于42.81 Nm3/h,(柴油15 Nm3/h),并通过自力调节阀使阀后压力不低于0.068MPa(柴油不低于0.01 MPa)。待

干气密封基本原理及使用分析

压缩机干气密封基本原理及使用分析 一、引言 干气密封是一种新型的无接触轴封,由它来密封旋转机器中的气体或液体介质。与其它密封相比,干气密封具有泄漏量少,磨损小,寿命长,能耗低,操作简单可靠,维修量低,被密封的流体不受油污染等特点。因此,在压缩机应用领域,干气密封正逐渐替代浮环密封、迷宫密封和油润滑机械密封。干气密封使用的可靠性和经济性已经被许多工程应用实例所证实。 目前,干气密封主要用在离心式压缩机上,也还用在轴流式压缩机、齿轮传动压缩机和透平膨胀机上。干气密封已经成为压缩机正常运转和操作可靠的重要元件,随着压缩机技术的发展,干气密封正逐步取代浮环密封、迷宫密封和油润滑密封。 本文针对德国博格曼公司的干气密封产品进行了研究,结合压缩机的工作特点,重点论述压缩机干气密封的原理、结构特点、密封材料、使用要求和制造等方面的内容。 二、干气密封工作原理分析 干气密封的一般设计形式是集装式,图1表示出了压缩机干气密封的具体结构。 图1压缩机干气密封示意图 干气密封和普通平衡型机械密封相似,也由静环和动环组成,其中:静环由弹簧加载,并靠O型圈辅助密封。端面材料可采用碳化硅、氮化硅、硬质合金或石墨。 干气密封与液体普通平衡型机械密封的区别在于:干气密封动环端面开有气

体槽,气体槽深度仅有几微米,端面间必须有洁净的气体,以保证在两个端面之间形成一个稳定的气膜使密封端面完全分离。气膜厚度一般为几微米,这个稳定的气膜可以使密封端面间保持一定的密封间隙,间隙太大,密封效果变差;而间隙太小会使密封面发生接触,因干气密封的摩擦热不能散失,端面间无润滑接触将很快引起密封端面的变形,从而使密封失效。 气体介质通过密封间隙时靠节流和阻塞的作用而被减压,从而实现气体介质的密封,几微米的密封间隙会使气体的泄漏率保持最小。 动环密封面分为两个功能区(外区域和内区域)。气体进入密封间隙的外区域有空气动压槽,这些槽压缩进来的气体。为了获得必要的泵效应,动压槽必须被开在高压侧。密封间隙内的压力增加将保证即使在轴向载荷较大的情况下也将形成一个不被破坏的稳定气膜。 干气密封无接触无磨损的运行操作是靠稳定的气膜来保证的,稳定的气膜是由密封墙的节流效应和所开动压槽的泵效应得到的。 密封面的内区域(密封墙)是平面,靠它的节流效应限制了泄漏量。干气密封的弹簧力很小,主要目的是为了当密封不受压时确保密封面的闭合。 选择干气密封时,决定性的判断是动环上所开动压槽的几何形状。对于压缩机的某些操作点,如启动和停车时,一套串联密封在低速或无压操作的情况下,旋转的动压槽必须在密封面之间产生一个合适的压力。此力靠特殊措施——三维的、弧形的槽来获得。 压缩机干气密封设计和使用为两种槽型:双向的(U形)和单向的(V形)槽型。两种槽型的特性见表1。 表1 V形槽和U形槽的特性 *注意:DGS在低于那些被采用的值以下操作仍能被保证,但是一个分离层是必要的。 三、密封材料分析 1.端面材料 干气密封的操作极限与密封各个元件的许用载荷有关。温度和压力极限由所用的辅助密封橡胶和端面材料决定。使用的端面材料对干气密封的工作起着决定

