文档库 最新最全的文档下载
当前位置:文档库 › 防止机翼紊流技术

防止机翼紊流技术

防止机翼紊流技术
防止机翼紊流技术

防止机翼紊流技术

防止机翼表面的气流变为紊流是80年代新技术。方法是在机翼表面用电子束加工出成千上万的微小浅孔,每平方厘米达125万个。它们有效地吸收了紊流,使气流在微孔区以及在其后的一段距离上保持平流状态,降低了阻力,提高了升阻比。实验表明,这一技术的短距离飞行可节省燃料12—15%,远距离飞行时可节省燃料达25%。

(图)在风洞试验中机翼表面形成的紊流

航空空气动力学研究与发展 (一)

人类对空气动力特性的认知和不断深入的探讨、研究,是人类从实现早期的飞天梦想,到今天追求更快、更高飞行理想的基础理论。100多年来,航空界空气动力学专家、学者对提高飞机空气动力特性的不断深入研究和认知,已经为世界航空器的发展进步作出了巨大的贡献。

从尖前缘薄翼型到钝前缘较厚翼型

1919年以前世界上设计的飞机基本都采用具有尖前缘的薄翼型,其最大相对厚度不超过6%。这主要由于当时航空界少量可用的翼型数据都是在模型试验雷诺数比实际飞机飞行雷诺数低得多的风洞试验条件下得出的。

在这种低速小风洞中,带有小前缘半径的薄翼型模型在试验中能得到了较高的最大升力和高升阻比。另外,试验结果显示出的模型机翼附面层的转捩点也很靠后(实际上真实飞机薄机翼附面层的转捩点接近前缘),机翼大部分面积是层流,因此阻力小。

后来,德国近代航空流体力学奠基人普朗特的研究表明,当试验雷诺数接近飞机飞行雷诺数时,带钝前缘的较厚翼型空气动力特性更优越。它不但可获得较高的最大升力,更重要的是还能将失速推迟到更大的迎角状态。除上述气动力优点外,厚翼型对早期民用飞机来说还具有能提高机翼结构强度、减少支柱数量、减轻飞机重量,减小飞机总阻力的优势,同时厚翼型还能为机载燃油、主起落架收起,机械操纵系统提供更大的空间。因此,普朗特对于钝前缘厚翼型的研究,对后来的客机设计具有深远的影响。许多20年代设计的客机,如三发动机的福特型和福克型单翼客机都采用了厚翼型。

20年代初,美国NACA用搜集到的世界上各种根据风洞试验得出的翼型的气动特性进行了对比研究。结果发现,由于试验条件不同(主要是试验雷诺数不同),会导致试验数据产生很大变化,尤其会对最大升力系数产生很大影响。

1922年美国在兰利实验室创建了压力达25个大气压的变密度、高雷诺数风洞。该风洞能进行接近飞行雷诺数的模型试验。NACA在1929~1934年间,共设计、研究和试验了100多种翼型,建立很大的数据库,并在1933年首次出版了可供设计师参考应用的翼型手册,很受欢迎。

30年代诞生的DC-1就用了NACA2215翼型。在五位数字系列的翼型中,NACA23012很出名,与早期厚翼型的克拉克Y翼型比较,其最大升力系数高8%左右,最小阻力系数约低20%,在全世界得到广泛应用。

英国对发现钝前缘厚翼型的优点比较晚,直到1939年才发展了用于单翼机的RAF32翼型。

前苏联在1920~1936年间研究出B、BS、PⅡ和D等系列厚翼型,安-2飞机选用PⅡ系列中的翼型。层流附面层

附面层概念是普朗特1904年提出的,但直到1924年才通过试验证实了层流附面层的存在,并发现层流附面层具有最小的摩擦阻力。

当时飞机的机翼基本都采用带肋或拉紧的布蒙皮、波纹状轻金属、翘曲的胶合板或多用大量圆头铆钉连接,所以其表面经常很粗糙或外形不准确。英国国家物理实验室的试验表明,采用粗糙布蒙皮的机翼阻力比光滑机翼阻力大70%。

在30年代后期, 当单机翼飞机(采用收放式起落架)开始替代双机翼飞机之后,飞机设计师们开始把注意力转移到如何在细节设计阶段尽可能减小飞机基本构形的阻力上。

当飞机设计师们认识到蒙皮摩擦阻力的大小取决于附面层从层流到紊流的转捩位置,并希望让机翼的蒙皮光滑到能产生足够的层流范围(He70飞机的机翼为20%)时, 便开始进行大量降低表面摩擦阻力可能性的研究。

例如采用最合适的表面光洁度标准;通过改变翼剖面形状改变压力分布等。

1936年有人预测全层流机翼蒙皮可使蒙皮摩擦阻力减小到当时蒙皮阻力的10%。但是当时的风洞试验表明在机翼上存在大范围层流的可能性很小,而1937年琼斯在豪克·哈特飞机上进行的飞行试验都证实,机翼上确实在一定范围内是层流。

风洞试验和试飞结果的矛盾引起NACA雅克布斯等人的关注,经研究发现,由于当时风洞的气流紊流度高于飞行时大气紊流度,导致风洞试验时模型附面层提前转捩。随后他们在NACA组建低紊流度风洞,并于1938年投入使用和进行了卓有成效的减阻研究。

雅克布斯提出应按预定压力分布确定翼型形状,这是一种认识上的突破。

层流翼型基本原理是在气流达到接近机翼后缘升压区之前,尽可能在更长的距离上继续加速,就可以推迟转捩,也就是使机翼的最大相对厚度位于40%~50%弦长处,以尽量后移最小压力点。

NACA早期发展的层流翼型有NACA1系列、NACA2-5系列和NACA6系列。前苏联发展的层流翼型有ЦAГИC-5-18等。

虽然层流翼型被广泛应用,但当时并没达到应有的减阻效果,这主要是由于层流的产生对机翼表面光滑度要求很高,对有波浪机翼表面要求波长不大于15厘米,波高低于1/1000波长,但这已超出当时的加工水平。另外,其所要求的光洁度很容易被寄生在机翼前缘的昆虫、尘土、雨雪和起飞时溅在机翼前缘上的泥土破坏。

机翼/机身气动干扰

20年代初期,设计人员为研究在机翼与机身结合处产生的气动干扰现象,曾进行过无数次机翼相对机身上下位置的试验研究,特别是对阻力很大的下单翼布局做了详细研究。

对于下(上)单翼布局,在机翼-机身结合处由于机身曲率和机翼向后缘相对厚度减小的影响,形成快速发散流场,增强了原有的逆压梯度,加速气流分离,导致飞机阻力增加和升力减小。英国和美国从1931年开始进行的研究发现,在机翼-机身结合处加装整流罩后,由于增大了机翼根部的相对厚度,减小了逆压梯度,几乎消除了机翼-机身间不利的气动干扰现象。

