文档库 最新最全的文档下载
当前位置:文档库 › 无线传感器网络数据融合技术研究 (1)

无线传感器网络数据融合技术研究 (1)

无线传感器网络数据融合技术研究 (1)
无线传感器网络数据融合技术研究 (1)

无线传感器网络综合了传感器,嵌入式计算,网络及通信,分布式信息处理等技术,其利用大量的微型传感计算节点通过自组织网络以协作方式进行实时监测,感知和采集各类环境或监测对象信息,成为连接物理世界、数字虚拟世界和人类社会的桥梁[1,2]。无线传感器网络在环境监测,资源监测,灾害污染监测,公共安全和国防,智能交通灯各个领域都有广泛的应用前景,也是国际上信息领域的研究热点和竞争的焦点。

在采集信息的过程中,融合多源节点数据以减少冗余的数据传输,并将融合后的数据发送到汇聚节点的过程,通过有效的数据融合技术可以节省能量消耗,获得更准确的信息,提高无线传感器网络数据收集的效率。本文从平面路由的数据融合、层次路由的数据融合和地理位置路由数据融合三个角度出发,对无线传感器网络中数据融合技术进行了详细的分析和比较。

1.无线传感网络数据融合

数据融合是一种多源信息的综合技术,通过对来自不同传感器的数据进行分析和综合,可以获得被测对象及其性质的最佳一致估计。将经过集成处理的多种传感器信息进行合成,形成对外部环境某一特征的一种表达方式。无线传感器网络中的大量传感器节点需要对信息进行联合处理,消除噪声与干扰,实现对观测目标连续跟踪和测量等一系列问题的处理方法,就是多传感器数据融合技术[3]。

多传感器数据融合研究的对象是各类传感器采集的信息,这些信息是以信号,波形,图像,数据,文字或声音等形式提供的。数据融合的基本目的是通过融合得到比单独的各个输入数据更多的信息,其主要包括:多传感器的目标探测、数据关联、跟踪与识别和情况评估和预测。这一点是协同作用的结果,即由于多传感器的共同作用,使系统的有效性得以增强。

2.数据融合算法分析

2.1需求

在传感器网络中,数据融合可以节省整个网络的能量、增强所收集数据的准确性以及提高收集数据的效率三个方面。

(1)节省能量

传感器网络是由大量的传感器节点覆盖到监测区域而组成的,监测区域的相互重叠导致信息冗余度增加,这样不仅消耗更多能量,汇聚节点并未获得更多的信息。数据融合可以对冗余数据进行网内处理,在满足应用需求的前提下将需要传输的数据量最小化。

(2)获得更准确的信息

由于传感器节点受到成本及体积的限制、无线通信易受到干扰和恶劣的工作环境影响,仅收集少数几个分散的传感器节点的数据较难确保信息的准确性,需要通过对监测同一对象的多个传感器所采集的数据进行融合,来有效地提高所获得信息的精度和可信度。

虽然可以在数据全部单独传送到汇聚节点后进行集中融合,但这种方法得到的结果不如网内融合的结果精确,数据融合需要数据源局部信息的参与,如数据产生的地点、产生数据的节点归属的组(或簇)等。相同地点的数据,如果属于不同的组可能代表完全不同的数据含义,正是局部信息的参与使得局部信息融合比集中数据融合有更多的优势。

(3)提高数据收集效率

在网内进行数据融合,可以在一定程度上提高网络收集数据的整体效率。数据融合减少了需要传输的数据量,可以减轻网络的传输拥塞,提高无线信道的利用率,并降低数据的传输延迟。

2.2数据融合技术

2.2.1应用层数据融合

无线传感器网络能够实现多任务请求,应用层应当提供方便和灵活的查询提交手段,为用户提供一个屏蔽底层操作的用户接口,数据形式有利于网内的计算处理,减少通信的数据量和减小能耗。

(1)TAG数据融合模式:TAG是一个简单的查询内部的数据融合模型,分为查询分发阶段和数据收集阶段。在查询分发阶段,使用一个直接连接到工作站或基站的传感器节点作为汇聚节点,汇聚节点把查询请求分发到整个网络中,并在分发查询请求的过程中建立起一棵用于传输数据的生成树。在数据收集阶段,每个节点将自己采集到的数据与从子节点中收集到的数据融合起来,将融合后的结果通过生成树发送给汇聚节点。

TAG系统的数据融合模式在不考虑节点失效或连接失效的情况下,可以获得很好的能量利用率和查询处理效率。但是只要生成树中的一个节点连接失效,整个子树产生的数据都将丢失,特别是当失效发生在离汇聚节点很近的地方的时候,对于数据的准确性、实时性以及系统的正常运行会造成更大的影响。

(2)TINA数据融合模式:利用传感器节点采集数据的时间一致性进行网内融合的机制。只有当前采集的数据与上一次采集的数据的差值大于某个用户指定的容忍限度时,节点才进行数据发送。TINA一种时间域上的数据融合,引入了数据时间一致性的概念。

TINA数据融合模式对监测数据波动较小的环境中十分有效,能够显著地减少网络中的数据传输量。然而,当监测数据波动较大时,TINA 的作用就会下降,TINA对于节点存储空间的要求比较高,转发节点需要保存大量的额外信息。

2.2.2网络层数据融合

这一节分别讨论了基于路由的数据融合和查询数据融合。

(1)基于路由的数据融合

无线传感器网络中的路由方式可以根据是否考虑数据融合分为两类:以地址为中心的路由和以数据为中心的路由,其中只有后者考虑数据融合[4]。

1)基于DD路由的融合:定向扩散(Directe dinfusion)路由中的数据融合包括路径建立阶段的任务融合和数据发送阶段的数据融合,定向扩散路由的数据融合采用的是“抑制副本”的方法,即对转发过的数据进行缓存,发现重复的数据将不予转发。这种方法不仅简单,与路由技术相结合还能够有效地减少网络中的数据量。

2)基于层次路由的融合:LEACH是基于层次的路由算法,其操作分成“轮”来进行,每一轮具有两个运行阶段:包括簇建立阶段和数据通讯阶段。在数据通信阶段,簇内节点把数据发给簇首,簇首进行数据融合并把结果发送给汇聚节点,LEACH协议的特点是分簇和数据融合,这种方式降低了节点发送功率,减少了不必要的链路,减少节点间干扰,达到保持网络内部能量消耗的均衡,延长网络寿命的目的[5]。