干气密封的工作原理和特点

干气密封的工作原理和特点 干气密封是一种新型的非接触式轴封。干气密封在结构上与普通的机械密封基本相同,重要的区别在于干气密封其中的一个密封环上面加工有均匀分布的流体动压槽。运转时进入槽中的气体受到压缩,在密封环之间形成局部的高压区,使密封面开启,从而能在非接触状态下实现密封。 干气密封与普通的机械密封相比主要有以下的优点: (1)省去了普通密封油系统以及用于驱动密封油系统运转的附加功率负荷。 (2)大大减小了计划外维修费用和生产停车。 (3)避免了工艺气体被油污染的可能性。 (4)密封气体泄漏量小。 (5)维护费用低,经济实用性好。 (6)密封驱动功率消耗小。 (7)密封寿命长,运行可靠。 该压缩机采用的是GCTL01/L99型带中间迷宫的串联式干气密封,是干气密封中安全性、可靠性最高的一种结构。这种结构可保证工艺介质不会泄漏至大气环境中,同时可以保证干气密封引入的外部气源氮气不会漏入工艺介质中。 串联式干气密封相当于前后串联布置的两组单端面干气密封。第一级干气密封为主密封,基本上承受全部压差;第二级干气密封为辅助安全密封,正常运行时在很低的压力下工作,当第一级密封失效时,第二级密封可以迅速承受较大的压差,起到密封作用,同时可防止一级密封失效时工艺气体大量向大气环境中泄漏,保证机组安全停车。大气端的隔离密封可避免轴承箱中的润滑油汽进入干气密封区域,保证干气密封在洁净、干燥的环境中运行。 为了保证干气密封运行的可靠性,每套密封系统都配有与之相匹配的监测、控制系统,其作用是一方面为干气密封提供干净、干燥的气源。另一方面对干气密封的运行状况进行实时监测,使密封工作在最佳状态,当密封失效时系统能及时报警。监控系统对密封是否正常运行的监测主要是通过对泄漏气体的流量及相关压力的监测来进行的。

干气密封操作法(2010.9.28)

C4102干气密封操作 一、干气密封系統的吹扫 1、检修完后在投用前一定要用氮气吹扫干气密封管线,为了保证足够的吹扫气体流量, 吹扫前要折流量孔板(回装时要注意孔板流向)和干气密封管与机壳的连接法兰后进行吹扫,必要时可进行管线爆破吹扫,吹扫干净后管线复位。 2、吹扫前拆开的进机体法兰口一定要用干净胶布封扎好,防止杂质进入干气密封。 3、所有氮气系统在投用前,要进行排液操作,将导淋阀打开排放30分钟左右,以防止 氮气带液进入到干气密封系统。 二、主密封的静压试验 1、检修完的机组,从主密封气引入4.0MPa氮气缓慢充压到1.0MPa做静态密封 试验,控制PDIC4786主密封平衡管差压30kpa至60KPa(付线要求全关), 将机体放空阀关闭,并将干气密封泄漏气到火炬的管线阀门前法兰拆开(这 样才能保证后路畅通),同时,关闭二级密封氮气压力PIA4790。观察泄漏量 与原厂实验报告上的实验数据进行比较。(若需泄压要缓慢,不能超过 2MPa/min)。实验完毕后将管线拆开部位恢复投用。 注:在有润滑油运行的时候,隔离氮(PIA4780)绝对不能关闭(以防止润滑 油窜入干气密封)。停用润滑油系统后20分钟,才能关闭隔离氮。 三、干气密封系统低压气密 1、在进行主密封的静压试验时同步进行干气密封系统气密。 2、联系仪表投用有关的设备。 3、对所有干气密封管线、法兰、仪表表头、排空线、仪表引线、所有接头等进 行全面气密。 三、投用干气密封系统 1、干气密封必须通入干燥、清洁并经过滤的气体(过滤精度5um)。所用气体的温 度不能低于它们各自的露点温度。(要求控制在98℃以上) 2、干气密封管线保温完好,伴热蒸汽畅通,干气密封电加热器投用,保证密封气 温度要大于其露点温度。 注:因为电加热器有自动保护功能,到达一定的温度后会自停,外操检查现场指示 灯,发现停运要及时投用,内操监控好电加热器温度,发现不加热时,及时通知外 操检查电加热器运行情况,保证电加热器的正常使用。 3、检修完的机组,从主密封气引入4.0MPa氮气控制PDIC4786主密封平衡管差压 60KPa(付线要求全关),并将机体放空阀打开,手动启动增压泵后,一级密封 进气量PDIA4784、4785的压差为35KPa(9-140KPa之间)。 注:氮气分子量比氢气大,在孔板前后压差相同时,氮气工况的差压变送器体 积流量要小得多,约为氢气工况的三分之一。 4、一级密封泄漏量PDIA4793、4794正常范围值是在0~38KPa。 注:一级密封泄漏PDIA4793、4794孔板前压力≥350KPa时,爆破片会被击 穿。 四、投用二级密封氮和隔离氮 1、引入1.0MPa氮气入仪表控制盘,投用一组过滤器。从过滤器底部排液吹扫 干静后关放空伐。 2、PIA4780数值为70KPa,数值可以在±10%范围波动(异常情况可增大,但不能