诱导阻力

关于升力涡理论,是航空界先驱者兰彻斯特在1894年提出的,遗憾的是,当时他不仅没能用语言将之叙述清楚、而且缺乏严格的数学表达形式,更重要的是他的研究方法过于复杂,因此在当时没有得到更多同行的理解。

1914年普朗特和他的学生门克用清晰的数学理论表明了,由升力引起的阻力系数(诱导阻力系数)与升力系数的平方成正比,与机翼的展弦比成反比,并指出,对于给定的展弦比,如果升力沿展向成椭圆分布,则诱导阻力最小。这在当时其实是一个十分重要的突破点。

但由于当时诱导阻力只占飞机总阻力的5%左右,而且兰彻斯特-普朗特的研究重点又放在大展弦比机翼上,因此他们的涡理论在飞机设计上没引起足够的重视。后来随着这一理论在德国He70飞

机上的应用,才在美国和英国也得到推广。

增升装置

增升装置作为增加飞机升力的有效技术措施,在早期飞机设计中是一项具有突破性的关键技术。主要包括:

前缘缝翼

1917~1919年间,英国的汗德莱·佩季和德国的拉赫曼分别以不同的方式发现,采用机翼前缘开缝装置能起到增升作用。当时对机翼前缘沿展向开缝的设计进行的试验结果很令人受鼓舞。

试验表明,当气流通过在机翼前缘设计的缝隙中从机翼下表面流向上表面时,能降低机翼前缘的严重逆压梯度,使气流依附表面流动,从而将失速推迟到更大迎角,最大升力增加50%~60%。

在20年代前缘缝翼虽然受到普遍赞扬,但并未投入使用。30年代,设计师才开始在双翼机的薄机翼上采用了前缘缝翼。由于在单翼机的厚机翼上通常是缓和的后缘失速,一般不应用前缘缝翼。

后缘襟翼

后缘襟翼一般分为简单、开裂、开缝和富勒四种型式。

简单襟翼是机翼后缘的一部分,需要时通过偏转增加机翼弯度而增加升力

1913~1914年,英国国家物理实验室首先得出了后缘襟翼的增升效果能达到30%的实验结果,但同时实验也表明它存在着偏转时产生相当大阻力的缺点(阻力增加的百分比通常比升力增加的百分比还要大)。

开裂襟翼像一块薄板紧贴在机翼后缘下面,当放下时,因增加机翼弯度和使襟翼与机翼后缘之间形成低压区而增加升力,优点是在中等偏度时能产生较大的升力,而且产生的阻力较小,缺点是大偏度时产生的阻力大。

在汗德莱·佩季发展的缝翼基础上形成的后缘单缝襟翼,当其放下时,一方面增加机翼弯度,另一方面由于它与机翼间形成的缝隙使下表面气流吹向襟翼上表面,能推迟气流分离,因而增加了升力。其优点是在获得高升力时产生的阻力较小,当偏转到60°左右时仍有效。后来单缝襟翼发展到双缝和三缝襟翼。

1931年由富勒提出的后退式襟翼(称富勒襟翼)是在机翼后缘下半部分的活动翼面。使用时,襟翼沿下翼面安装的滑轨后退并下偏,由于其增加机翼弯度、增加机翼面积和产生缝隙而有显著的增升效果。缺点是增加滑轨阻力和产生较大的低头力矩。

由于增升装置可显著改善飞机的起落性能,使民航客机可以按较高的翼载(较小的机翼面积)进行设计,以降低飞机阻力,提高飞行速度。从30年代开始普遍采用增升装置以来,螺旋桨客机(运输机)的翼载随年代迅速增加(见图3)。

另外,由于飞机提高翼载(减小机翼面积)后,着陆下滑时要进入较平的下滑轨迹,驾驶员不易看清跑道,造成着陆困难。

当放下襟翼后,因增大飞机阻力而增加下滑角,飞机能保持这种姿态直到很低的高度,然后很快拉平接触地面,使飞机安全着陆。

改善飞机气动力设计

飞机的气动力设计技术在20年代进展缓慢,当时民航机的最大升阻比还不到12。民航机的巡航速度从1919年的110千米/时提高到1929年时的190千米/时,主要得益于发动机功率提高了80%,气动力的贡献很小。

1928年剑桥大学琼斯教授利用蒙皮摩擦阻力和诱导阻力计算理想流线形飞机性能时指出,许多飞机的阻力是其的理想阻力的2~3倍,最好的飞机效率(克服飞机蒙皮摩擦阻力和诱导阻力所需发动机功率发动机安装功率,或飞机不可避免的阻力总阻力)为50%,最差的只有30%左右。换言之,如果飞机按流线形设计,当保持发动机功率不变时,飞机速度将增加95千米/小时。但许多制造厂商和客户(特别是在英国)热衷于投资研制大功率发动机,以提高飞行速度。于是当时在航空界引发了是否需要通过采用流线型设计进一步提高飞行速度的争论。

当时争论的焦点是:如果认定民航机的经济巡航速度不大于160千米/小时,飞机的流线形设计就降为次要地位;如果要使飞机飞得更快,那么减小飞机型阻就是主要的,工作重点是通过采用襟翼减小机翼面积,改进飞机的流线形设计和采用可收放式起落架来降低型阻。

当时美国和德国在改进飞机气动力方面下了较大功夫,英国则没能认识到采用综合气动力措施对降低对发动机功率要求的重要作用。结果美国和德国研制出一系列接近理想流线形气动布局的飞机,30年代研制出的最好的民航机效率甚至达到了65%,将英国抛在后面。

由于客机采用一系列措施,如利用埋头铆钉使飞机表面尽可能光滑、机身按流线形设计、采用封闭式座舱、采用可收放式起落架、采用襟翼、在机翼-机身结合处和发动机上加装整流装置等,大大改进了气动力设计,使螺旋桨客机(运输机)的零升阻力系数随年代发展显著降低。因飞机的零升阻力降低和采用大展弦比机翼(提高飞机升力和降低诱导阻力),使螺旋桨客机(运输机)的最大升阻比随年代的发展也得到了明显提高。

大气湍流N-S方程

前面复习
什么是湍流? 湍流与层流有什么区别? 雷诺数Re的表达式和物理意义? 湍流有哪些理论? 流体运动的稳定性指的是什么? 处理流体运动的稳定性问题时,什么是 小扰动法和能量法?

流体力学和N-S方程
流体力学是力学的一个分支,它是研究 流体 ( 包括液体及气体 ) 这样一个连续介质 的宏观运动规律以及它与其他运动形态之 间的相互作用。通常所说的流体力学就是 指建立在连续介质假设基础上的流体力学。 连续介质假设认为真实流体所占有的空 间可近似地看做是由“流体质点”连续无 空隙地充满着的。所谓流体质点指的是微 观上充分大,宏观上充分小的分子团.

