文档库 最新最全的文档下载
当前位置:文档库 › 光学自适应原则

光学自适应原则

光学自适应原则
光学自适应原则

图2-1 表面粗糙度干涉仪 光学自适应原则简述

摘要: 光学自适应原则在光学精密仪器的设计中是一个很重要的原则。该原则是广大光学系统设计者长久以来积累的经验,并且在理论上是基于非线性动力学与混沌理论。该原则提出了共光路这一思想,主要解决了光学系统中存在的大气扰动问题,并广泛运用于各类光学仪器中。本文简要介绍了光学自适应原则的内容和发展,并列举了应用该原理的一些实例。

关键词:自适应原则;共光路;自适应光学

The Description of Adaptive Optical

Abstract :Adaptive Principle, which is based on Nonlinear Dynamics and Chaos Theory, is an important principle in the optical instruments design. The principle, which is applied to many optical instruments, mainly solves atmospheric disturbance problems by idea of common path in optical system. This paper gives a brief introduction of content and development of Adaptive Principle, and lists some examples which apply this principle.

Key words: Adaptive Principle; Common path; Adaptive optical

1 引言

在光学精密仪器的设计中,设计人员经常需要注意几个原则,如阿贝原则、运动学原则、光学自适应原则等。其中,光学自适应原则是一项很重要的原则,它指的是“在拟定光学系统方案时,除了安排信号(包括扰动和噪声)的通道,还要设法实现对噪声和扰动的短时间预报,以得到理想的测量结果”。这是由于光学精密仪器在实际测量过程中,空气的微小扰动将会导致结果产生较大变化,因此需要在设计时遵循自适应原则。自适应原则在光学系统上通常有两种表现方式,一种是共光路光学系统,另一种则是共轭光学系统【1】。前者同时采集背景噪声和有效信号与噪声信号之和,由于两者共光路,可以认为大气扰动所造成的干扰是相同的,因而再对两者进行差分就可以去除噪声。后者则是利用了入射光与出射光相共轭,所以由起点经过一次光学系统后再回到起点后噪声均被抵消。在实际的光学精密仪器设计与应用中,自适应原则得到了广泛应用。

2 共光路原理与典型应用

最早体现共光路原理的是干涉仪系统,例如海定格干涉

仪、斐索干涉仪等。图2-1给出了一个测量表面粗糙度的干涉

仪装置。入射光经过半反半透镜BS 后,再经过由双折射晶体

制成的透镜L1。由于L1对于o 光和e 光的折射率不同,从而使

得焦距较短的光线聚集在被测面M 上,而焦距较长的则成为

参考光。之后两者经由BS 反射,通过偏振片P 后产生干涉,

最终由透镜L2聚焦到探测器D 上。这样一来信号光与参考光

同光路,即使在光路中大气产生了扰动,对于测量结果的影

响也会大大减小。

图2-2则是“双焦干涉表面微观轮廓检测仪”的工作原理图【2】。双焦透镜是由三片透镜胶合而成,中间一片是方解石负透镜,两边是二片光学玻璃的正透镜。它具有偏振分束的功能,该系统利用它将入射光分解形成两个正交偏振的光束,其中一束被准直,另一束聚焦于

图3-1 星体观测成像波面校正系统

图2-2 双焦干涉表面微观轮廓检测仪 被测表面,准直光束包围聚焦光束。之后两束光经过

被测表面反射后重新被双焦透镜重新汇合但偏振方向

正交。最后通过物镜将两路光束聚焦在光电探测器上,

送入示波器中观察。由于两束光线满足共路原则,因

而对外界扰动具有实时预报功能,具有一定的抗干扰

能力。 3 自适应光学技术

光学自适应原则也运用在天文望远镜的设计中,并且进一步衍生出了自适应光学技术。自适应光学技术的思想最早是1953年美国天文学家Babcock 在论文“论补偿天文Seeing 的可能性”中提出,之后逐渐发展成为一种以“光学波前为对象的自动控制系统,利用对光学波前的实时‘测量—控制—校正’,使光学系统具有自动适应外界条件变化,始终保持良好工作状态的能力”的技术【3】。图3-1是一个星体观测成像

波面校正系统的简要框图。目标星体发出的光通过大气

后被探测器接收。由于存在大气湍流等的影响,导致探

测器接收的星光存在波前畸变与整体倾斜,进而使得图

像的分辨率下降,即使增大光学系统分辨率或是探测器

分辨率也无法改善图像质量。因而在光学系统中加入了

波前倾斜传感器、波前畸变传感器、倾斜修正镜与可变

形镜来修正这两种波前误差。这是一种反馈校正方法,

在空气折射率无法避免的情况下能够有效提高成像质量。

另外,近年来自适应光学技术应用到眼科,成为国际上视觉科学和自适应光学技术研究的热点。众所周知人眼作为一个光学系统并不完美,除了由于晶状体聚焦能力以及弯曲能力下降而导致的近视、远视以及散光以外,还存在着高阶