3)基于链的融合:PEGASIS是LEACH的改进,首先将网络中的所有节点连接成一条单链,然后随机选取一个节点作为首领,并向其他节点发出收集数据请求,数据从单链的两个端点向首领流动,中间节点在传递数据前要执行融合操作,首领节点将结果传送给汇聚节点。

4)基于安全模式的融合:ESPDA是一种基于分簇的路由协议算法,每个节点收集到数据后,并不是直接将数据包发送给簇头,而是将反映数据特征的模式编码发给簇头节点,簇头节点根据模式编码判断是否对该节点的数据感兴趣或该节点数据是否冗余。ESPDA既减少了簇内节点和簇头的通信量,也增加了无线传感器网络的安全性。因为模式编码是经过安全加密和压缩的,而且大小也小于数据包的大小。

基于路由的数据融合可以在一定程度上节约能耗,延长无线传感器网络的生命周期,但是它们都是针对单个查询请求所做的数据融合,并不是根据数据包的内容来决定是否融合。

(2)基于查询之间的数据融合

在无线传感器网络的应用中往往都是很多查询请求并发执行的,而这些查询之间往往又存在着数据的冗余,查询之间的数据融合对于节约整个无线传感器网络的功耗、延长生命周期都具有极为重要的作用。查询之间的数据融合包括两个阶段:查询请求分发阶段和数据收集阶段。在查询请求分发阶段,每个节点将感兴趣的查询请求放入缓冲区,并对查询请求进行分析,判断出哪些查询请求中包含冗余信息,从而决定对哪些查询请求进行融合。在数据收集阶段,

无线传感器网络数据融合技术研究

西安航空技术高等专科学校计算机工程系马新华

[摘要]针对无线传感器网络中各个节点单独传送数据到汇聚节点,浪费传感器节点的能量,并降低信息收集的效率,通过基于平

面路由的数据融合,基于层次路由的数据融合和基于地理位置路由三个方面对无线传感器网络数据融合协议进行了分析和比较。

[关键词]无线传感器网络数据融合融合算法

(下转第245页)

每个节点按照在查询请求分发阶段所做出的查询之间的融合策略进行数据包的融合。

2.3数据融合协议比较

对无线传感网络中的协议从不同的方面进行了分析比较,如表1-2所示。

表1数据融合方法、节能性比较

3.结论

无线传感器网络是以数据为中心的网络,采集感知区域内的数据并发送到汇聚节点进行处理。由于传感器节点通信、计算及能量资源有限,在采集和发送数据的过程中,如果每个节点单独传送数据到汇聚节点,不仅浪费通信带宽和能量,还会增加网络冲突,降低信息收集的效率。因此,运用数据融合技术,在节点上对数据进行预处理,消除冗余信息,同时将数据融合技术与路由协议结合,寻找合适的融合节点和跳数最少的路径,让尽可能少的节点参与路由,以达到节能的目的。目前,无线传感器网络数据融合技术的研究主要集中在融合算法、路由协议和数据表示三个方面。本文对当前具有代表性的WSN 数据融合协议进行

分析和综述,最后针对这些协议算法的优缺点进行了分析和比较。

表2数据融合有无损失,工作层,操作级别比较参考文献

[1]孙利民,李建中,陈渝等.无线传感器网络[M ].清华大学出版社,2005

[2]王殊,阎毓杰,胡富平,屈晓旭.无线传感器网络的理论及应用[M ].北京:北京航空航天大学出版社,2007[3]Huseyin Akcan,Herve Bronnimann.A new Deterministic data Ag-gregation Method For Wireless Sensor Networks [J ].Consumer Electronics,IEEE Transactions on May Volume,2007,5:1-25

[4]F.Elena,M.R ossi.In-network Aggregation Techniques for Wire-less Sensor Networks.Consumer Electronics,IEEE Transactions on Feb,2010,2(1):104-113

[5]沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J ].软件学报,2006,17(7):25-30

协议融合方法节能性SPIN 基于树较好DD 基于树一般SAR 基于树较好ACDA 分簇一般LEACH 分簇一般PEGASIS 基于树较好SDAP 基于树一般HEED

分簇

较好

协议有无损失融合

工作层融合操作级别

SPIN 有网络层数据级HREER 有网络层数据级SAR 有网络层特征级ACDA 有网络层数据级HEED 有网络层数据级PEDAP 无网络层

数据级AIDA

MAC 层与网络层之间

数据级

(上接第243页)线,主接线上应实时显示船闸配电相应断路器的位置状态、各电流电压

量等。

(2)运行操作人员能通过操作员工作站对船闸各液压启闭机进行控制和调节。

(3)运行操作人员能通过操作员工作站对闸坝配电房的主回路设备、供电状态进行监视等操作,系统能显示配电间的一次主接线及变压器高、低压侧断路器、柴油发电机断路器的位置。当运行设备出现故障时,监控室有报警音响信号。

(4)船闸监控室可接收、显示收费工作站的收费信息、来往船只信息等。

4.1.3记录、报告、统计制表(1)所有监控对象的操作、报警事件及实时参数等都予以记录,对故障信号进行事件顺序记录;运行管理人员可通过操作员工作站方便地进行人机对话,按航次自动登录各闸室人字门、输水阀门的运行情况,启、闭时间以及上、下游和各闸室的水位、开度等信息,按要求形成统计报表;

(2)将所有的操作自动按其操作顺序记录下来,包括操作对象、操作指令、操作开始时间、执行过程、执行结果及操作完成的时间、操作员的姓名等;自动将各种报警事件按时间顺序记录其发生的时间、内容和项目,生成报警事件汇总表;记录故障发生前后一段时间里重要实时参数的变化情况;并自动记录与故障量相关的参数;记录重要监视量的运行变化趋势,并进行趋势分析;

(3)船闸过船运行情况记录:由运行管理人员将船队基本情况如船名、船队尺寸、吨位、时间等输入计算机内,形成各种统计报表,表格格式应可由用户方便地重新进行设置;

4.1.4通信控制:能可靠、实时地与各现地LCU 屏通信,向各现地LCU 屏发送指令,并接收现地LCU 屏上送回的各种信息;留有足够的备用通信接口,满足系统扩充需要。

4.2现地控制单元功能各现地控制单元(LCU )以Siemens S7_300系统可编程序控制器(PLC

)为基础,具有自诊断功能,即使监控管理层计算机发生故障,仍可通过LCU 的控制开关、按钮、信号灯、表计等设备对各地设备进行操作和监视。配电房LCU 通过PLC 的100M 以太网模件以光纤网络方式实现与交换机的通讯。