流体运动的描述
欧拉方法着眼于流场空间的固定点, 拉格朗日着眼于确定的流体质点。 两种方法可以互换。
K qi = qi (r , t )
qi = qi (ξ , t )

物理量的物质导数和当地导数
在欧拉方法的表达式中,专门引进了一 个运算符号d/dt,它表示某确定流体质点的 物理量随时间的变化率,称为该物理量的 物质导数;同时,将欧拉表述下物理量函 数对时间的偏导数,即空间固定点上物理 量的时间变化率,称为当地导数,记作э/эt。
dq ?q K = + (v ? ? ) q dt ?t

M 1m/s M 2m/s
M’ 2m/s (t=0) M’ 3m/s (t=1s)

应力张量
流体质点所受的力需要用二阶张量来描 述,σji。在通过某点并具有任意方向n的面 元上,应力矢量 T(n) 为二阶张量和该面元 的法向单位矢n唯一确定。
K Ti (n ) = σ ji n j

K-e湍流模型

K是紊流脉动动能(J), &是紊流脉动动能的耗散率(% ) K越大表明湍流脉动长度和时间尺度越大,£越大意味着湍流脉动长度和时间 尺度越小,它们是两个量制约着湍流脉动。 但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。 在入口界面上设置的K 和湍动能尺度对计算的结果影响大, 至于k 是怎么设定see fluent manual "turbulence modelling" 作一个简单的平板间充分发展的湍流流动, 基于k-e 模型。 确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条 件,压力不管! k-epsiloi n 湍流模型参数设置:k —动能能量;epsilo n —耗散率; 在运用两方程湍流模型时这个k 值是怎么设置的呢?epsilon 可以这样计算吗?Mepsilo n = Cu*k*k/Vt% 这些在软件里有详细介绍。陶的书中有类似的处理,假定了进口的湍流雷诺 数。 fluent 帮助里说,用给出的公式计算就行。 k—e 模型的收敛问题! 应用k—e 模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10 的—2 次方,请问大侠有没有解决的办法? 用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转. 在求解标准k-e 双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后 和N—S 方程耦

紊流参数的确定

决定湍流参数 在入口、出口或远场边界流入流域的流动,FLUENT需要指定输运标量的值。本节描述了对于特定模型需要哪些量,并且该如何指定它们。也为确定流入边界值最为合适的方法提供了指导方针。 使用轮廓指定湍流参量 在入口处要准确的描述边界层和完全发展的湍流流动,你应该通过实验数据和经验公式创建边界轮廓文件来完美的设定湍流量。如果你有轮廓的分析描述而不是数据点,你也可以用这个分析描述来创建边界轮廓文件,或者创建用户自定义函数来提供入口边界的信息。一旦你创建了轮廓函数,你就可以使用如下的方法: ●Spalart-Allmaras模型:在湍流指定方法下拉菜单中指定湍流粘性比,并在在湍流粘性 比之后的下拉菜单中选择适当的轮廓名。通过将m_t/m和密度与分子粘性的适当结合,FLUENT为修改后的湍流粘性计算边界值。 ●k-e模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 ●雷诺应力模型:在湍流指定方法下拉菜单中选择K和Epsilon并在湍动能(Turb. Kinetic Energy)和湍流扩散速度(Turb. Dissipation Rate)之后的下拉菜单中选择适当的轮廓名。 在湍流指定方法下拉菜单中选择雷诺应力部分,并在每一个单独的雷诺应力部分之后的下拉菜单中选择适当的轮廓名。 湍流量的统一说明 在某些情况下流动流入开始时,将边界处的所有湍流量指定为统一值是适当的。比如说,在进入管道的流体,远场边界,甚至完全发展的管流中,湍流量的精确轮廓是未知的。 在大多数湍流流动中,湍流的更高层次产生于边界层而不是流动边界进入流域的地方,因此这就导致了计算结果对流入边界值相对来说不敏感。然而必须注意的是要保证边界值不是非物理边界。非物理边界会导致你的解不准确或者不收敛。对于外部流来说这一特点尤其突出,如果自由流的有效粘性系数具有非物理性的大值,边界层就会找不到了。 你可以在使用轮廓指定湍流量一节中描述的湍流指定方法,来输入同一数值取代轮廓。你也可以选择用更为方便的量来指定湍流量,如湍流强度,湍流粘性比,水力直径以及湍流特征尺度,下面将会对这些内容作一详细叙述。 湍流强度I定义为相对于平均速度u_avg的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算:

第四章 层流流动与湍流流动

第四章层流流动及湍流流动 由于实际流体有粘性,在流动时呈现两种不同的流动形态:层流流动及湍流流动,并在流动过程中产生阻力。 对可压缩流体,阻力使流体受压缩。 对不可压缩流体,阻力使流体的一部分机械能转化为热能散失,这个转变过程不可逆。散失的热量称为能量损失。 单位质量(或单位体积)流体的能量损失,称为水头损失(或压力损失),并以h w(或Δp)表示。 本章首先讨论流体的流动状态,再对粘性流体在两种流动状态下的能量损失进行分析。 第一节流动状态及阻力分类 一、流体的流动状态 1.雷诺试验:1882年雷诺作了如教材45页图4-1所示的流体流动形态试验。 试验装置:在圆管的中心用细玻璃管向圆管的水流中引入红色液体的细流。 试验情况: (1)当水的流速较小时(图4-1a),红色液体细流不与周围水混和,自己保持直线形状与水一起向前流动。 (2)如把水的流速逐渐增大,至一定程度时,红色细流便开始上下振荡,呈波浪形弯曲(如图4-1b)。 (3)当再把水流速度增大,红色细流的振荡加剧,至水的流速增大至某一速度后,圆管中红色细流消失,红色液体混入整个圆管的水中(如图4-1c)。 试验的三种不同状况说明: (1)对(图4-1a)所示,表明水的质点只有向前流动的位移,没有垂直水流方向的移动,即各层水的质点不相互混和,都是平行地移动的,这种流动称为层流; (2)对(图4-1b)所示,说明流动的水质点已开始有垂直水流方向的位移,离开圆管轴线较远的部位水的质点仍保持平行流动的状态; (3)对(图4-1c)所示,说明流动中水的质点运动已变得杂乱无章,各层水相互干扰,这种流动形态称为紊流或湍流。