像差。这些因素使得经过人眼所成图像的分辨力远没有

达到视网膜上视觉神经细胞自身所决定的分辨力大小。

中国科学院光电技术研究所依据自适应光学理论,研制

出了用于视网膜的高分辨率观测用自适应光学系统,并

获得了视网膜高分辨率图像【4】。其光学系统如图3-2所示。首先使用激光器在人眼眼底产生一个发光点,并由此发

光点经由瞳孔出射的光束来测量人眼的波前误差。经由波前复原与控制算法进行校正,在CCD 上得到最终的视网膜图像。

4 小结

光学自适应原则是前人经验教训的总结,从以上所举出的几个例子可以看出,如果在系统设计中应用好光学自适应原则,能够对系统的分辨率有很大的提升。其实,除了光学自适应原则以外,还有很多其他的在光学精密仪器设计中需要注意的原则,如阿贝原则、运动学原则、变形最小原则、测量链最短原则、基面统一原则等

【5】。在光学精密仪器的设计中,

这些原则都是需要我们遵守的。

图3-2 人眼高分辨率成像自适应光学

参考文献

[1]殷纯永,郭继华,毛文炜. 光学仪器设计中的光学自适应原则[J]. 仪器仪表学报,1995,01:62-66+71.

[2]卓永模,杨甬英,徐敏,王元庆. 双焦干涉球面微观轮廓仪[J]. 仪器仪表学报,1995,03:254-259.

[3]姜文汉. 自适应光学技术[J]. 自然杂志,2006,01:7-13.

[4]凌宁,张雨东,饶学军,李新阳,王成,胡弈云,姜文汉. 用于活体人眼视网膜观察的自适应光学成像系统[J]. 光学学报,2004,09:1153-1158.

[5]高明,刘缠牢等. 光电仪器设计[M]. 西安:西北工业大学出版社,2005:24-35

天大工程光学(上)期末考试试卷及答案

工程光学(上)期末考试参考答案 一. 简答题:(共12分,每题3分) 1.摄影物镜的三个重要参数是什么?它们分别决定系统的什么性质? 答:摄影物镜的三个重要参数是:焦距'f 、相对孔径'/f D 和视场角 2。焦距影响成像的大小,相对 孔径影响像面的照度和分辨率,视场角影响成像的范围。 2.为了保证测量精度,测量仪器一般采用什么光路?为什么? 答:为了保证测量精度,测量仪器一般采用物方远心光路。由于采用物方远心光路时,孔径光阑与物 镜的像方焦平面重合,无论物体处于物方什么位置,它们的主光线是重合的,即轴外点成像光束的中心是相同的。这样,虽然调焦不准,也不会产生测量误差。 3.显微物镜、望远物镜、照相物镜各应校正什么像差?为什么? 答:显微物镜和望远物镜应校正与孔径有关的像差,如:球差、正弦差等。照相物镜则应校正与孔径 和视场有关的所有像差。因为显微和望远系统是大孔径、小视场系统,而照相系统则是一个大孔径、大视场系统。 4.评价像质的方法主要有哪几种?各有什么优缺点? 答:评价像质的方法主要有瑞利(Reyleigh )判断法、中心点亮度法、分辨率法、点列图法和光学传递 函数(OTF )法等5种。瑞利判断便于实际应用,但它有不够严密之处,只适用于小像差光学系统;中心点亮度法概念明确,但计算复杂,它也只适用于小像差光学系统;分辨率法十分便于使用,但由于受到照明条件、观察者等各种因素的影响,结果不够客观,而且它只适用于大像差系统;点列图法需要进行大量的光线光路计算;光学传递函数法是最客观、最全面的像质评价方法,既反映了衍射对系统的影响也反映了像差对系统的影响,既适用于大像差光学系统的评价也适用于小像差光学系统的评价。 二. 图解法求像或判断成像方向:(共18分,每题3分) 1.求像A'B'(图中C 为球面反射镜的曲率中心) 2.求像A'B' 3.求物AB 经理想光学系统后所成的像,并注明系统像方的基点位置和焦距 4.判断光学系统的成像方向 5.求入瞳及对无穷远成像时50%渐晕的视场 6.判断棱镜的成像方向