各现地控制单元的监控对象分别为相应的人字门、廊道工作门和配电房设备。主要功能如下:

4.2.1数据采集与处理(1

)船闸闸首LCU 屏通过开度传感器对左、右人字门、廊道工作门的开度及其偏差值进行监控;对各人字门上、下游侧水位及水位差进行实时检测;对液压系统的压力、油位等重要信号量进行监视;对油泵运行状态的监视;能将采集的数据量和过程控制状态量、电气保护报警量、机械保护报警量在闸首LCU 屏上显示和报警并根据需要上送监控室操作员工作站;

(2)配电房LCU 屏能采集变压器及柴油发电机的断路器位置信号;(3

)故障情况下能自动采集故障发生时刻的有关数据,并按其发生的顺序记录故障的性质和发生的时间。

4.2.2运行显示、控制、调节和操作(1

)船闸闸首LCU 屏能通过按钮、开关、信号指示灯等对现场各电气量和非电气量进行控制、监视、调节;

(2)闸门闸首LCU 屏至少完成下列控制和调节工作:廊道工作门、人字门及液压系统的程序控制功能;廊道工作门、人字门及液压系统的单项控制功能;廊道工作门、人字门、油泵的手动控制;完善、可靠的信号、控制闭锁功能;各控制参数能方便地进行修正、自适应功能;完善、可靠的闭环控制功能;

(3)人字门上、下游侧没有平压,则人字门不能开启,超时有报警指示,并根据需要将信息上送操作员工作站。各船闸闸首LCU 屏之间有可靠的闭锁关系,除可采用通信接口联系以外,还有硬接线逻辑进行闭锁;

(4)船闸闸首LCU 屏设置紧急停机按钮,以实现紧急停机。4.2.3通信功能

现地控制单元与操作员工作站之间采用以太网方式传递命令与信息,根据操作员工作站的命令随时上送要求的信息;故障情况下,及时向操作员工作站发送故障信息;具有与便携式电脑的接口。

4.2.4自诊断功能(1)现地控制单元能诊断出下列硬件故障:CPU 模件故障;I/O 控制模件故障;接口模件故障;通讯控制模件故障;电源故障;被控对象元、器件的故障。

(2)当诊断出故障点时能自动闭锁控制出口,并将故障信息上送操作员工作站;同时,现地控制单元上有显示和报警。

5.结束语

该型计算机监控系统方案已被国内多个船闸系统所采用。从系统日常运行情况来看,该系统运行稳定,能准确、实时地反映船闸系统设备的运行状态和参数,能准确、可靠地控制现场设备;各项性能满足船闸自动化系统的要求,且该系统维护简便,同时也为船闸的运行、维护减少了工作量及生产成本。

参考文献

[1]NAR I 潮州船闸监控系统操作维护手册.2006[2]方辉钦.现代水电厂计算机监控技术与试验.中国电力出版社,2004

多传感器信息融合技术论文

多传感器信息融合技术论文多传感器信息融合技 术论文阐述了多传感器信息融合的定义、原理、分类和结构,分析了多传感器信息融合的特点及其研究方向多传感器信息融合技术论文【1】关键词:多传感器信息融合研究方向 1 、多传感器信息融合的定义多传感器信息融合也称为信息融合或数据融合,指的是对不同知识源和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补,降低不确定性,以形成对系统环境相对完整一致的理解,从而提高智能系统决策和规划的科学性、反应的快速性和正确性,进而降低决策风险的过程。 由其定义可见,多传感器信息融合避免了单一传感器的局限性,可以获取更多信息,得出更为准确、可靠的结论。 2 、多传感器信息融合的原理多传感器信息融合是人类和其他生物系统中普遍存在的一种基本功能。如果把单传感器信号处理或低层次的数据处理方式看作是对人脑信息处理的一种低水平模仿,那么多传感器信息融合就是对人脑信息处理的一种高水平模仿。 多传感器信息融合的基本原理就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在时间或空间上的冗余或互补信息依据某种准 则来进行组合,以获得被测对象的一致性解释或描述[1] 。 3 、多传感器信息融合的分类 信息的数据融合是对多源数据进行多级处理,每一级处理都代表了

对原始数据的不同程度的抽象化,它包括对数据的检测、关联、估计和组合等处理。信息融合按其在传感器信息处理层次中的抽象程度,可以分为三个层次:像素层融合、特征层融合及决策层融合[2] 。 3.1 像素层融合它是最低层次的融合,是在采集到的传感器的原始信息层次上(未经处理或只做很少的处理)进行融合,在各种传感器的原始测报信息未经预处理之前就进行信息的综合和分析。其优点是保持了尽可能多的战场信息; 其缺点是处理的信息量大,所需时间长,实时性差。 3.2 特征层融合属于融合的中间层次,兼顾了数据层和决策层的优点。它利用从传感器的原始信息中提取的特征信息进行综合分析和处理。也就是说,每种传感器提供从观测数据中提取的有代表性的特征,这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。这种方法对通信带宽的要求较低,但由于数据的丢失使其准确性有所下降。 3.3 决策层融合指在每个传感器对目标做出识别后,将多个传感器的识别结果进行融合。这一层融合是在高层次上进行的,融合的结果为指挥控制决策提供依据。 决策层融合的优点是:具有很高的灵活性,系统对信息传输带宽要求较低; 能有效地融合反映环境或目标各个侧面的不同类型信息,具有很强的容错性;通信容量小,抗干扰能力强; 对传感器的依赖性小,传感器可以是异质的; 融合中心处理代价低。 4 、多传感器信息融合的融合结构多传感器信息融合通常是在一个