2.雷诺数: 流体之所以出现不同的流动形态,主要由流体质点流动时其本身所具有的惯性力和所受的粘性力的数值比例决定。 惯性力相对较大时,流体趋向于作紊流式的流动; 粘性力则起限制流体质点作纵向脉动的作用,遏止紊流的出现。 雷诺根据此原理提出了一个判定流体流动状态的无量纲参数——雷诺数(Re): 对在圆管中流动的流体而言,雷诺数的表现形式为 v:圆管内流体的平均流速(m/s);ε:动力粘度(Pa·s)。 D:圆管直径(m);ν:运动粘度(m2/s)。 实验确定,流体开始由层流形态向紊流转变时,称为下临界雷诺数, Re=2100~2320;当Re>10000~13800时流体的流动形态为稳定的紊流,称上临界雷诺数;当Re=(2100~2320)~(10000~13800),流动形态为过渡状态,可以是紊流或层流。临界雷诺数随体系的不同而变化,即使同一体系,它也会随其外部因素(如圆管内表面粗糙度和流体中的起始扰动程度等)的不同而改变,所以临界雷诺数为一个范围数。 对于非圆管中的流体流动,雷诺数的表现形式为 R:水力半径(m);A:流体的有效截面积(m2); x:截面上与流体接触的固体周长(湿周)(m)。 (但水力半径R不是圆截面的几何半径r,如充满流体圆管的水力半径为: ) 这里,取下临界雷诺数为500。对工程中常见的明渠水流,下临界雷诺数常取300。 当流体绕过固体(如绕过球体)流动时,出现层状绕流(物体后无旋涡)和紊状绕流(物体后形成旋涡)的现象,此时雷诺数用下式计算:

几种湍流模型

解决湍流的模型总计就是那几个方程,Flue nt又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT提供了以下湍流模型: ?Spalart-Allmaras 模型 ?k-e模型 —标准k-e模型 —Ren ormalizatio n-group (RNG^e 模型 —带旋流修正k-e模型 ?k-3模型 —标准k- 3模型 —压力修正k- 3模型雷诺兹压力模型大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准ke模型比Spalart-Allmaras模型耗费更多的计算机资 源。带旋流修正的k-e模型比标准ke模型稍微多一点。由于控制方程中额外的功能和非线性,RN&七模型比标准k-e模型多消耗10?15%的CPU时间。就像k七模型,k-3模型也是两个方程的模型,所以计算时间相同。 比较一下k◎莫型和k-3模型,RSM模型因为考虑了雷诺压力而需要更多的CPU时间。然而高效的程序大大的节约了CPU时间。RSM模型比k-e模型和k-3模型要多耗费50?60%的CPU 时间,还有15?20%的内存。 除了时间,湍流模型的选择也影响FLUENT勺计算。比如标准k-e模型是专为轻微的扩散 设计的,然而RNGk-e模型是为高张力引起的湍流粘度降低而设计的。这就是RNG莫型的缺点。同样的,RSM模型需要比k-e模型和k-3模型更多的时间因为它要联合雷诺压力和层流。 概念:1?雷诺平均:在雷诺平均中,在瞬态N-S方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 ;(10.2-2) i「 这里??表示一个标量如压力,动能,或粒子浓度。 2. Boussinesq逼近从雷诺压力转化模型:禾U用Bouss in esq假设把雷诺压力和平均速度梯度 联系起来: +茁飞(肚+川亦)也(10 2-O) Boussinesq假设使用在Spalart-Allmaras模型、k-e模型和k- 3模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras模型中只有一个额外的方程要解。k-e模型和k-3模型 中又两个方程要解。Bouss inesq假设的不足之处是假设u t是个等方性标量,这是不严格的。

第四章紊流沿程损失的计算

理论课教案教案编号 编写教师编写日期 审核教师审核日期年月日教学班级 教学日期 课程名称流体力学泵与风机 课题:第四章流动形态与能量损失 4-5紊流沿程损失的计算4-6非圆管内沿程损失4-7局部水头损失 教学目标:1.能进行紊流沿程损失的计算。 2.掌握水力半径、当量直径的计算方法 教学重点:利用伯努利方程对实际管道进行计算; 教学难点:阻力系数的确定 教学方法:讲授法、练习法 其它说明: 时间分配教学组织1分钟小结与作业5分钟引入新课4分钟分钟讲解新课80分钟分钟 课后记事

教学内容 教学方法 [复习引入] 略。 [讲解新课] 第四章 流动形态与能量损失 §4-5紊流的沿程损失计算 一、紊流形成的过程分析 二、紊流沿程阻力系数的确定方法 1.尼古拉斯实验 2.实际管道试验曲线-莫迪图 3.各种沿程阻力系数的计算公式 §4-6非缘管内的沿程阻力损失 一、当量直径de 1、湿周χ:过流断面上流体与固体壁面接触的周界(长度) 2、水力半径R :过流断面面积与湿周之比 圆管的水力半径 3. 当量直径 de : 把水力半径相等的圆管直 径定义为非圆管 的当量直径,即4倍水力半径 二、几种非圆管水力半径计算 §4-7局部水头损失 一、产生原因 主流脱离边壁,漩涡区的形成是造成局部水头损失的主要原因。旋涡 区越大,旋涡强度越大,局部水头损失越大。 二、变管径的局部损失 三、弯管的局部损失 四、减小局部阻力损失的措施 [小结与作业] 1.紊流沿程阻力损失计算及阻力系数的确定; 2.非圆管当量直径的计算方法及减小局部阻力损失的方法。 讲授 讲授 举例 χ A R = 4 412d d d A R = ==ππχχ A R d e 44= =

大气湍流

大气湍流 胡非 自然界中的流体运动存在着二种不同的形式:一种是层流,看上去平顺、清晰,没有掺混现象,例如靠近燃烧着的香烟头附近细细的烟流;另一种则显得杂乱无章,看上去毫无规则,例如烟囱里冒出来的滚滚浓烟,这就是湍流,也叫紊流,在日文文献中被叫作“乱流,更容易顾名思义。相对来说层流却是很少见的。 我们生活的地球被大气所包围,广义地讲,整个地球大气系统都可以看作是处在具有宽广尺度湍流运动的状态,因此湍流研究具有极为重要的科学意义和实际应用价值。大气湍流以近地层大气表现最为突出,风速时强时弱,风向不停摆动,就是湍流运动的具体表现。大气湍流造成流场中各部分之间强烈混合,它能使大气中的动量、热量、水汽、污染物等产生强烈混合和输送,能对建筑物、飞行器等产生作用和影响,还会使大气折射性质发生变化从而导至电磁波和声波被散射,湍流是一种开放的、三维的、非定常的、非线性的、并具有相干结构的耗散系统,集物理现象的多种难点于一身。自从1883年Reynolds做了著名的实验以来,一百多年里一直是科学的前沿和挑战