物理光学实验题及答案

物理光学实验题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

第三章光学(一)概述 光学的学生实验共有4个,它们分别是“光反射时的规律”、“平面镜成像的特点”、“色光的混合与颜料的混合”、“探究凸透镜成像的规律”。 (二)光学探究实验对技能的要求 1.明确探究目的、原理、器材和步骤。 2.会正确使用各种实验器材,知道它们的摆放要求。 3.知道各种器材在实验实践与探究能力指导 中的作用,并能根据实验原理、目的,选择除教科书规定仪器之外的其他器材完成实验。 4.会设计实验步骤并按合理步骤进行实验。 5会设计实验报告,会填写实验报告。 6.会正确记录实验数据。 7.会组装器材并进行实验。 8.明确要观察内容,会观察实验现象,并能解释实验中的一般问题。 9.会分析实验现象和数据,并归纳实验结果。 实验与探究能力培养 探究光反射时的规律 基础训练 1.为了探究光反射时的规律,小明进行了如图19所示的实验 (1)请在图19中标出反射角的度数。

(2)小明想探究反射光线与入射光线是否在同一平面内,他应如何操作 --————————————————————————————————。(3)如果让光线逆着OF的方向射向镜面,会发现反射光线沿着OE方向射出,这表明:————————————————————————————————。 图19 2.雨后天晴的夜晚,为了不踩到地上的积水,下列判断中正确的是()。 A.迎着月光走,地上暗处是水,背着月光走地上发亮处是水 B.迎着月光走,地上发亮处是水,背着月光走地上暗处是水 C.迎着月光走或背着月光走,都应是地上发亮处是水 D.迎着月光走或背着月光走,都应是地上暗处是水 探究平面镜成像的特点 基础训练 1.平面镜能成像是由于平面镜对光的————射作用,所称的想不能在光屏上 呈现, 是————像,为了探究平面镜成像的特点,可以用————代替平面镜,选用两只 相同的蜡烛是为了————。

几何光学的基本原理

第三章几何光学 本章重点: 1、光线、光束、实像、虚像等概念; 2、Fermat原理 3、薄透镜的物像公式和任意光线的作图成像法; 4、几何光学的符号法则(新笛卡儿法则); 本章难点: 5、理想光具组基点、基面的物理意义; §3.1 几何光学的原理 几何光学的三个实验定律: 1、光的直线传播定律——在均匀的介质中,光沿直线传播; 2、光的独立传播定律——光在传播过程中与其他光束相遇时,不改变传播方 向,各光束互不受影响,各自独立传播。 3、光的反射定律和折射定律 当光由一介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。 反射定律:入射光线、反射光线和法线在同一平面内,这个平面叫做入射面,入射光线和反射光线分居法线两侧,入射角等于反射角 光的折射定律:入射光线、法线和折射光线同在入射面内,入射光线和折射光线分居法线两侧,介质折射率不仅与介质种类有关,而且与光波长有关。 §3.2 费马原理 一、费马原理的描述:光在指定的两点间传播,实际的光程总是一个极值(最大值、最小值或恒定值)。 二、表达式 ,(A,B是二固定点) Fermat原理是光线光学的基本原理,光纤光学中的三个重要定律——直线传播定律,反射定律和折射定律()——都能从Fermat原理导出。 §3.3 光在平面界面上的反射和折射、光学纤维 一、基本概念:单心光束、实像、虚像、实物、虚物等 二、光在平面上的反射 根据反射定律,可推导出平面镜是一个最简单的、不改变光束单心性的、能成完善像的光学系统. 三、单心光束的破坏(折射中,给出推导) 四、全反射 1、临界角

2、全反射的应用 全反射的应用很广,近年来发展很快的光学纤维,就是利用全反射规律而使光线沿着弯曲路程传播的光学元件。 2、应用的举例(棱镜) §3.4 光在球面上的反射和折射 一、基本概念 二、符号法则(新笛卡儿符号法则) 在计算任一条光线的线段长度和角度时,我们对符号作如下规定: 1、光线和主轴交点的位置都从顶点算起,凡在顶点右方者,其间距离的数值为正,凡在顶点左方者,其间距离的数值为负。物点或像点至主抽的距离,在主轴上方为正,在下方为负。 2、光线方向的倾斜角度部从主铀(或球面法线)算起,并取小于π/2的角度。由主轴(或球面法线)转向有关光线时,若沿顺时针方向转,则该角度的数值为正;若沿逆时针方向转动时,则该角度的数值为负。 3、在图中出现的长度和角度只用正值。 三、球面反射对光束单心性的破坏 四、近轴光线条件下球面反射的物像公式 五、近轴光线条件下球面折射的物像公式(高斯公式) 六、高斯物像公式 七、牛顿物像公式(注意各量的物理意义) 八、例题一个折射率为1.6的玻璃哑铃,长20cm,两端的曲率半径为2cm。若在哑铃左端5cm处的轴上有一物点,试求像的位置和性质。 §3.5 薄透镜 一、基本概念: 凸透镜、凹透镜、主轴、主截面、孔径、厚透镜、薄透镜、物方焦平面、像方焦平面等 二、近轴条件下薄透镜的成像公式 如果利用物方焦距和像方焦距