基于多传感器数据融合的火灾预警系统

基于多传感器数据融合的火灾预警系统 赵 英,陈淑娟 (北京化工大学,北京 100029) 摘 要:为避免火灾造成的严重损失,实现火灾早期报警,本系统通过对火灾发生过程和产物的研究比较,采用多种传感器对火灾发生初期火灾特征较明显的几个参数进行监测,并实时反馈回采集的数据。系统利用D S 证据理论对多传感器数据进行融合分析,实现对同一目标的判断;本系统通过利用D S 证据理论对多传感器数据融合的方法,不仅弥补了采用单一传感器的不足,而且很大程度上降低系统判断结果的不确定性,提高了系统预警的准确性和可靠性。 关键词:D S 证据理论;多传感器;数据融合;火灾预警 中图分类号:T N919 34;T P212.9 文献标识码:A 文章编号:1004 373X(2010)24 0173 03 Fire Early Alarm System Based on Mu lti sensor Data Fusion ZH A O Y ing,CH EN Shu juan (Beijing U niversity of Chem i cal Technolog y,Beiji ng 100029,China) Abstract :Fire early alarm system is used to prev ent damages caused by fire.T he system uses many kinds o f a ppro pr iate sensor s t o monito r several par ameters which have the o bv ious fire characterist ic accor ding to the research o n fire process,and to feedback the data r eal timely.T he sy stem realizes the multi sensor data fusion using the D S evidence theo ry to determine the tar get.T he method no t only makes up insufficiency of sing le senso r,but also reduces the uncertainty of judg ment result and enhances the accur acy and r eliability of the fir e ea rly ala rm system. Keywords :Dempster Shafter evidence theor y;multi senso r;data fusio n;fir e ear ly alar m 收稿日期:2010 07 17 火灾探测是关系人民生命财产安全的重大课题。随着火灾探测技术的不断发展,人们对火灾的认识也越来越深入,不断涌现出新的探测手段。然而现有的大多数火灾探测器只能在火灾发生到难以控制的形势下才发出报警信号[1] 。而那些由于长期运行导致设备过载、过热、短路产生火灾的场所,如计算机机房、精密仪器实验中心、网络数据中心等,需要对火灾进行严格控制,确保在火灾发生初期就能及时发现火情并进行扑灭,否则造成的损失燃烧物都很少,因此如何能在火灾处于萌芽状态时,准确实现火灾早期探测,避免严重损失是目前亟待解决的一个重大问题。火灾的早期探测难题主要集中在探测对象难以选择、探测方法单一及准确预警概率低[2] 。本系统针对这些问题,在对火灾发生的过程和产物作了详细了解以后,选择适当的传感器对具有明显火灾特征的几个参数进行监测,再利用D S 证据理论对所有监测数据进行融合处理得到更为准确的判定结果。 1 火灾探测对象的选定 在火灾探测过程中,可以利用的火灾信息很多[3 4]:(1)固态高温产物:来源于可燃物中的杂质,以及高温状态下可燃物热裂解所形成的物质。 (2)燃烧音:燃烧过程中产生的高温,加热周围空气,使之膨胀,产生一种频率仅在数赫兹左右的压力声波,即是燃烧音。 (3)火焰光谱:主要由炽热微粒的光谱辐射和燃烧 气体的特征辐射所构成。 (4)气态燃烧产物:气态燃烧产物的主要成分为H 2O 、CO 、CO 2、H 2和O 2,由于环境中湿度的影响,通常不把H 2O 作为火灾探测参数。 由于前三点火灾信息都是在火灾已经发生很严重的情况下才产生的,且以火焰光谱进行火灾探测,虽然可以有效避免环境中大部分干扰因素的影响,但为了进一步消除相关干扰因素的影响,还需要利用火焰的闪烁特征。然而,CO 和CO 2在空气中的含量较低,正常大气环境中CO 含量在10ppm 以下,CO 2含量大约为360ppm 。从表1中可以看到,绝大多数试验火的CO 含量均在20ppm 以上。根据火灾特性,在火灾初期阴燃时,CO 含量更是达到最高。由图1[5]可知,各种不同材质在燃烧时,CO 2含量也在不断增加,且在初始成长期间,曲线斜率的变化范围是2.5~6.5ppm/s 。因此,将气体作为早期报警探测对象具有明显优势[3],针对以上2种气体进行监测,将会在很大程度上反映出环境中有无燃烧现象的产生。本系统将CO 的浓度、CO 2的浓度变化率、环境温度三者作为探测火灾的特征参量。 现代电子技术 2010年第24期总第335期 新型元器件

无线传感网络在军事领域的应用

传感网络结课报告 论文题目:无线传感器网络在军事领域的应用分析学院:光电信息与计算机工程学院 专业:光电信息工程 班级:光电三班 学号: 学生姓名: 指导教师: 年月日

摘要 ........................................................................................................................................................ I I 第一章绪论 . (1) 1.1背景及国际形势 (1) 1.2无线传感器网络的发展现状 (1) 1.3本文的组织结构 (2) 第二章无线传感器网络简介 (3) 2.1体系结构 (3) 2.1.1 节点组成 (3) 2.1.2 网络体系结构 (3) 2.2路由协议 (4) 2.2.1平面路由协议 (4) 2.2.2层次路由协议 (6) 第三章特点及应用优势 (7) 3.1无线传感器网络特点 (7) 3.1.1无线传感器网络的主要特点 (7) 3.1.2与其他网络相比主要区别 (7) 3.2应用优势 (8) 3.2.1潜在优势 (8) 3.2.2与导弹雷达相比潜在优势 (8) 第四章在军事领域的应用 (9) 4.1战场侦察与监视 (9) 4.2战场态势感知 (10) 4.3核、生、化监测 (10) 4.4装备、弹药、后勤物资管理 (10) 4.5智能尘埃 (10) 第五章结束语 (12) 第六章调研照片 (12) 第七章参考文献 (13)

无线传感器网络在军事领域的应用 摘要 无线传感器网络是新兴网络,它采用无线通信技术,由微小的传感器组成,无线传感器网络节点具备感应能力、信息处理能力和无线通信能力,使无线传感器网络有广阔的应用前景,可广泛用于军事、环境、医疗保健、空间探索及各种商业应用。文中对无线传感网络的构建,路由协议以及定位算法做了简介,着重讲了它在军事领域的重要地位,以及当下的主要应用研究方向。 关键词:WSN,体系结构,军事应用 Abstract Wireless Sensor Network is a burgeoning network,which is composed of tiny sensors with wireless communication technology. Node of WSN have influence, information handing and wireless communication abilities, making WSN have wide application foreground, including military,environment, medical treatment, space imploring and various business applications. In this paper, i first provide a brief introduction to the construction of WSN, routing protocol and the Relocation Arithmetic, and then focus on its important position in the military field, main application and research direction now. Keyword: WSN, Construction, Application in the military field.