干气密封工作原理

干气密封工作原理及结构布置 山东省东营市油田分公司油气集输总厂东营压气站 王玉军 [摘 要]详尽阐述了干气密封的工作原理,端面结构。指出根据现场实际工况及环境保护法要求,可分别采用的三种 典型布置,以及干气密封在使用时的维护,为用户在干气密封选择上提供指导。[关键词]机械密封 干气密封 螺旋槽 零泄漏 零溢出 作为一种非接触式机械密封,干气密封以其使用寿命长、无泄漏、节能、环保、运行维护费用低等一系列技术优势,逐渐在石油、化工以及冶金等工业的大型离心式压缩机和转子泵上得到广泛应用[1-2]。本文主要论述了干气密封,特别是螺旋槽干气密封的工作原理,结构特征以及使用时的维护,可为用户在干气密封选择、使用及维护方面提供借鉴。 1、工作原理 干气密封是基于现代流体动压润滑理论的一种新型非接触式气膜密封。气膜密封动环或静环端面上通常开出微米级流槽,主要依靠端面相对运转产生的流体动压效应在两端面间形成流体动压力来平衡闭合力,实现密封端面非接触运转。工程实际中使用较为广泛的流槽形式有雷列台阶式、斜平面式和螺旋槽面式, 其中尤以螺旋槽面式密封性能最佳。 螺旋槽干气密封工作原理如图1所示。动环端面上开有螺旋槽,整个端面分为槽区、台区和坝区。槽区主要提供必需的流体动压力,坝区主要阻挡气体向内侧流动以实现气体被压缩形成动压效应,增大气膜刚度,还可在密封停车时起密封作用。干气密封工作原理为:当动环按图示逆时针方向旋转时,由于粘性作用气体以速度V 进入螺旋槽;速度V 可分解为垂直于螺旋槽速度和与螺旋槽相切速度,其中主要提供流体动压力,而气流以速度运动到坝区后被压缩体积减小压力升高使密封面打开,从而实现非接触运转。干气密封正常工作时,端面间气膜一方面提供开启力来平衡闭合力,另一方面可起润滑冷却作用,因而省去复杂的封油系统 。图示干气密封为泵入式(气体从上游向下游流动)结构。 理想设计工况下,密封端面气膜开启力等于闭合力(密封介 质压力和弹簧力)。若密封受到外界扰动端面间隙减小,则流体动压效应增强,开启力大于闭合力,密封增大间隙重新恢复原来工作状态;反之,如果在外界干扰下间隙增大,则流体动压效果减弱,开启力小于闭合力,密封减小间隙并恢复到设计工作状态。如果设计合理,密封受到外界扰动可以自行恢复到原来工作状态,可见螺旋槽干气密封对外界扰动不敏感。 2、典型端面 近年来,国内外学者对螺旋槽干气密封端面结构形式作了 大量研究工作,以期能从结构形式改变来改善密封性能,其研究主要集中于如图2所示的螺旋槽及其组合结构形式[3-4]。 图2中黑色部分为螺旋槽。图2a 为外径侧开槽泵入式结构,当密封环逆时针旋转时,外径侧高压阻塞气体被泵入到端面间并形成一层稳定气膜从而使端面分离,阻塞气体既可润滑密封表面,又可防止工艺气体向外径侧泄漏。 图2b 为内径侧开槽泵出式结构,当端面顺时针旋转时,端面螺旋槽像一个个小容积泵一样,可将内径低压流体泵送到外径高压侧,从而实现工艺流体零泄漏或零逸出。 图2c 与图2a 不同之处在于密封坝上设置均匀分布的节流孔。节流孔可以将开槽环背面高压流体引入密封端面间,利用高压流体在密封端面间形成的静压效应提高端面气膜承载能力并增大气膜刚度。 图2d 所示密封环中间开槽,内外径侧均设置密封坝。其特点是可以实现端面双向旋转:当密封环顺时针旋转时就像图2b 所示螺旋槽泵出式结构,而当密封环逆时针旋转时就如图2a 中所示螺旋槽泵入式结构。内外径侧密封坝既可减少工艺气体泄漏,又可增大气膜刚度。 此外,还有Y 形槽和人字形槽等组合结构以及内外径开槽中间设置密封坝等多种结构形式。通常,通过在密封端面设计不同形式流槽以期改善端面流体流动状况,增强气体动压效应,促进端面热循环,保证密封动力学稳定性及挠性安装环具有良好追随性,从而获得性能优越并能适应特殊工况的密封端面结构。 3、结构布置 螺旋槽干气密封结构布置主要取决于密封工况条件(包括被密封气体组分、压力、温度,轴的转速等)、安全性以及环保要 — 072—