光学试卷及答案

光学试卷及答案 This manuscript was revised on November 28, 2020

<光学>期终试卷(一) 班级学号姓名成绩 一. 选择题(每小题分,共25分每小题只有一个正确答案) 1.下列说法正确的是 A.薄的凸透镜对入射光线一定是会聚的; B.薄的凹透镜对入射光线一定是发散的 C.入射光的发散或会聚程度对厚凸、凹透镜的光焦度有影响 D.厚凸、凹透镜对入射光线可能是会聚的,也可能是发散的 2.光从一种介质进入另一种介质时,不发生变化的是 A.频率; B.波长 C.速度; D.传播方向 3.在菲涅尔双面镜干涉实验中,减少条纹间距的方法有 A.增大入射光的波长; B.增大接收屏与镜的距离 C.增大两平面镜的夹角; D.减小光源与双面镜交线的距离 4.白光正入射到空气中的一个厚度为3800埃的肥皂水膜上,水膜正面呈现什 么颜色(肥皂水的折射率为 A.红色 B.紫红色 C.绿色 D.青色 5.光栅光谱谱线的半角宽度Δθ与下列哪项无关 A.谱线的衍射角 B.光谱的级次 C.光栅常数 D.光栅的总缝数 6.光是由量子组成的,如光电效应所显示的那样,已发现光电流依赖一于 A.入射光的颜色 B.入射光的频率 C. 仅仅入射光的强度 D,入射光的强度与颜色 7.球面波自由传播时,整个波面上各次波源在空间某P点的合振动之振幅等 于第一个半波带在P点产生的振动之振幅的 2倍倍倍倍 8.天文望远镜物镜的直径很大,其目的不是为了 A.提高入射光的光强 B.提高分辨本领 C.能看到更大的像 D.能看到更清晰的像 9.使用检偏器观察一束光时,强度有一最大但无消光位置,在检偏器前置一 1/4波片,使其光轴与上述强度最大的位置平行,通过检偏器观察时有一消光位置,这束光是: A.平面偏振光 B.椭圆偏振光 C.部分偏振光 D.圆偏振光和平面偏振光的混合 10.关于单轴晶体,下列哪种描述是正确的 A.负晶体,V 0> V e ,n V e , n .> n e C.负晶体,V 0< V e n. > n e D.正晶体,V 0< V e , n > n e 二.填空(每小题2分,共20分)

自适应光学技术

自适应光学技术 姜文汉 中国工程院院士,中国科学院光电技术研究所,成都610209 关键词 自适应光学 波前探测 波前控制 波前校正 高分辨力成像 激光核聚变 人眼视网膜 动态光学波前误差是困扰光学界几百年的老问题,自适应光学技术提供了解决这一难题的途径。自适应光学通过对动态波前误差的实时探测 控制 校正,使光学系统能够自动克服外界扰动,保持系统良好性能。本文在说明自适应光学技术的基本原理后,介绍由中国科学院光电技术研究所研制的三套自适应光学系统及其使用结果:1.2m 望远镜天体目标自适应光学系统, 神光I 激光核聚变波前校正系统和人眼视网膜高分辨力成像系统。 1自适应光学 自动校正光学波前 误差的技术 从1608年利普赛(L i ppers hey)发明光学望远镜, 1609年伽里略(G alileo)第一次用望远镜观察天体以来 已经过去了近400年了,望远镜大大提高了人类观察遥 远目标的能力,但是望远镜发明后不久,人们就发现大 气湍流的动态干扰对光学观测有影响。大气湍流的动 态扰动会使大口径望远镜所观测到的星像不断抖动而 且不断改变成像光斑的形状。1704年牛顿(I.N e w ton) 在他写的《光学》[1]一书中,就已经描述了大气湍流使像 斑模糊和抖动的现象,他认为没有什么办法来克服这一 现象,他说: 唯一的良方是寻找宁静的大气,云层之上 的高山之巅也许能找到这样的大气 。天文学家们以极 大的努力寻找大气特别宁静的观测站址。但即使在地 球上最好的观测站,大气湍流仍然是一个制约观测分辨 率的重要因素。无论多大口径的光学望远镜通过大气 进行观察时,因受限于大气湍流,其分辨力并不比0.1~ 0.2m的望远镜高。从望远镜发明到20世纪50年代的 350来年中,天文学家和光学家像谈论天气一样谈论大 气湍流,而且还创造了Seei ng这个名词来描述大气湍流 造成星像模糊和抖动的现象,但是对Seei ng的影响还是 无能为力。 图1是有无波前误差时点光源成像光斑的比较。 图1(a)是没有波前误差时的光斑,由于光学系统口径的 衍射,没有波前误差时的衍射极限光斑由一个中心光斑 和一系列逐渐减弱的同心环组成,称为艾利(A ir y)斑。 对圆形口径,83.4%的光能集中在中心斑内,其直径为 2.44 D , 为光学波长,D为光学系统口径。图1(b)给 出存在 0.56波长(均方根)波前误差时,点光源成像 的光斑三维图,光斑显著扩散。对于大气湍流这样的动 态干扰,扩展的光斑将不断改变形状,并且成像位置不 断漂移。 图1 波前误差对成像光斑能分布的影响 (a)没有波前误差时圆形孔径产生的衍射光斑, (b)当波前误差均方根值为 0.56波长时的弥散光斑 1953年美国天文学家Babcock发表了 论补偿天文 Seei ng的可能性 [2]的论文,第一次提出用闭环校正波 前误差的方法来补偿天文Seeing。他建议在焦面上用 旋转刀口切割星像,用析像管探测刀口形成的光瞳像来 测量接收到的光波波前畸变,得到的信号反馈到一个电 子枪,电子轰击艾多福(E idopher)光阀上的一层油膜,使 油膜改变厚度来补偿经其反射的接收光波的相位(图 2)。这一设想当时并未实现,但用测量 控制 校正的 7