多传感器数据融合

多传感器数据融合 多传感器数据融合1引言数据融合一词最早出现在20世纪70年代末期。几十年来,随着传感器技术的迅速发展,尤其在军事指挥系统中对提高综合作战能力的迫切要求,使其得到了长足的发展。其早期主要是应用在军事上,而随着工业系统的复杂化和智能化,近年来该技术推广到了民用领域,如医疗诊断、空中交通管制、工业自动控制及机械故障诊断等。数据融合是针对一个系统中使用多个传感器这一问题而展开的一种信息处理的新的研究方向,所以数据融合也称为传感器融合。数据融合一直没有一个统一的定义,一般认为:利用计算机技术,对按时间顺序获得的若干传感器的观测信息,在一定的准则下加以自动分析、综合,从而完成所需要的决策和估计任务而进行的信息处理过程称为数据融合。2

数据融合技术的分类多传感器数据融合涉及到多方面的理论和技术如信号处理、估计理论、不确定性理论、模式识别最优化技术、神经网络和人工智能等。很多学者从不同角度出发提出了多种数据融合技术方案。从技术原理角度,可分为假设检验型数据融合、滤波跟踪型数据融合、聚类分析型数据融合、模式识别型数据融合、人工智能型数据融合等;按判决方式分有硬判决型和软判决型数据融合;按传感器的类型分有同类传感器数据融合和异类传感器数据融合按对数据的处理方式,可分为象素级融合、特征级融合和决策级融合;从方法来分有Bayes推理法、表决法、D-S 推理法、神经网络融合法等。从解决信息融合问题的指导思想或哲学观点加以划分,可分为嵌入约束观点、证据组合观点和人工神经网络观点三大类。3常用的数据融合方法数据融合方法种类繁多,图1归纳了常用的一些信息融合方法。估计方法

无线传感网络(习题)

无线传感网络习题、选择题:(20 题) 1.下列不属于传感器网络三个基本要素的是 A、用户 C、感知对象B使用者 D、传感器 2.传感器网络的基本功能是 A、主动式感知C、数据处理 B、数据删减 D、隐藏感知信息 3.扩频技术按照工作方式的不同,可以分为几种: A、3 种 B、5 种 C、4 种 D、2 种 4.下列阶段不属于定向扩散路由机制的是 A、兴趣扩展阶段C、梯度建立阶段 B、路径选择阶段D、路径加强阶段 5.无线通信物理层的主要技术不包括 A、介质选择C、扩频技术 B、幅度选择D、调制技术 6.IEE 802.115.4的标准包 括A、运输层B、物理层 C、介质访问控制层 D、应用层 7.下列不属于无线传感网络的关键技术的是 A、网络拓扑控制C、时间同步 B、网络协议D、物理层技术 8.无线传感网络后台管理软件结构与组成不包括下列哪个选项 A、数据库管理系统 B、数据处理引擎 C、图形用户界面 D、后台组件 9.下列不属于数据融合的内容是 A、多传感器的目标探测C、跟踪与识别 B、数据连接 D、情况评估和预测 10.无线传感网络的节点基本功能不包括 A、数据采集 B、数据处理 C、储存数据 D、通信

14. 802.11网络的基本元素SSID 表示了一个无线服务,这个服务不包括 A 、接入速率 B 、输出速率 C 、工作信道 C 、认证加密方法 15. 传感器是将外界的信号转化为电信号的装置,传感器一般是由敏感元件、转 换元件和 A 、输出元件 C 、传唤信号元件 16. 传感器节点的组成不包括 A 、传感器模块 C 、无线通信模块 17. 下列不属于物联网关键技术的是 A 、RFID 无线识别 C 、纳米技术 18.SPIN 协议中使用了三种类型的消息,不包括下列 A 、ADV 消息 B 、REQ 消息 C 、APA 消息 D 、DAT E 消肖息 19. 定向扩散协议的优点不包括下列 A 、 采用多路径,健壮性好; B 、 节点只需要和邻居节点通信,因而不需要全局的地址机制,实用查询时 按需建立路由避免存储全网信息; C 、 每个节点都需要数据融合,减少操作; D 、 通过数据命名减少数据的重叠。 20. 无线传感器网络的可靠传输基本机制不包括 A 、丢包恢复机制 B 、冗余传输机制 C 、速率控制机制 D 、发送确认机制 11.无线传感器网络不可以选择的频率有 A 、2.4GHz C 、1.25GHz 12.传感器网络的电源节能方法有 A 、休眠技术机制 C 、数据单个传递 13.传感器网络的安全问题不包括 A 、机密性问题 C 、安全性鉴别问题 B 、 5GHz D 、 800MHz B 、拒接收数据 D 、轮流接收机制 B 、点到点的消息认证问题 D 、完整性鉴别问题 B 、加密原件 D 、转换电路 B 、数据融合模块 D 、能量供应模块 B 、嵌入式系统技术 D 、时间同步技术

传感器数据融合(20200630195849)

传感器数据融合技术 数据融合也称为信息融合,是将来自多个传感器或多源的信息进行综合处理,从而得出更为全面、准确和可靠的结论。数据融合出现于2 0世纪7 0年代,源于当时军事领域的需要,称为多源相关、多传感器混合数据融合,并于20世纪80年代建立其技术。美国是数据融合技术起步最早的国家,在随后的十几年时间里各国的研究开始逐步展开,并相继取得了一些具有重要影响的研究成果。和国外相比, 我国在数据融合领域的研究起步较晚。海湾战争结束以后,数据融合技术引起国内有关单位和专家的咼度重视。一些咼校和科研院所相继对数据融合的理论、系统框架和融合算法展开了大量研究,但基本上处于理论研究的层次,在工程化、实用化方面尚未取得有成效的突破,许多关键技术问题尚待解决。 多传感器数据融合是人类和其他生物系统中普遍存在的一种基本功能。人类本能地具有将身体上的各种功能器官所探测到的信息与先验知识进行融合的能力,以便对周围的环境和正在发生的事件作出估计。多传感器数据融合的基本原理就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对这些传感器及其获得信息的合理支配和使用,把其在时间或空间上的冗余或互补信息依据某种准则来进行综合,以获得被测对象的一致性解释或描述,使该系统由此而获得比它的各组成部分的子集所构成的系统具备更优越的性能。 具体而言,多传感器数据融合基本原理如下: 1)多个不同类型的传感器获取目标的数据; 2)对输出数据进行特征提取,从而获得特征矢量; 3)对特征矢量进行模式识别,完成各传感器关于目标的属性说明; 4)将各传感器关于目标的属性说明数据按同一目标进行分组,即关联; 5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。 在各种系统中,靠单一的传感器不能满足对目标、环境的识别和控制的要求。若对不同传感器采集的数据单独、孤立地进行加工,不仅会导致数据处理工作量的剧增,而且割断了各传感器数据之间的有机联系,丢失数据有机组合蕴涵的特征,造成数据资源的浪费。因此,要对多传感器的数据进行