性问题之一。历史上,包括von Karman、Kolmogorov、Landau和周培源在内的许多著名科学家对湍流的研究均未获得大的成功。在跨越了两个世纪之后的今天,尽管人们对湍流发生机理和湍流运动规律的了解有了很大的进展,湍流研究在工程技术上的应用也取得了很大的成就,但是就其本质上来说,对湍流的认识还很不全面,还有很多基本的问题没有搞清楚。例如:目前为止,科学家们还给不出湍流的严格科学定义,也没有找到对湍流的解析和定量描述方法;尽管知道了控制流体运动的Navier-Storkes方程,但是由于该方程是强非线性、高自由度的偏微分动力系统,因而对其解析求解几乎是不可能的;Reynolds平均方程则遇到“不封闭”困难;湍流模式理论同样也因为对物理机制缺乏理解而并不很成功。 总之,湍流仍然是摆在全世界科技工作者面前的难题。周恒院士指出,湍流问题不仅制约了航空、航天、水利、化工等许多工程技术和大气科学、海洋科学等自然科学的进一步发展,而且“也可能会对21世纪的某些新兴科学技术的形成起到制约作用”。 湍流是大气系统中复杂现象的集中体现。它主要是由大气动力状态和热力状态的不均匀作用而引起的。大尺度湍流还会受到地球旋转的影响,在研究天气演变和气候变化时它是非常重要的。通常所说的大气湍流主要还是集中在离地面1~2公里厚的一个薄层、即所谓大气边界层内。由于特征尺度很大,大气边界层的Reynolds数相当高,湍流分布在很宽的尺度上,小到毫米尺度的旋涡,大到百米甚至公里尺度的旋涡均可能存在。因此比起普通的实验室(例如风洞中)湍流

大气湍流的复原

大气湍流的复原 研究背景与意义 21 世纪以来,美国、欧空局、俄罗斯等空间科技强国都相继提出了新的空间发展规划。特别的,美国自特朗普上台后提出太空政策,加大对太空探索的投资力度,并积极开展多个民用太空项目。根据我国至2030 年空间科学发展规划,我国将建立以覆盖多个热点领域的空间科学卫星为标志的空间科学体系[1],通过发展系列空间科学计划,牵引和带动我国在空间目标识别与监视、深空测绘乃至其他重要科技领域的创新与突破,推动我国高科技产业的跨越式发展。而对空间目标的姿态、形状、特征以及太空星体表面的地形地貌进行高精度识别与判读,都需要采用光学成像系统对其观测与监视,从而获取足够数量的影像资料,从这些影像资料中提取使用者所期望的感兴趣信息。 由于地面受到太阳辐射作用,造成大气中分子和由悬浮粒子构成的离散混合介质的不规则热运动,使得大气呈现出非稳态性和随机性,这种现象称之为大气湍流现象。当光波穿过空间大气层时,由于大气中湍流介质中各处的压强、温度、湿度以及物理特性的随机变化,使得射出湍流介质的波阵面不再保持平面特性。因此,光学成像系统中的传感器透过大气对目标物或场景进行观测时,由于近地面的大气湍流强度在空间和时间上分布的差异,造成湍流介质内的空气折射率的随机涨落。这会导致光波到达像面的振幅和相位的随机起伏,从而导致光束扩散、波面畸变、像点漂移等现象[2][3],使得目标在成像设备上会产生严重的模糊和降质。大气对成像系统的影响主要包括:1)空间对地高分辨率遥感观测中,卫星或航天飞机对地面目标进行跟踪和监视。2)在地基成像观测系统中,自适应光学望远镜对卫星、行星以及其他宇宙天体进行识别与探测。3)在高速飞行器成像制导系统中,使用激光器对目标实施打击的过程(如图1.1 所示)。由于大气湍流的干扰,飞行器上发射的激光束产生随机扩散与畸变,严重减弱了激光器的打击精度,因此有效的减弱大气湍流的影响,避免激光器的能量扩散和路径偏移是十分必要的。 (a)美国战略导弹防御系统机(b)激光器打击导弹 (c)理想情况下激光束的能量分布(d)受大气湍流干扰的激光束能量分布 图1.1 美国战略导弹防御机系统 在地基空间目标观测过程中,大气湍流扰动的存在,使得光学望远镜的分辨率不再由其理论衍射极限来决定,而取决于其大气相干长度。当光学系统对受到大气湍流干扰的光波进行成像时,其分辨率不会超过口径为0r 的光学系统衍射极限分辨率,其中0r 就是大气相干长度的大小[4]。0r 值越大,表示大气整体湍流强度越小。如果口径数米乃至数十米的光学望远镜在没有自适应补偿系统的条件下,通过空间大气层对近地卫星、行星或其他星体进行观测成像时,由于受到大气湍流的影响,其成像分辨率不会超过口径为分米级小型望远镜[5],且获取的图像会出现模糊与抖动,这严重降低了观测图像的研究价值。针对大气湍流的扰动问题,目前研究人员提出了两种解决方案:1)发射太空望远镜(如美国哈勃望远镜、康普顿望远镜)。但是太空望远镜不仅造价和发射耗资巨大,而且出现故障不易检测和维护。望远镜如果没有补偿措施,在太空中会受到太空低温、失重环境导致镜面畸变,同样会观测图像出现模糊和降质。2)采用自适应光学补偿系统和波后复原技术。首先通过自适应光学系统对光波波前畸变进行实时补偿和校正,其后基于数字图像处理技术对目标受抑制的中高频信息进行恢复和重建,最终获得目标的高清晰图像。 在遥感对地观测领域,由于大气湍流干扰、卫星平台的不稳定振动、传感器与被拍摄目标之间的相对运动、光学成像系统的离焦和散焦等因素,再加上传感器在数据传输、扫描成像时引入的噪声,都会导致遥感图像的降质和退化。然而研究人员希望获取纹理和边缘清晰、易

第四章层流和紊流及水流阻力和水头损失

第四章 层流和紊流及水流阻力和水头损失 1、紊流光滑区的沿程水头损失系数 仅与雷诺数有关,而与相对粗糙度无关。 2、圆管紊流的动能校正系数大于层流的动能校正系数。 3、紊流中存在各种大小不同的涡体。 4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。 5、谢才公式既适用于有压流,也适用于无压流。 6、' 'y u x u ρτ -=只能代表 X 方向的紊流时均附加切应力。 7、临界雷诺数随管径增大而增大。 8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。 9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。 10、管道突然扩大的局部水头损失系数 的公式是在没有任何假设的情况下导出的。 11、液体的粘性是引起液流水头损失的根源。 11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。 12、公式gRJ ρτ= 即适用于管流,也适用于明渠水流。 13、在逐渐收缩的管道中,雷诺数沿程减小。 14、管壁光滑的管子一定是水力光滑管。 15、在恒定紊流中时均流速不随时间变化。 16、恒定均匀流中,沿程水头损失 hf 总是与流速的平方成正比。 17、粘性底层的厚度沿流程增大。 18、阻力平方区的沿程水头损失系数λ 与断面平均流速 v 的平方成正比。 19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。 20、紊流的脉动流速必为正值。 21、绕流阻力可分为摩擦阻力和压强阻力。 22、有一管流,属于紊流粗糙区,其粘滞底层厚度随液体温度升高而减小。 23、当管流过水断面流速符合对数规律分布时,管中水流为层流。 24、沿程水头损失系数总是随流速的增大而增大。 25、边界层内的流动也有层流与紊流之分。 26、当雷诺数 Re 很大时,在紊流核心区中,切应力中的粘滞切应力可以忽略。 27、其它条件不变,层流内摩擦力随压力的增大而 ( ) ⑴ 增大 ; ⑵ 减小 ; ⑶ 不变 ; ⑷ 不定 。 28、按普朗特动量传递理论, 紊流的断面流速分布规律符合 1 对数分布 ; 2 椭圆分布 ; 3 抛物线分布 ; 4 直线分布 。 29、其它条件不变,层流切应力随液体温度的升高而 1 增大 ; 2 减小 ; 3 不变 ; 4 不定 。