(完整版)光学仪器基本原理习题及答案

第四章 光学仪器基本原理 1.眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1。试计算眼球的两个焦距。用右眼观察月球时月球对眼的张角为1°,问视网膜上月球的像有多大? 解;眼球物方焦距;当s ’=∞时,f=﹣5.55/﹙4/3﹣1﹚=﹣16.65㎜=﹣1.665㎝ 眼球的象方焦距:f '=s '=mm 2.2213455.534 =-? 当u=1°时,由折射定律n 1sinu 1=n 2sinu 2 U 1=1°n 1=1,n 2=4∕3 像高l '=f 'tanu 2=f 'sinu 2=f '×3∕4 sin1o =22.2×3∕4×0.01746=0.29mm 2.把人眼的晶状体看成距视网膜2㎝的一个简单透镜。有人能看清距离在100㎝到300㎝ 间的物体。试问:⑴此人看清远点和近点时,眼睛透镜的焦距是多少?⑵为看清25㎝远的物体,需配戴怎样的眼镜? 解:人眼s '=2cm. S 1=100cm.s 2=300cm 近点时透镜焦距'f =21002 100+?=1.961cm 远点时透镜焦距f '=23002 300+? =1.987cm 当s =﹣25cm 时s '=﹣100cm ﹦﹣1m 34125.0100.1111=+-=---=-'= Φs s D 300=度 3.一照相机对准远物时,底片距物镜18㎝,当镜头拉至最大长度时,底片与物镜相距20 ㎝,求目的物在镜前的最近距离? 解:.18.0m f =' m s 20.0=' 照相机成像公式: f s s '=-'1 11 556.020.01 18.01111-=+-='+'-=s f s m s 8.1-= 目的物在镜前的最近距离为m 8.1

光学试卷及答案

<光学>期终试卷(一) 班级学号姓名成绩 一.选择题(每小题分,共25分每小题只有一个正确答案) 1.下列说法正确的是 A.薄的凸透镜对入射光线一定是会聚的; B.薄的凹透镜对入射光线一定是发散的 C.入射光的发散或会聚程度对厚凸、凹透镜的光焦度有影响 D.厚凸、凹透镜对入射光线可能是会聚的,也可能是发散的 2.光从一种介质进入另一种介质时,不发生变化的是 A.频率; B.波长 C.速度; D.传播方向 3.在菲涅尔双面镜干涉实验中,减少条纹间距的方法有 A.增大入射光的波长; B.增大接收屏与镜的距离 C.增大两平面镜的夹角; D.减小光源与双面镜交线的距离 4.白光正入射到空气中的一个厚度为3800埃的肥皂水膜上,水膜正面呈现什么颜 色(肥皂水的折射率为 A.红色 B.紫红色 C.绿色 D.青色 5.光栅光谱谱线的半角宽度Δθ与下列哪项无关? A.谱线的衍射角 B.光谱的级次 C.光栅常数 D.光栅的总缝数 6.光是由量子组成的,如光电效应所显示的那样,已发现光电流依赖一于 A.入射光的颜色 B.入射光的频率 C. 仅仅入射光的强度 D,入射光的强度与颜色 7.球面波自由传播时,整个波面上各次波源在空间某P点的合振动之振幅等于第一 个半波带在P点产生的振动之振幅的