信息融合技术

信息融合技术 1引言 融合(Fusion)的概念开始出现于70年代初期,当时称之为多源相关、多源合成、多传感器混合或数据融合(Data Fusion),现在多称之为信息融合(Information Fusion)或数据融合。 融合就是指采集并集成各种信息源、多媒体与多格式信息,从而生成完整、准确、及时与有效的综合信息过程。数据融合技术结合多传感器的数据与辅助数据库的相关信息以 获得比单个传感器更精确、更明确的推理结果。经过融合的多传感器信息具有以下特征:信息的冗余性、互补性、协同性、实时性以及低成本性。 多传感器信息融合与经典信号处理方法之间存在本质 的区别,其关键在于信息融合所处理的多传感器信息具有更 为复杂的形式,而且可以在不同的信息层次上出现。 2信息融合的结构模型 由于信息融合研究内容的广泛性与多样性,目前还没有 统一的关于融合过程的分类。 2、1按照信息表征层次的分类系统的信息融合相对于信息表征的层次相应分为三类:数据层融合、特征层融合与决策层融合。 数据层融合通常用于多源图像复合、图像分折与理解等方面,采用经典的检测与估计方法。特征层融合可划分为两大

类:一类就是目标状态信息融合,目标跟踪领域的大体方法都可以修改为多传感器目标跟踪方法;另一类就是目标特性融合,它实质上就是模式识别问题,具体的融合方法仍就是模式识别的相应技术。 决策层融合就是指不同类型的传感器观测同一个目标,每个传感器在本地完成处理,其中包括顶处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。然后通过关联处理、决策层触合判决,最终获得联合推断结果。 2、2JDL模型(Joint Directors of Laboratories, JDL)与λ-JDL模型该模型将融合过程分为四个阶段:信源处理,第一层处理(即目标提取)、第二层处理(即态势提取)、第三层提取(即威胁提取)与第四层提取(即过程提取)。模型中的每一个模块都可以有层次地进一步分割,并且可以采用不同的方法来实现它们。 λ-JDL模型为JDL模型的简化,把0层包含进了1层, 4层融入其她各层中。 2、3按照数据流融合的位置进行分类多传感器融合系统中的一个关键问题就是在何处对数据流进行融合。按照融合位置的不同可以将融合结构分为以下三种类型:集中式融合、分布式多传感器融合与无中心融合结构。对于特定的信息融合应用不可能找到一种最优的融合结构,结构的选择必须综合考虑计算资源、可用的通信带宽、精度要求、传感器能力

无线传感网络选择题

1.无线传感器网络的组成模块分为:通信模块、()、计算模块、存储模 块和电源模块。A A.传感模块B。ARM模块C网络模块D实验模块 2..在开阔空间无线信号的发散形状成()。A A.球状B网络C直线D射线 3.当前传感器网络应用最广的两种通信协议是() . d A .IEEE802.15 B .IEEE802.16 C .IEEE802.10 D .IEEE802.14 4.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支持三种拓扑 结构,下列哪种不是。D A.星型结构、B网状结构C簇树型结构D树形结构 5.下面不是传感器网络的支撑技术的技术。B A.定位技术B节能管理C时间同步D数据融合 6.下面不是无线传感器网络的路由协议具有的特点?D A.能量优先 B.基于局部拓扑信息C.以数据为中心D预算相关 7.下面不是限制传感器网络有的条件?C

A电源能量有限B通信能力受限C环境受限D计算和存储能力受限 8.()技术是一种面向自动化和无线控制的低速率、低功耗、低价格的无线网 络方案。C A.WAN B. Ad hoc C.Ziggbee D. TinyOS 9.网络连接度是所有节点的邻居数目的(),它反映了传感器配置的密集程度。A A.平均值 B.最大值 C.最小值 10.传感器一般由()、转换原件和基本转换电路组成。A A.敏感原件 B.红外原件 C.单片机DARM模块 11.传感器节点通信模块的工作模式有()、接收和空闲。A A.发送B. 启动C.认证D.互联 12.传感器节点的能耗主要集中在()模块。C A.连接B.电池C通信D.传感 13.主动反击能力是指网络安全系统能够主动地限制甚至消灭入侵者,下面不是 具备的能力D A.入侵检测能力 B.隔离入侵者能力 C.消灭入侵者能力D.恢复能力

多传感器数据融合技术

多传感器数据融合技术 摘要:介绍多传感器数据融合技术的历史与研究现状,给出多传感器数据融合实现方法,最后给出应用和多传感器数据融合的不足与研究展望。 1 引言 多传感器数据融合是信息领域一个前景广阔的研究方向,世界各国都有学者和技术人员在开展数据融合技术的研究,我国对数据融合方面的研究也日益重视,国家自然科学基金和“863”计划已将其列入重点支持项目,因此,对多传感器数据融合进行学术与工程应用的研究具有重要意义[1]。 多传感器数据融合技术是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。多传感器数据融合技术从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,它也为智能信息处理技术的研究提供了新的观念。数据融合作为一门跨学科的综合信息处理理论,涉及系统论、信息论、控制论、人工智能和计算机通信等众多的领域和学科[2]。 本文介绍数据融合技术发展历史与研究现状,描述数据融合技术的几种典型实现方法,给出数据融合技术的主要应,最后对数据融合技术研究中存在的问题和发展前景进行了论述。 2 多传感器数据融合技术概述 2.1 数据融合的定义 数据融合也称为信息融合,它的定义有很多。Mango lini将数据融合定义为:一套利用具有不同性质的各种源数据的方法、工具、方式,目的是提高所需信息的质量,此定义着重于融合的方法。Hall 和Llinas的定义是“数据融合技术是将来自多传感器和相关数据库的有关信息进行综合,以得到精度上的改善和更加具体的推断,而这些也可以通过单个传感器来得到”。这种定义虽然提到了数据信息的质量,但是仍注重于方法。美国国防部定义为“数据融合是一个多级、多方面的过程,这个过程处理自动识别、连结、相关、估计以综合多源数据和信息.。”这一定义简单地说就是“处理自动识别、连结、相关、估计