几种湍流模型

解决湍流的模型总计就是那几个方程,Fluent 又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k -e 模型 -带旋流修正k -e 模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras 模型在FLUENT 中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准k -e 模型比Spalart-Allmaras 模型耗费更多的计算机资源。带旋流修正的k -e 模型比标准k -e 模型稍微多一点。由于控制方程中额外的功能和非线性,RNG k -e 模型比标准k -e 模型多消耗10~15%的CPU 时间。就像k -e 模型,k -ω模型也是两个方程的模型,所以计算时间相同。 比较一下k -e 模型和k -ω模型,RSM 模型因为考虑了雷诺压力而需要更多的CPU 时间。然而高效的程序大大的节约了CPU 时间。RSM 模型比k -e 模型和k -ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。 除了时间,湍流模型的选择也影响FLUENT 的计算。比如标准k -e 模型是专为轻微的扩散设计的,然而RNG k -e 模型是为高张力引起的湍流粘度降低而设计的。这就是RNG 模型的缺点。 同样的,RSM 模型需要比k -e 模型和k -ω模型更多的时间因为它要联合雷诺压力和层流。 概念: 1.雷诺平均:在雷诺平均中,在瞬态N-S 方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 )2 2.10('-+= i i i φφφ 这里φ表示一个标量如压力,动能,或粒子浓度。 2. Boussinesq 逼近从雷诺压力转化模型:利用Boussinesq 假设把雷诺压力和平均速度梯度联系起来: Boussinesq 假设使用在Spalart-Allmaras 模型、k -e 模型和k -ω模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras 模型中只有一个额外的方程要解。k -e 模型和k -ω模型中又两个方程要解。Boussinesq 假设的不足之处是假设u t 是个等方性标量,这是不严格的。

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。 涉及的湍流模型: 标准k-ε湍流模型(SKE) 1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。 2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准 k-ε湍流模型自从被Launderand Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。 3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。 它是个半经验的公式,是从实验现象中总结出来的。 动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。 应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。 可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 应用范围: 可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNGk-ε模型有更好的表现。但是最初的研究表明可实现的k-ε模型在所有k-ε模型中流动分离和复杂二次流有很好的作用。 该模型适合的流动类型比较广泛,包括有旋均匀剪切流,自由流(射流和混合层),腔道流动和边界层流动。对以上流动过程模拟结果都比标准k-ε模型的结果好,特别是可再现k-ε模型对圆口射流和平板射流模拟中,能给出较好的射流扩张。

层流和紊流

层流和紊流 cengliu he wenliu 层流和紊流 laminar flow and turbulent flow 实际液体由于存在粘滞性而具有的两种流动形态。液体质点作有条不紊的运动,彼此不相混掺的形态称为层流。液体质点作不规则运动、互相混掺、轨迹曲折混乱的形态叫做紊流。它们传递动量、热量和质量的方式不同:层流通过分子间相互作用,紊流主要通过质点间的混掺。紊流的传递速率远大于层流。水利工程所涉及的流动,一般为紊流。 雷诺数表征液流惯性力与粘滞力相对大小,可用以判别流动形态的无因次数,记作。雷诺数的定义式为: [19-01]式中、、分别为液体的密度动力粘滞系数、运动粘滞系数;、为流动的特征速度和特征长度。雷诺数小时,粘性效应在整个流场中起主要作用,流动为层流。雷诺数大时,紊动混掺起决定作用,流动为紊流。对于同样的液流装置,由层流转换为紊流时的雷诺数恒大于紊流向层流转换的雷诺数。前者称上临界雷诺数,其值随试验条件而变,很不稳定;后者称下临界雷诺数,其值比较稳定,对于一般条件下的管流(圆管直径为特征长度,断面平均流速为特征速度),约为2300。 层流只存在粘滞切应力。在简单的剪切流中,粘滞切应力: [19-02]式中[19-03]为剪切变形速度,亦即速度沿垂直方向的变化率;为动力粘滞系数,只和液体种类及温度有关的常数。此式表达了著名的牛顿内摩擦定律。层流中摩擦阻力及沿程水头损失均与流速的一次方成正比,流速分布呈抛物线型。圆管层流流速分布如图1[ 层流和紊流流速分布比较] 所示。 紊流又称湍流。液体运动呈随机性,即速度、压强等均随时间、空间作不规则的脉动,是紊流的基本特征(图2[紊流流

紊流计算理论公式

湍流量的指定方法 湍流强度I定义为相对于平均速度u_avg的脉动速度u^'的均方根。 小于或等于1%的湍流强度通常被认为低强度湍流,大于10%被认为是高强度湍流。从外界,测量数据的入口边界,你可以很好的估计湍流强度。例如:如果你模拟风洞试验,自由流的湍流强度通常可以从风洞指标中得到。在现代低湍流风洞中自由流湍流强度通常低到0.05%。. 对于内部流动,入口的湍流强度完全依赖于上游流动的历史,如果上游流动没有完全发展或者没有被扰动,你就可以使用低湍流强度。如果流动完全发展,湍流强度可能就达到了百分之几。完全发展的管流的核心的湍流强度可以用下面的经验公式计算: 例如,在雷诺数为50000是湍流强度为4% 湍流尺度l是和携带湍流能量的大涡的尺度有关的物理量。在完全发展的管流中,l被管道的尺寸所限制,因为大涡不能大于管道的尺寸。L和管的物理尺寸之间的计算关系如下: l07 L = .0 其中L为管道的相关尺寸。因子0.07是基于完全发展湍流流动混合长度的最大值的,对于非圆形截面的管道,你可以用水力学直径取代L。