2倍倍倍倍 8.天文望远镜物镜的直径很大,其目的不是为了 A.提高入射光的光强 B.提高分辨本领 C.能看到更大的像 D.能看到更清晰的像 9.使用检偏器观察一束光时,强度有一最大但无消光位置,在检偏器前置一1/4波片,使其光轴与上述强度最大的位置平行,通过检偏器观察时有一消光位置,这束光是: A.平面偏振光 B.椭圆偏振光 C.部分偏振光 D.圆偏振光和平面偏振光的混合 10.关于单轴晶体,下列哪种描述是正确的? A.负晶体,V 0> V e ,n V e , n .> n e C.负晶体,V 0< V e n. > n e D.正晶体,V 0< V e , n > n e 二.填空(每小题2分,共20分) 1.从一狭缝射出的单色光经过两个平行狭缝而照射到120cm远的幕上,若此两狭缝 相距为,幕上所产生的干涉条纹中两相邻亮纹间距离为 ,则此单色光的波长为 ① mm 2.在迈克尔逊干涉仪的一条光路中,放入折射率为n.厚度为d的透明介质片,放入 后,两束光的光程差改变量为② 3.用镜头焦距为50mm的相机拍摄月球照片,已知月球的直径为×106m,离地球距离 为×108m,则底片上月球像的直径为③ mm 4.一焦距为-60mm的双凹透镜,安装在半径为60mm,折射率为平凸透镜前面120mm 处,则系统的有效焦距为④ mm

基于模型辨识的自适应光学系统控制技术研究

基于模型辨识的自适应光学系统控制技术研究自适应光学技术能够实时补偿光在传输过程中由传输介质引起的随机波前畸变,进而被广泛应用天文观测、空间目标观测和激光传输等系统。近年来,随着相关理论和技术的不断发展,自适应光学技术在光通信、医学成像、激光加工等众多领域取得了进一步的应用。波前控制作为自适应光学系统的关键技术之一,直接影响自适应光学系统的波前校正性能。目前,大多数自适应光学系统采用的算法是简单且易于实现的比例积分控制,但是其控制参数调节多依赖人为经验,且控制性能和稳定性难以兼顾。虽然有很多自适应光学控制的算法被提出,如鲁棒控制、预测控制、最优控制等,但大多数局限于理论仿真和实验室研究,离实际应用还存在一定距离,少部分算法实际应用又具有局限性。目前,随着自适应光学应用领域的拓展和对控制性能要求的不断提高,控制算法难以满足实际需求。因此,为了解决自适应光学系统的控制难题,本文提出采用线性二次高斯控制方法。首先,针对线性二次高斯控制需要精度较高的被控对象系统模型问题,本文根据自适应光学系统实际工作情况,提出了基于变量带误差模型的子空间辨识方法。利用自适应光学系统的输入与输出数据,建立了自适应光学系统的状态空间模型。仿真结果表明了所建立的自适应光学系统的状态空间模型准确度高,具有较强的噪声抑制能力和鲁棒性。且该方法还可为其它模型类控制算法提供一种模型基础。其次,本文以自适应光学系统的状态空间辨识模型为基础,采用采用基于状态调节的线性二次高斯控制技术。以最小化残余波前作为线性二次型性能指标,

通过最小化二次型性能指标,确定反馈控制规律的增益。根据入射波前的泽尼克多项式扩展形式和变形镜以及波前传感器的线性关系来定义自适应光学系统的状态向量。而针对自适应光学系统的初始状态未知问题,本文利用卡尔曼滤波器和卡尔曼滤波状态对自适应光学系统的状态向量作线性估计。通过求解状态估计和卡尔曼滤波器增益,以及最小化求解二次型性能指标得到的状态调节增益,可以实现自适应光学系统的线性二次高斯闭环控制。数值仿真验证了线性二次高斯控制的可行性和波前校正能力。然后,通过静态波前和动态波前校正实验来验证了线性二次高斯控制的波前校正能力,实验结果与数值仿真结果保持一致,证明了线性二次高斯控制的可行性与有效性。实验结果表明了线性二次高斯控制校正后的各项性能指标都要优于比例积分控制。而且在自适应光学系统的响应速度、光斑抖动的抑制以及系统的稳定性与鲁棒性等方面,线性二次高斯控制表现较为出色。最后,本文通过实验研究了系统噪声和高斯白噪声对自适应光学系统线性二次高斯控制波前像差校正效果的影响。实验结果表明了采用系统近似噪声作为测量噪声的线性二次高斯控制其波前校正效果提升明显。这也从另一方面表明了系统噪声对线性二次高斯控制影响显著,若能准确获取自适应光学系统的噪声统计模型,将有望进一步提高线性二次高斯控制在自适应光学系统的波前像差校正能力。