无线传感器网络作业

无线传感器作业 :传感器网络节点使用的限制因素有哪些? 1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。 2.通信能力有限 3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些 限制必然导致其携带的处理器能力比较弱,存储器容量比较小。 :网络传感器有哪些特点? 1.自组织性 2.数据为中心 3.应用相关性 4.动态性 5.网络规模 6.可靠性 :按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点? 答: 1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c 网络结构的形成。由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。 2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提 高网络覆盖率和可靠性。 3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。 4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少 可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。 :传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。 :WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么? 媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。 误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。 :传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么? Event-to-sink 由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。 Sink-to-Sensors

无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、 Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

无线传感器网络数据融合关键技术研究

无线传感器网络数据融合关键技术研究 摘要:路由协议与数据融合技术已成为无线传感器网络(WSN)的一个重要研究方面。本文按照面向应用和面向层次两个分类进行了介绍,并通过联系以数据为中心的路由协议以及相关的数据融合算法,简要分析了其在节省功耗,优化网络性能方面所采取的有效措施。通过仿真实验,推断出以数据为中心的路由协议对网络内数据融合的帮助意义。 关键词:无线传感器网络;路由协议;数据融合;NS2 1 引言 无线传感器网络(wireless sensor network,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者[1]。 路由协议和数据融合已成为无线传感器网络的关键技术。本文首先对现有的几种路由协议和数据融合算法进行介绍,然后通过仿真来验证以数据为中心的路由协议在性能上的优势,以及对数据融合的促进意义。 2 无线传感器网络路由协议 路由协议负责将数据分组从源节点通过网络转发到目的节点,它主要包括两个方面的功能:寻找源节点和目的节点间的优化路径,将数据分组沿着优化路径正确转发。 2.2面向应用的路由协议 面向应用的路由协议是众多路由协议中较为常见的一种。所谓面向应用,即是与应用模式紧密相连的路由协议。从具体应用角度出发,根据不同应用对传感器网络各种特性的敏感性不同,将路由协议分为四种类型[2]:1)能量感知路由协议;

2)基于查询的路由协议; 3)地理位置路由协议; 4)可靠的路由协议。 能量路由是最早提出的传感器网络路由机制之一,它根据节点的可用能量(power available,PA)或传输路径上的能量需求,选择数据的转发路径。节点可用能量就是节点当前的剩余能量。 基于查询的路由协议包括定向扩散路由和谣传路由。定向扩散是专门为传感器网络设计的路由策略,是以数据为中心的典型路由协议代表,与己有的路由算法有着截然不同的实现机制。谣传路由引入了查询消息的单波随机转发的机制,克服了使用洪泛方式建立转发路径带来的开销过大的问题。 地理位置路由包括GEAR路由和GEM路由。GEAR(geographical and energy aware routing)路由假设已知事件区域的位置信息,每个节点知道自己的位置信息和剩余能量信息,并且通过一个简单的Hello消息交换机制了解所有邻居节点的位置信息和剩余能量信息。GEM(graph embedding)路由是一种适合于数据中心存储方式的地理路由。其基本思想是建立一个虚拟极坐标系统(virtual polar coordinate system ,VPCS),用来表示实际的网络拓扑结构。网络中的节点形成一个以汇聚节点为根的带环树(ringed tree),每个节点用到树根的跳数距离和角度范围来表示,节点间的数据路由通过这个带环树实现。 2.3面向层次的路由协议 针对无线传感器网络中节点所处的地位,以及网络的拓扑结构,还可以将无线传感器网络的路由协议分为平面结构和分层结构。 平面路由协议包括定向扩散路由协议、谣传路由协议、SPIN路由协议(基于能量感知的路由协议)、HREEMR路由协议(基于多路径的路由协议)、SPEED 路由协议、GEM路由协议、边界定位路由协议、有序分配路由协议等。前面介绍的四类面向应用的路由协议大都属于平面的路由协议。 分层路由协议包括:LEACH路由协议、TEEN路由协议、GAF路由协议、GEAR 路由协议、SPAN路由协议、SOP路由协议、MECN协议、EARSN路由协议等。这里,我们重点介绍两个相似的路由协议:LEACH和TEEN协议。

无线传感器网络练习题(1)

一、填空 1.无线传感器网络系统通常包含汇聚节点、传感器节点、管理节点。 2.传感器节点一般由通信模块、传感器模块、存储模块和电源模块 组成。 3.无线传感器节点的基本功能是:采集数据、数据处理、控制和通 信。 4.传感器节点通信模块的工作模式有发送、接收和空闲。 5.无线通信物理层的主要技术包括介质的选择、频段的选择、调制 技术和扩频技术。 6.扩频技术按照工作方式的不同,可以分为四种:直接序列扩频、 跳频、跳时和宽带线性调频扩频。 7.目前无线传感器网络采用的主要传输介质包括无线电波、光纤、 红外线等。 8.无线传感器网络可以选择的频段有:868MHz、915MHz、2.4GHz和 5GHz。 9.传感器网络的电源节能方法:休眠机制、数据融合。 10.根据对传感器数据的操作级别,可将数据融合技术分为一下三类: 决策级融合、特征级融合、数据级融合。 11.根据融合前后数据的信息含量分类(无损失融合和有损失融合) 12.根据数据融合与应用层数据语义的关系分类(依赖于应用的数据 融合、独立于应用的数据融合、结合以上两种技术的数据融合)13.定向扩散路由机制可以分为三个阶段:兴趣扩散、梯度建立、路

径加强。 14.无线传感器网络的关键技术主要包括:时间同步机制、数据融合、 路由选择、定位技术、安全机制等。 15.无线传感器网络通信安全需求主要包括结点的安全保证、被动抵 御的入侵能力、主动反击入侵的能力。 16.802.11标准用于无线局域网,802.15.4标准用于低速无线个域网。 17.802.11规定三种帧间间隔:SIFS、PIFS、DIFS。 18.802.15.4标准为低速个域网制定了物理层和MAC子层协议。 19.ZigBee主要界定了网络、安全和应用框架层,通常它的网络层支 持三种拓扑结构:网状网络、树形网络、星型网络。 20.传感器网络中常用的测距方法有:接收信号强度指示、到达时间 差、到达角。 21.ZigBee网络分4层分别为:物理层、网络层、应用层、数据链路 层。 22.与传统网络的路由协议相比,无线传感器网络的路由协议具有以 下特点:能量优先、基于局部拓扑、以数据为中心、应用相关。 23.数据融合的内容主要包括:目标探测、数据关联、跟踪与识别、 情况评估与预测。 24.无线传感器网络信息安全需求主要包括数据的机密性、数据鉴别、 数据的完整性、数据的实效性。 25.传感器结点的限制条件是电源能量有限、通信能力有限、计算和 存储能力有限。