如果湍流的产生是由于管道中的障碍物等特征,你最好用该特征长度作为湍流长度L而不是用管道尺寸。 注意:公式L l07 =并不是适用于所有的情况。它只是在大多 .0 数情况下得很好的近似。对于特定流动,选择L和l的原则如下:对于完全发展的内部流动,选择强度和水力学直径指定方法,并在水力学直径流场中指定L=D_H。 对于旋转叶片的下游流动,穿孔圆盘等,选择强度和水力学直径指定方法,并在水力学直径流场中指定流动的特征长度为L 对于壁面限制的流动,入口流动包含了湍流边界层。选择湍流强度和长度尺度方法并使用边界层厚度d_99来计算湍流长度尺度l,在湍流长度尺度流场中输入l=0.4d_99这个值 湍流粘性比m_t/m直接与湍流雷诺数成比例(Re_t?k^2/(e n))。Re_t在高湍流数的边界层,剪切层和完全发展的管流中是较大的(100到1000)。然而,在大多数外流的自由流边界层中m_t/m相当的小。湍流参数的典型设定为1

紊流理论基础

紊流理论基础一、紊流的特点无序性:流体质点相互混掺,运动无序,运动要素具有随机性。耗能性:除了粘性耗能外,还有更主要的由于紊动产生附加切应力引起的耗能。扩散性:除分子扩散外,还有质点紊动引起的传质、传热和传递动量等扩散性能。二、紊流切应力表达式1.紊流运动要素的脉动及其时均化时间平均流速:流体质点的瞬时速度始终围绕着某一平均值而不断跳动(即脉动),这一平均值就称作时间平均流速(图6-7)。(6-14)或图6-7 紊流度N 可以表示紊动的程度:§ 脉动量的特点:脉动量的时均值为零,即。各脉动量的均方值不等于零,即2.紊流切应力紊流流态下,紊流切应力:。(6-15)矩形断面风洞中测得的切应力数据如图6-8:图6-8 说明:1)在雷诺数较小时,脉动较弱,粘性切应力占主要地位。2)雷诺数较大时,脉动程度加剧,紊流附加切应力加大,在已充分发展的紊流中,粘性切应力与紊流附加切应力相比忽略不计。3)沿断面切应力分布不同,近壁处以粘性切应力为主(称粘性底层)。a.粘性切应力τv:从时均紊流的概念出发,各液层之间存在着粘性切应力:式中: b.紊流附加切力τt: ——时均流速梯度。液体质点的脉动导致了质量交换,形成了动量交换和质点混掺,从而在液层交界面上产生了紊流附加切应力τt:的推导观看动画>> 由动量定律可知:动量增量等于紊流附加切应力△T 产生的冲量(图6-9),即:由质量守恒定律得:符号相反图6-9 由此可得二元紊流切应力表达式(6-16)注意:紊流附加切应力是由微团惯性引起的,只与流体密度和脉动强弱有关,而与流体粘性无直接关系。 3.紊流动量传递理论——普兰特混合长度理论紊流附加切应力中,脉动流速均为随机量,不能直接计算,无法求解切应力。所以1925 年德国力学家普兰特比拟气体分子自由程的概念,提出了混合长理论。a.普兰特假设:(1)不可压缩流体质点在从某流速的流层因脉动uy'进入另一流速的流层时,在运动的距离L(普1 兰特称此为混合长度)内,微团保持其本来的流动特征不变。在混合长度L1内速度增量:(2)普兰特假设脉动速度与时均流速差成比例,即:(6-17)式中: ——亦称混合长度,但已无直接物理意义。在紊流的固体边壁或近壁处,普兰特假设混合长度正比于质点到管壁的径向距离,即:(6-18)式中:k——由实验决定的无量纲常数。例如圆管层流k=0.4。y——至壁面的距离。考考你:普兰特混合长度理论借用了气体中b.紊流切应力的表达式的概念。(6-19)式中:——涡流粘度,是紊动质点间的动量传输的一种性质。η 不取决于流体粘性,而取决于流体状况及流体密度。——运动涡流粘度,不是流体的一种属性,ε 而取决于混合长度及流速梯度等紊流特性。三、紊流的基本方程对N-S方程(3-12)和连续性方程(3-9)进行时间平均即可得出紊流的时均流动方程。连续性方程(6-20)N-S 方程(x 方向)(6-21)式中:——由于脉动产生的附加法应力统称为雷——由于脉动产生的附加切应力诺应力它们是紊流传输项,也是造成紊流动量交换及质点混掺的主要原因。在紊流边界层外侧或紊流扩散中,雷诺应力远远超过粘性切应力。四、紊流流速分布1. 粘性底层,紊流核心(圆管)的概念(图6-10)粘性底层(viscous sublayer):圆管作紊流运动时,靠近管壁处存在着一薄层,该层内流速梯度较大,粘性影响不可忽略,紊流附加切应力可以忽略,速度近似呈线性分布,这一薄层就称为粘性底层。紊流核心:粘性底层之外的液流统称为紊流核心。图6-10 2. 粘性底层a.粘性底层的流速分布由牛顿内摩擦定律(1-6)式:得(6-22)则式中:——剪切流速,或称摩阻流速。u* 结论:粘性底层中的流速随y 呈线性分布。 b.粘性底层厚度实验资料表明:当时, ,则粘性底层厚度为(6-23)式中:Re——管内流动雷诺数;——沿程阻力系数。说明:(1)粘性底层厚度很薄,一般只有十分之几毫米。(2)当管径d 相同时,随着液流的流动速度增大,雷诺数增大,粘性底层变薄。 c.圆管壁面水力特性根据粘性底层厚度δ1与管壁的粗糙度△的关系,在不同的Re流动状态下,任一圆管的壁面均可能呈现下列三种水力状态:水力光滑壁面(管)(hydraulic smooth wall):当管内流动雷诺数较小时,粘性底层厚度δ1较大,以至于粘性底层足以覆盖全部粗糙,管壁的粗糙度△对紊流结构基本上没有影响,水

大气湍流思考题

《大气湍流》思考题 2006年3月 一 请举2-3例说明大气中的湍流现象 二 请描述大气湍流的基本特征 三 给出大气湍流的表述 四 请指出大气湍流存在和维持的三种类型 五 大气湍流产生方式主要有哪几种?并说明其维持 六 请画图说明大气湍流能谱结构、分区及相应的湍涡尺度、大气湍流运动能量输送(传递)规律 七 请画图说明大气湍流能谱结构及分区,并说明大气湍流运动能量输送(传递)规律 八 请说明大气运动的流动形式及雷诺分解 九 请说明泰勒(冰冻)假设 十 以动量通量、感热通量和潜热通量为例,严格给出其定义表达式 十一 请说明下面大气湍流动能方程各项的物理意义 ()() Ⅵ ⅤⅣⅢⅡⅠ ''1'''''ε ρθθ-??-??-??-=??z p w z e w z u w u w g t e v v 十二 研究大气湍流经常使用的的假设(简化)条件是什么,并以下面的湍流动能方程说明大气湍 流动能方程各项对应的简化条件 ()() Ⅵ ⅤⅣⅢⅡⅠ ''1'''''ε ρθθ-??-??-??-=??z p w z e w z u w u w g t e v v 十三 应用哪些假设,如何大气湍流问题简化,并说明其理由(依据) 十四 低层大气的湍流动能方程为 ()() Ⅵ ⅤⅣⅢⅡⅠ ''1'''''ε θ-??-??-??-=??z p w z e w z u w u w g t e v v 请说明上式成立用了那些假设,及上式各项的物理意义; 上式用z u κ3 * 无量纲化后的表达形式写为: 。 十五 已知下面的TKE 方程: G F E D C B A ) (1)()(ε ρθθ-?''?-?'?-''+??''-=??+??z p w z e w w g z U w u x e U t e v j j 请回答: a 哪一项永远是损失项? b 哪一项既不产生也不破坏TKE ? c 哪一项既可能是产生项也可能是损失项? d 哪一项是因分子效应所致?