()光学题库及答案

光学试题库计算题 12401已知折射光线和反射光线成900角如果空气中的入射角为600求光在该介质中的速度。14402在水塘下深h处有一捕鱼灯泡如果水面是平静的水的折射率为n则从水面上能够看到的 圆形亮斑的半径为多少14403把一个点光源放在湖水面上h处试求直接从水面逸出的光能的百分比 忽略水和吸收和表面透镜损失。 23401平行平面玻璃板的折射率为厚度为板的下方有一物点P P到板的下表面的距离为,观察者透过玻璃板在P的正上方看到P的像求像的位置。 23402一平面平行玻璃板的折射率为n厚度为d点光源Q发出的近于正入射的的光束在上表面反射成像于'光线穿过上表面后在下表面反射再从上表面出射的光线成像于'。求'和'间的距离。 23403来自一透镜的光线正朝着P点会聚如图 所示要在P '点成像必须如图插入折射率n=的玻璃片. 求玻璃片的厚度.已知=2mm . 23404容器内有两种液体深度分别为和折射率分别为和液面外空 气的折射率为试计算容器底到液面的像似深度。 23405一层水n=浮在一层乙醇n=之上水层厚度3cm乙醇厚5cm从正方向看水槽的底好象在水面下多远 24401玻璃棱镜的折射率n=如果光线在一工作面垂直入射若要求棱镜的另一侧无光线折射时所需棱镜的最小顶角为多大24402一个顶角为300的三棱镜光线垂直于顶角的一个边入射而从顶角的另一边出射其方向偏转300 求其三棱镜的折射率。 24404有一玻璃三棱镜顶角为折射率为n欲使一条光线由棱镜的一个面进入而沿另一个界面射出此光线的入射角最小为多少24405玻璃棱镜的折射棱角A为60对某一波长的光的折射率为现将该棱镜浸入到折射率为4/3的水中试问当平行光束通过棱镜时其最小偏向角是多少

典型光学仪器的基本原理

1、光学仪器在国民生产和生活中各个领域广泛应用,绝大多数光学仪器可归纳为望远镜系统、显微镜系统和照明系统三类。 2、人眼构造:人眼本身就相当于一个摄影系统,外表大体呈球形,直径约为25mm,由角膜、瞳孔、房水、睫状体、晶状体和玻璃体等组成的屈光系统相当于成像系统的镜头,起聚焦成像作用。眼睛内的视网膜和大脑的使神经中枢等相当于成像系统的感光底片和控制系统,能够接收外界信号并成像。 3、视度调节:眼睛通过睫状肌的伸缩本能地改变水晶体光焦度的大小以实现对任意距离的物体自动调焦的过程称作眼睛的视度调节。 4、视觉调节:人眼除了随着物体距离的改变而调节晶状体曲率外,还可以在不同的明暗条件下工作,人眼能感受非常大范围的光亮度变化,即眼睛对不同的亮度条件下具有适应的调节能力,这种能力称为眼睛的视觉调节。 5、放大镜定义:放大镜(英文名称:magnifier):用来观察物体细节的简单目视光学器件,是焦距比眼的明视距离小得多的会聚透镜。物体在人眼视网膜上所成像的大小正比于物对眼所张的角(视角)。 6、视角愈大,像也愈大,愈能分辨物的细节。移近物体可增大视角,但受到眼睛调焦能力的限制。使用放大镜,令其紧靠眼睛,并把物放在它的焦点以内,成一正立虚像。放大镜的作用是放大视角。 7、显微镜:显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。显微镜分光学显微镜和电子显微镜:光学显微

镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。 8、光学显微镜由目镜,物镜,粗准焦螺旋,细准焦螺旋,压片夹,通光孔,遮光器,转换器,反光镜,载物台,镜臂,镜筒,镜座,聚光器,光阑组成。 9、显微镜以显微原理进行分类可分为光学显微镜与电子显微镜。 10、光学显微镜:通常皆由光学部分、照明部分和机械部分组成。无