干气密封的特性及主要工作原理

干气密封的特性及主要工作原理 一、干气密封概述 早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。 干气密封图 二、干气密封与机械密封性能比较

机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。其缺点是泄漏率高,故障频发。 干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势: 1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。 2)采用干气密封技术,能源消耗较小。 3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。 4)采用干气密封技术,泄漏量较少,应用效果良好。 三、干气密封工作原理 一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O 形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。 这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。 闭合力Fc,即弹簧力与气体压力之间的总和。其中,开启力Fo通过端面之间分布的压力,对端面的面积形成积分。在平衡状态下,Fc=Fo;其中运行的间隙约3微米。如果由于受到干扰作用,造成密封的间隙逐渐降低,此时端面之间的压力就会有所升高,此时Fc>Fo,端面之间的间隙也会有所降低,则密封就会达到一种全新平衡状态。通过该机制的运行,可在动环组件与静环组件之间形成较

干气密封及控制系统使用说明书

干气密封及控制系统使用说明书 四川日机密封件有限公司 2007年12月

目录 一.干气密封概述 (2) 二.干气密封结构说明 (5) 三.干气密封控制系统说明 (7) 四.干气密封的安装与拆卸 (12) 五.干气密封的操作与维护 (17) 六.干气密封装运及存放 (19) 附图一:干气密封装配图CW(驱动端) 附图二:干气密封装配图CCW(非驱端) 附图三:干气密封控制系统P&I图 附图四:装拆工具总图CW(驱动端) 附图五:装拆工具总图CCW(非驱端) 附图六:装拆步骤示意图 一、干气密封概述

干气密封是一种新型的非接触式轴封。它是六十年代末期以气体润滑轴承的概念为基础发展起来的,其中以螺旋槽密封最为典型。经过数年的研究,美国约翰·克兰公司率先推出干气密封产品并投入工业使用。它适合于任何输送气体的系统,目前在我国的石化、炼油、化工、制药等行业的引进装置中越来越多的得到使用。实践表明,干气密封在很多方面都优越于普通接触式机械密封,由于其属于非接触式密封,基本上不受PV值的限制。与普通接触式机械密封相比,它更适合作为高速高压下的大型离心压缩机的轴封。而且它不需要密封润滑油,其所需的气体控制系统比接触式密封的油系统要简单得多。干气密封的出现,是密封技术的一次革命,它改变了传统的密封观念,将干气密封技术和阻塞密封原理有机结合,“用气封液或气封气”的新观念替代传统的“液封气或液封液”观念,可保证任何密封介质实现零逸出,这就使得其在泵用轴封领域也将有广泛的应用前景。 与普通接触式机械密封相比,干气密封有以下主要优点: 省去了密封油系统及用于驱动密封油系统运转的附加功率负荷。 大大减少了计划外维修费用和生产停车。 避免了工艺气体被油污染的可能性。 密封气体泄漏量小。 维护费用低,经济实用性好。 密封驱动功率消耗小。 密封寿命长,运行可靠。 1、干气密封工作原理 与普通机械密封相比,干气密封在结构上基本相同。其重要区别在于,干气密封其中的一个密封环上面加工有均匀分布的浅槽。运转时进入浅槽中的气体受到压缩,在密封环之间形成局部的高压区,使密封面开启,从而能在非接触状态下运行,实现密封。 下面以典型的螺旋槽干气密封为例作简单说明 图1所示是密封端面的示意图,密封面上加工有一定数量的螺旋槽,其深度在