几种湍流模型知识整理

解决湍流的模型总计就是那几个方程,Fluent又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k-e模型 -带旋流修正k-e模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型 几个湍流模型的比较: 从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准k-e 模型比Spalart-Allmaras模型耗费更多的计算机资源。带旋流修正的k-e模型比标准k-e模型稍微多一点。由于控制方程中额外的功能和非线性,RNG k-e模型比标准k-e模型多消耗10~15%的CPU时间。就像k-e 模型,k-ω模型也是两个方程的模型,所以计算时间相同。 比较一下k-e模型和k-ω模型,RSM模型因为考虑了雷诺压力而需

要更多的CPU 时间。然而高效的程序大大的节约了CPU 时间。RSM 模型比k -e 模型和k -ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。 除了时间,湍流模型的选择也影响FLUENT 的计算。比如标准k -e 模型是专为轻微的扩散设计的,然而RNG k -e 模型是为高张力引起的湍流粘度降低而设计的。这就是RNG 模型的缺点。 同样的,RSM 模型需要比k -e 模型和k -ω模型更多的时间因为它要联合雷诺压力和层流。 概念: 1.雷诺平均:在雷诺平均中,在瞬态N-S 方程中要求的变量已经分解为时均常量和变量。 相似的,像压力和其它的标量 )22.10('-+=ΛΛΛi i i φφφ 这里φ表示一个标量如压力,动能,或粒子浓度。 2. Boussinesq 逼近从雷诺压力转化模型:利用Boussinesq 假设把雷诺压力和平均速度梯度联系起来: Boussinesq 假设使用在Spalart-Allmaras 模型、k -e 模型和k -ω模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras 模型中只有一个额外的方程要解。k -e 模型和k -

学习单元4 水头损失计算

学习单元四水头损失计算 【教学基本要求】 1.理解水流阻力和水头损失产生的原因及分类,掌握水力半径的概念。 2.了解均匀流水头损失的特点,掌握均匀流沿程水头损失计算的达西公式和沿程水头损失系数λ的表达形式。 3.理解雷诺实验现象和液体流动两种流态的特点,掌握层流与紊流的判别方法及雷诺数Re的物理含义,弄清楚判别明渠水流和管流临界雷诺数不同的原因。 4.理解圆管均匀层流的流速分布,掌握沿程水头损失的计算及沿程水头损失系数的确定。 5.了解紊流的成因和特征,了解紊流粘性底层和边界粗糙程度对水流运动的影响,理解紊流光滑区、粗糙区和过渡区的概念,了解紊流的流速分布规律。 6.理解尼古拉兹实验中沿程水头损失系数λ的变化规律,掌握紊流3个流区沿程水头损失系数λ的确定方法,能应用达西公式计算紊流的沿程水头损失。 7.了解当量粗糙度的概念,会运用Moody图查找λ的值。 8.掌握计算沿程水头损失的经验公式——谢才公式和曼宁公式,能正确选择糙率n。 9.理解局部水头损失产生的原因,能正确选择局部水头损失系数进行局部水头损失计算。 【学习重点】 1.了解液体运动两种流态的特点,掌握流态的判别方法和雷诺数Re的物理意义。 2.掌握沿程水头损失系数λ在层流和紊流三个流区内的变化规律,并能确定λ的值。 3.会应用达西公式计算沿程水头损失 4.掌握谢才公式及曼宁公式,并会确定糙率n。 5.掌握局部水头损失计算。 【内容提要和学习指导】 本章是水力学课程中的重点,也是难点。这一章中概念多、公式多,重要的雷诺实验、尼古拉兹实验成果与半经验理论和理论分析成果相互验证和借鉴,经验公式和系数多而且集中。学习本章应该紧紧围绕达西公式中的沿程水头损失系数λ,掌握λ的影响因素和在不同流态与紊流各流区中的变化规律,弄清相关的概念和液体运动特征。最终落实到会确定λ值,并计算不同流态和流区内的沿程水头损失。 4.1 水流阻力与水头损失 水流阻力和水头损失是两个不同而又相关联的重要概念,确定它们的性质、大小和变化规律在工程实践是有十分重要的意义。

大气吸收与湍流基础总结

一、激光大气衰减基础: 激光大气衰减包括大气气体分子对激光的吸收和散射、气溶胶粒子的吸收和散射,激光信号通过均匀大大气介质之后,其电磁辐射强度满足: 比尔-郎伯-布格定律: Iν,l=I0(ν)e?k(ν)l; ν:为波数,I(ν)为信号传输l距离之后的电磁辐射强度,k(ν)代表消光系数,I0(ν)为进入介质前的光辐射能量。 透过率函数: Tν,l=Iν =e?k(ν)l; I0ν 其中,τ=kl也被称作光学厚度,是一种无量纲的物理量;其中,k(ν)既包括了大气分子的吸收(k ma(ν))和散射(k ms(ν))系数,也包括了气溶胶的吸收(k aa(ν))和散射((k as(ν)))系数: kν=k maν+k msν+k aaν+k as(ν) 在实际的大气信道中,kν随着高度(z)的变化(假设大气具有分层均匀特性),即可以表示为k ν,z,当信号光以天顶角θ入射到大气介质中时,光学厚度可以表示为: z τ(ν,z)=sec?(θ)k(ν,z)dz 其中,其他的消光系数表如附图所示: 大气分子吸收效应的从测量: 二、大气光学湍流: 1、大气湍流模型的描述:均匀各向同性湍流、非均匀各向同性湍流 均匀各向同性湍流(是一种理想化的大气湍流模型,在复杂地形区和高空,对流层以上的区域,满足该理论条件的大气湍流区域有限,特别是近年来对大气湍流间歇性现象的发现,更证明了Kolmogorov模型应用的局限性。目前工程中常需要借助大量的实验观测数据对该模型进行修正。) 查理森级串模型: 湍流可以视作由气体流动形成的差别较大的涡旋,大涡旋不稳定,其从外界获取能量后,通过分裂等一系列复杂的运动将能量传递给次级涡旋,最后再最小的涡旋中通过气体黏性损耗。在一定的区域内,涡旋级串达到某种平衡状态,形成局部均匀各向同性

相关文档