数据融合技术在无线传感器网络中的应用

硕士研究生读书报告 课程名称:信息融合理论与应用 题目:数据融合技术在无线传感器网络中的应用题目类型:读书报告 学院:计算机科学与工程学院 专业名称:计算机科学与技术 姓名:祝敏 学号: 2013200546 任课教师:周华平 授课时间:2014年4月29日~2014年6月24日 提交时间: 2014年6月 24 日

数据融合技术在无线传感器网络中的应用 摘要:在大规模的无线传感器网络中,传输数据量巨大,必然存在着数据传输可靠性、拥塞以及能耗等问题,高效的数据融合技术能够有效的解决这些问题。这篇读书报告结合分簇路由算法的特征,采用两层融合技术,首先簇内节点与簇首节点的融合,簇内节点根据阈值来判断是否需要发送数据,簇首节点根据接收到的数据,进行数据一致性检验,剔除异常数据,第二层采用BP神经网络算法对簇首节点与基站的融合,得到所需要的结果。实验表明,进行融合后的数据可靠性高,较大减少了数据的传输量与冗余度、降低了能量的消耗,从而提高了整个网络的性能。 1 引言 无线传感器网络是对真实世界的感知、检测和采集,需要由大量传感器节点共同协作完成的。但是,由于传感器节点采集的数据具有很高的时空相关性,不可避免的釆集到许多重复的数据,即数据存在很高的冗余性,如果都发送到汇聚节点的话,会造成大量的资源浪费,严重影响无线传感器网络的使用寿命,并且许多时候,观察者不关心每个节点的原始数据,只 关心釆集后的结果,显然,节点单独的传送数据是不合适的,因此需要在本地对数据进行融合操作,对节点传输数据进行处理,利用节点的计算与处理能力,我们可以去除掉冗余信息,进一步减少数据在网内的传输量,同时降低功耗,提高整个网络的性能。虽然数据融合会造成一定的延迟以及计算会浪费时间和能量,但都在允许的范围之内。 数据融合技术涉及到检测技术、模式识别、决策论、不确定性理论、估计理论、最优化理论等众多学科领域。目前关于无线传感器网络数据融合技术的发展情况,大体可以分为有损融合、无损融合、依赖于应用的数据融合,如应用层开发面向应用的数据融合接口,在网络层开发与路由相结合的数据融合技术。独立于应用的数据融合、基于分布式数据库的数据融合、基于中心的数据融合等。这篇读书报告主要针对在网络层与路由相结合的数据融合技术的研究,目前关于该方面比较典型的方法有LEACH分簇算法,使用分簇的方法使得数据融合技术在算法中起到了非常重要的作用。

多传感器数据融合算法汇总

一、背景介绍: 多传感器数据融合是一种信号处理、辨识方法,可以与神经网络、小波变换、kalman 滤波技术结合进一步得到研究需要的更纯净的有用信号。 多传感器数据融合涉及到多方面的理论和技术,如信号处理、估计理论、不确定性理论、最优化理论、模式识别、神经网络和人工智能等。多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。 多传感器信息融合技术通过对多个传感器获得的信息进行协调、组合、互补来克服单个传感器的不确定和局限性,并提高系统的有效性能,进而得出比单一传感器测量值更为精确的结果。数据融合就是将来自多个传感器或多源的信息在一定准则下加以自动分析、综合以完成所需的决策和估计任务而进行的信息处理过程。当系统中单个传感器不能提供足够的准确度和可靠性时就采用多传感器数据融合。数据融合技术扩展了时空覆盖范围,改善了系统的可靠性,对目标或事件的确认增加了可信度,减少了信息的模糊性,这是任何单个传感器做不到的。 实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。信号级融合方法最简单、最直观方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。卡尔曼滤波主要用于融合低层次实时动态多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。 多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。 数据融合存在的问题 (1)尚未建立统一的融合理论和有效广义融合模型及算法; (2)对数据融合的具体方法的研究尚处于初步阶段; (3)还没有很好解决融合系统中的容错性或鲁棒性问题; (4)关联的二义性是数据融合中的主要障碍; (5)数据融合系统的设计还存在许多实际问题。 二、算法介绍: 2.1多传感器数据自适应加权融合估计算法: 设有n 个传感器对某一对象进行测量,如图1 所示,对于不同的传感器都有各自不同的加权因子,我们的思想是在总均方误差最小这一最优条件下,根据各个传感器所得到的测量值以自适应的方式寻找各个传感器所对应的最优加权因子,使融合后的X值达到最优。

无线传感网络作业

无线传感器网络作业 2014年第一学期 第一章 1.2 什么是无线传感器网络? 答:传感器网络的标准定义是这样的:传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。 1.5 传感器网络的终端探测节点由哪些部分组成?这些组成模块的功能分别是什么? 答:由传感模块、计算模块、通信模块、存储模块、电源模块和嵌入式软件系统组成。这里传感模块负责探测目标的物理特征和现象,计算模块负责处理数据和系统管理,存贮模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发送和接收。另外,电源模块负责节点供电,节点由嵌入式软件系统支撑,运行网络的五层协议。 1.8 传感器网络的体系结构包括哪些部分?各部分的功能分别是什么? 答:无线传感器网络体系结构包括物理层、数据链路层、网络层、传输层和应用层和能量管理平台、移动管理平台和任务管理平台。这些管理平台使得传感器节点能够按照能源高效的方式协同工作,在节点移动的传感器网络中转发数据,并支持多任务和资源共享。 第二章 2.2 传感器由哪些部分组成?各部分的功能是什么? 答:传感器一般由敏感元件、转换元件和基本转换电路组成。敏感元件是传感器中能感受或响应被测量的部分。转换元件是将敏感元件感受或响应的被测量转换成适于传输或测量的信号(一般指电信号)部分。基本转换电路可以对获得的微弱电信号进行放大、运算调制等。另外,基本转换电路工作时必须有辅助电源。 2.7 传感器的一般特性包括哪些指标? 答:传感器的一般特性包括:灵敏度、响应特性、线性范围、稳定性、重复性、漂移、精度、分辨率(力)、迟滞。 2.8 什么是传感器的灵敏度?

相关文档
相关文档 最新文档