泵用干气密封的原理及特点

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/f11896258.html,)泵用干气密封的原理及特点 泵用干气密封主要应用于离心压缩机等高速流体设备上。随着甭、反应釜等设备的出现,干气密封技术逐渐在低转速设备上进行了推广,从而形成了泵用干气密封技术。 一、泵用干气密封的工作原理 泵用干气密封是一种高性能、长寿命的新型密封型式,在结构上它与普通机械密封显著不同的是:动、静环密封端面较宽;在动环或静环端面上加工出特殊形状的流体动压槽,如螺旋槽,槽深一般在3-10pm之间。 当动环高速旋转时,动环或静环端面上的螺旋槽将外径处的高压气体向下泵入密封端面间,气体由外径向中心流动,而密封坝节制气体流向中心,于是气体被压缩引起压力升高,在槽根处形成高压区。端面气膜压力形成形成开启力,在密封稳定运转时,该开启力与由作用在补偿环背面的气体压力和弹簧力形成的闭合力平衡,密封保持非接触、无磨损运转,其气膜厚度一般维持在2-3pm。如果出现某些扰动因素使密封间隙减小,引起开启力减小,而闭合力不变,密封间隙将减小,密封将很快再次恢复平衡。 干气密封的这种抵抗气膜间隙变化的能力称之为气膜刚度。虽然泵用干气密封的气膜间隙很小,但气膜刚度很大,比液膜润滑机械密封的膜刚度要大得多。 二、泵用干气密封的主要优点 与传统的接触式机械密封相比,在离心泵中采用干气密封有以下几个方面的优点: (1)摩擦功耗低

由于干气密封的两密封端面被一薄层稳定的气膜所隔离而且密封腔内为低粘度的气体介质,因此干气密封的端面摩擦功耗和动环组件的搅拌摩擦损失要比液体润滑的密封装置的摩擦功耗小很多,一般两者消耗的功率之比约为1:10-20。 (2)无磨损运转、使用寿命长 对干气密封,由于两个相对旋转的端面是非接触的,在正常使用条件下,一般都可达到3年以上。 (3)无封液系统、能实现泵送介质的零泄漏或零溢出 封液系统时常是复杂的和昂贵的,并存在不可避免的故障危险。泵送介质的外泄漏和封液冷却密封都依赖于封液系统的完善化。干气密封避免了所有这些复杂因素,它利用干燥洁净的氮气源作为密封气,很容易实现泵送介质的零泄漏或零溢出,对泵送介质没有任何污染,而且系统比较简单、可靠性非常高。 三、泵用干气密封的技术难点 与高速透平压缩机用干气密封相比,离心泵用干气密封存在三个方面的难点:

串联式干气密封使用说明书

串联式干气密封使用说明 1.干气密封结构说明 该干气密封为串联式结构,第一级为平衡型机械密封,第二级为干气密封,密封介质为干净氮气,氮气压力为0.5MPa左右。由于干气密封端面上加工有螺旋型动压槽,只允许单向旋转,因此,该密封的旋转方向必须与干气密封装配图上标注的旋向一致。 正常情况下,机械密封作为主密封起作用,干气密封为辅助密封。干气密封主要有以下作用: a)提高主密封的背压,防止端面汽化、减小密封面的磨损,极大地延长了主密封的使用寿命; b)当主密封失效时,干气密封可以起到备用密封的作用,防止意外事故的发生; c)主密封泄漏出的气体随氮气排入火炬,防止危险气体直接进入大气,消除了安全隐患同时 起到环保的作用。 2.干气密封泄漏标准 转速(r/min)氮气压力(MPa)干气密封泄漏量(m3/h) 00.5≤0.05 95000.5≤0.15 3.干气密封的运输、存放及安装 3.1包装及运输 密封到货后检查注意事项: a)检查外包装是否有明显损坏痕迹。 b)打开包装,不要损坏或丢失单独提供的部件。 c)按照装箱单进行清点,如果发现部件损坏或丢失,请与公司联系。 3.2干气密封存放 3.2.1应避免直接暴露在强烈的阳光下以及加热的环境中。 3.2.2应避免置放于臭氧或紫外线下。 3.2.3应避免置放于容易使弹性橡胶圈老化的场合。 3.2.4应避免置于潮湿或者灰尘严重的环境下。 以下几种情况,必须对干气密封进行检查: a)密封存放时间超过3年。 b)密封包装发生破损。 c)干气密封受到外力的碰撞。 3.3密封安装前的准备工作:检查泵体安装密封相关部位: 3.3.1轴肩倒角(倒角30°x2mm) 3.3.2轴的轴向串量及径向跳动。 3.3.3相配合的密封腔表面情况。 3.3.4安装干气密封处轴的表面情况。

2021年干气密封的原理

干气密封的原理 ? 欧阳光明(2021.03.07) ?干气密封是一种密封全部工艺气压力的非接触式端面密封。?该密封包括轴向浮动的碳化物环——静环,和旋转环——动环,旋转环密封面的外径部位刻有槽,槽的下面是被称为密封坝的光滑区域。 ?在轴处于静止和机组未升压时,静环背后的弹簧使其与动环接触。当机组升压时,气体所产生的静压力将使得两个环分开并形成一极薄的气膜(约3μm)。这间隙允许少量的密封气泄漏。 ?当机组开始旋转时,由于动环上槽的作用把气体向密封坝泵送,槽内压力从外径向内径增加,靠近槽的根部产生一高压区域,并扩大两环间的间隙,同时泄漏量也增加。 ?当弹簧力和气体的静压力与槽和密封坝的流体动力相等时,密封面之间形成稳定的气膜间隙。 ?当间隙减小时,流体动力学作用使得端面之间的分离力迅速增加,间隙将扩大。间隙的增大时将导致打开力减小,间隙将减小。干气密封的自动平衡原理使得密封端面之间形成了稳定的间隙和泄漏量。当轴旋转时密封面非接触,所以没有磨损。 ?干气密封顾名思义是指干燥的、洁净的气体密封。 ?干气密封的密封面之间在运行时有非常小的间隙,密封气流

过该间隙。密封面之间的微小间隙要求密封气中不能含有直径超过间隙的颗粒,也不能含有液体,干气密封控制盘的特点是具有过滤装置、除湿装置(密封气用工艺介质时),提供高清洁度的气体以延长密封面的寿命,并防止静环背面堆积污染物。 ?密封气分为主密封气、隔离气(缓冲气)。 ?干气密封设计压力为机组的进气压力。主密封进气腔的压力稍许高于进气压力,确保密封腔内清洁的环境。由于密封腔与工艺气腔有压差,对于串联式结构来讲大部分经除湿、过滤的密封气流经工艺气拉别令密封进入压缩机,只有一小部分密封气流经密封面之间,成为泄漏气体;对于并联式双端面密封来讲,密封气流经两个密封面之间,成为泄漏气体。 串联式结构主密封气又分一级主密封气(内侧端面)、二级主密封气(外侧端面),内侧端面起主要密封作用,外侧端面是一个安全密封,当内侧主密封突然失效时,危险介质不会发生大量外泄,造成安全事故。一级主密封气使用工艺介质或氮气,二级主密封气只能使用惰性气体(氮气)。 ?一级主密封气使用工艺介质的机组,在一定的运行模式下,例如循环和启动,压缩机还没有产生足够给干气密封供气的压差。在这种运行模式下,干气密封容易受到来自于机壳内的未经过滤的气体进入密封腔的污染。未经过滤的气体流入到密封腔称为“倒灌”。所以需要设置增压器(如Flowserve、John crane的干气密封控制盘)。

干气密封使用注意事项

不能反压; 干气密封是利用下游泵送原理,在转动时将上游(高压侧)密封气体泵送到端面间的螺旋槽内,在坝的阻挡作用下形成气膜,打开密封端面。如果上游压力低于下游,则气体不能进入螺旋槽内,形不成气膜,端面打不开,密封很快就会损坏。 (干气密封投用时先投一级密封气,后投二级密封气,停干气密封时,先停二级密封气,后停一级密封气;压缩机开停车N2置换时,要求密封气调节阀后压力高于压缩机缸体压力。) 密封气不能带颗粒; 密封端面打开间隙很小,一般为3微米左右,颗粒进入后会在密封端面上划痕,使泄漏量增加,同时,长期使用不洁密封气,微小的颗粒会填平螺旋槽,影响气膜形成,最终使端面损坏。 (压缩机置换时,要求投用干气密封,一般一二级都投用,防止未经过滤的压缩机内气体带颗粒进入干气密封端面,开车时损坏端面。) 密封气不能带液体; 液体进入密封端面,由于液体粘度远大于气体,端面对液体的搅拌与切割将产生大量热量,使密封因温度急剧升高而损坏。此外,即使是微小的液滴进入端面,也会使密封不能长期稳定运行,因为微小的液滴在端面间会因温度升高而发生爆破现象,使端面间隙瞬时增大,泄漏量出现波动。 (油系统开车时,要先投用后置隔离气,一般要求20分钟以上,才可以建立油循环。停止油循环时,要求后置隔离气继续运行20分钟

以上,防止润滑油进入干气密封,损坏干气密封或者影响使用寿命。) 不能反转; 对于单向设计的密封,严禁反转,因为反转时端面不但打不开,反而会越转越紧,密封会由于干摩擦温度升高而损坏。当然,对于设计为双向旋转的密封可以克服反向旋转带来危害,但在同等条件下,双向旋转的端面产生的气膜刚度小,抗干扰能力差。 (一般压缩机进出口都有快开阀门,停机后,阀门迅速打开均压,防止压差大,压缩机反转,损坏干气密封。尤其两端以上压缩的,二段入口带有气液分离器或者缓冲罐的压缩机,缓冲罐容积较大,可储存一定量的压力比一段入口较高的气体) 干气密封监控、连锁: 连锁启动: 低压缸低压端一级密封泄漏量正常≥5 Nm3/h 低压缸高压端一级密封泄漏量正常≥5 Nm3/h 一级密封与低压缸平衡管或放火炬线差压正常≥0.1 MPa 高压缸高压端一级密封泄漏量正常≥5 Nm3/h 高压缸低压端一级密封泄漏量正常≥5 Nm3/h 一级密封气与高压缸平衡管差压正常≥0.1 MPa 连锁停车: 低压缸低压端一级密封泄漏量大≥13 Nm3/h 低压缸高压端一级密封泄漏量大≥13 Nm3/h

干气密封介绍

一、干气密封概述 早在20世纪60年代末期,奠定在气体动压轴承应用的基础上,干气密封发展起来,并成为一种全新的非接触式密封。该密封利用流体动力学原理,通过在密封端面上开设动压槽而实现密封端面的非接触性运行。最初,采用干气密封形式,主要为了改善高速离心压缩机的轴封问题。由于密封采取非接触性的运行方式,因此其密封的摩擦副材料基本不会受到PV值的任何影响,尤其在高压设备、高速设备中应用,具有良好前景。随着我国密封技术的飞速发展,再加上干气密封的广泛应用,彻底解决了困扰高速离心压缩机运行中的轴封问题,密封使用寿命及性能都得到了很大提高,为机组稳定,长周期运行提供了保证,因此该技术的应用范围进一步扩大,凡使用机械密封的场合均可采用干气密封。 干气密封图 二、干气密封与机械密封性能比较 机械密封是一种传统的密封型式,其特点是密封结构简单,技术成熟,加工精度要求不太高。其缺点是泄漏率高,故障频发。 干气密封是目前最先进的一种非接触密封型式,与传统的机械密封形式相比较,采用干气密封技术,主要具备以下优势: 1)采用干气密封技术,可有效提高密封的质量与使用时间,确保设备安全、可靠、稳定运行。 2)采用干气密封技术,能源消耗 较小。

3)干气密封技术应用到的辅助系统较为可靠,操作简单,在使用过程中不需要任何维护手段。 4)采用干气密封技术,泄漏量较少,应用效果良好。 三、干气密封工作原理 一般来讲,典型的干气密封技术,包含了静环、动环(旋转环)、副密封O形圈、静密封、弹簧和弹簧座等。静环位于弹簧座内,用副密封O形圈密封。弹簧在密封无负荷状态下使静环与固定在轴上动环(旋转环)配合。 这类密封与机械密封的区别在于,它是一种气膜润滑的流体动、静压相结合的非接触式机械密封。动环与静环配合表面具有很高的平面度和光洁度,通常在动环表面上加工有一系列的特种槽。随着转动,气体被向内泵送到槽的根部,根部以外的无槽区称为密封坝。密封坝对气体流动产生阻力作用,增加气体膜压力。配合表面之间产生的压力,使静环表面与动环脱离,保持一个很小的间隙。当由气体压力和弹簧力产生的闭合压力与气体膜的开启压力相等时,便建立了稳定的平衡间隙。在有效确保动力平衡的基础上,密封中产生的作用力状况。 闭合力Fc,即弹簧力与气体压力之间的总和。其中,开启力Fo通过端面之间分布的压力,对端面的面积形成积分。在平衡状态下,Fc=Fo;其中运行的间隙约3微米。如果由于受到干扰作用,造成密封的间隙逐渐降低,此时端面之间的压力就会有所升高,此时Fc>Fo,端面之间的间隙也会有所降低,则密封就会达到一种全新平衡状态。通过该机制的运行,可在动环组件与静环组件之间形成较为稳定的气体薄膜,在一定的动力条件下,可实现端面之间的平衡状态,同时由于彼此分离、没有接触,因此不容易造成磨损,极大延长使用寿命。 干气密封的结构形式根据被密封介质的不同、介质压力的不同及工作转速的不同又可分为单端面干气密封、双端面干气密封及串联式干气密封。 美国某公司从20世纪60年代末即开始研究干气密封技术,到80年代已经完全达到实用化的程度,目前有不少外国公司可生产此类密封,并一度垄断了我国干气密封市场。而现在随着我国一些民族工业的崛起,我国已生产出了处于国际领先水平的干气密封产品,并已在国内许多石油化工企业中得到推广应用。 四、影响干气密封的相关参数 有关干气密封技术的运行技能,主要集中于密封运行的稳定性及使用寿命方面。而气膜的厚度参数,将对干气密封的泄漏量产生直接影响,即在干气密封技术运用过程中,会在密封面形成诸多间隙。一般情况下,对干气密封的性能产生影响的主要参数为密封操作参数与密封结构参数两种形式。具体分析如下。 4.1 密封操作参数 1)密封直径、转速的影响作用。经大量实践表明,密封的直径作用越大,则转速越高;密封的环线速度越快,则干气密封形式产生的泄漏量就越多。 2)密封气压的影响作用。一般情况下,如果存在干气密封的工作间隙,则其中压力越大,发生气体泄漏的可能性就越大。 3)工作介质温度、粘度的影响作用。有关工作介质温度产生的影响作用,主要原因是考虑到温度的影响,直接作用到介质粘度中。随着介质粘度的增加,动压效应有所增强,且气膜的厚度加重,同时加大了密封间隙中阻力。这种情况下,不会对密封泄漏量产生过大影响。 4.2 密封结构参数 1)动压槽的形状。以流体力学理论为出发点,在干气密封技术的端面形成沟槽,无论是何种形状,都将受到动压效应影响。尤其在数螺旋槽中,产生极大流体动压效应,且作用在干气密封动压槽中,产生一定气膜刚度,利于密封稳定性的提高。 2)动压槽的深度。如果干气密封流体的动压槽深度和气膜厚度处于同一个量级,则干气密封的气膜刚度处于最大值。在实际应用过程中,一般将干气密封的动压槽控制在3微米~10微米的厚度。

相关文档
相关文档 最新文档