傅立叶光学基本原理

傅立叶光学基本原理 实验目的:在4f 系统中,观察不同的衍射物通过两个凸透镜后的傅立叶变换,计算栅格常数 实验原理:傅立叶变换,惠更斯原理,多缝衍射,阿贝成像原理 该实验使用当中,在进行相干光学处理时,采用了如下图所示的双透镜系统(即4f 系统)。这时输入图像(物)被置于透镜L1的前焦面,若透镜足够大,在L1的后焦面上即得到图像准确的傅立叶变换(频谱)。并且,因为输入图像在L1的前焦面,需要利用透镜L2使像形成在有限远处。在4f 系统中,L1的后焦面正好是L2的前焦面,因此系统的像面位于L2的后焦面,并且像面的复振幅分布是图像频谱准确的傅立叶变换。 物面 L1 频谱面 L2 像面 从几何光学看,4f 系统是两个透镜成共焦组合且放大倍数为1的成像系统。 在单色平面波照明下(相干照明),当输入图像置于透镜L1的前焦面时,在L1的后焦面上得到图像函数E *(x,y )准确的傅立叶变换: E *(x,y )=??∞+∞-+-∞+∞-?dadb e b a E f y x A b f y a f x B B B )(2),(),,(λλπ 其中,x,y 是L1后焦面(频谱面)的坐标。由于L1的后焦面与L2的前焦面重合,所以在L2的后焦面又得到频谱函数E *(x,y )的傅立叶变换,略去常数因子: ?=)?,?,?(?)?,?(?B f y x A y x E ??∞+∞-+-∞+∞-dadb e b a E b f y a f x B B )??(2),(λλπ 通过两次傅立叶变换,像函数与物函数成正比,只是自变量改变符号,这意味着输出图像与输入图像相同,只是变成了一个倒像。第一次傅立叶变换把物面光场的空间分布变为频谱面上的空间频率分布,第二次傅立叶变换又将其还原到空间分布。 相干光学信息处理在频谱面上进行,通过在频谱面上加入各种空间滤波器可以达到

光学考试试卷(附答案)

光学考试试卷(附答案) 班级姓名学号成绩 题号一二三四总分 得分 本题 得分 一、填空题(本大题共9题,每题2分,共18分) 1.在几何光学系统中,唯一能够完善成像的是系统,其成像规律为。 2.单色光垂直入射到由两块平板玻璃构成的空气劈尖中,当把下面一块平板玻璃缓慢向下 移动时,则干涉条纹,明暗条纹的间隔。 3.在夫琅和费单缝衍射中,缝宽为b,缝屏间距为L,波长为,零级条纹的宽度为,一级暗条纹的宽度为。 4.曲率半径为 R的凹球面镜的焦距为,若将球面镜浸入折射率为 该系统的焦距为。 5.在光栅衍射中,第三级缺级,则光栅常数与缝宽的比为n的液体内,;还有第 级主极大缺级。 6.在菲涅耳圆孔衍射中,对轴线上的的P点,孔径越小,波带数越P点离圆孔越近,波带数越 。 ;对给定 7.当物处于主光轴上无穷远处,入射光线平行于主光轴,得到的像点称为;在 通常情况下,薄透镜成像的高斯公式是8.主平面是理想光具组的 。 一对共轭平面;节点是理想光具组的 一对共轭点。 9.在洛埃镜实验中,将屏移至与玻璃平板相接触,则在接触处出现的是条纹,这一事实证实了。 本题 得分

二、选择题(本大题共10题,每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 得分 1.用半波带法研究菲涅耳圆孔衍射时,圆孔轴线 上 P点的明暗决定于 (A)圆孔的直径;(B)光源到圆孔的距离;(C)圆孔到P点距离;(D)圆孔中 心和边缘光线到P点的光程差 2.一发光点位于凹球面镜前40cm处,镜面曲率半径为16cm,则象距为 (A)-10cm;(B)-20cm;(C)-30cm;(D)-40cm 3.为了测定金属丝的直径,可把它夹在两平板玻璃的一端,测得两相邻干涉条纹的 间距为d,若金属丝与劈尖的距离为L,所用单色光的波长为,则金属丝的直径为(A) L/d;(B)d/L;(C)d/2L;(D)L/2d 4.在夫琅和费双缝衍射中,零级包迹中含有11条干涉条纹,必须满足下列条件(缝宽为 b,缝间不透明部分为a) (A)a=2b;(B)a=3b;(C)a=4b;(D)a=5b 5.一双凹透镜折射率为n,置于折射率为 n的介质中,则下列说法正确的是 (A)若n>n,透镜是发散的;(B)若n>n,透镜是会聚的;(C)若n>n,透镜 是发散的;(D)双凹薄透镜是发散的,与周围介质无关 6.空气中,薄透镜的横向放大率为 (A)f/x;(B)x/f;(C)-f/x;(D)-x/f 7.在玻璃表面镀上一层透明的MgF2(n=1.38)薄膜,对于波长为的入射光,增透膜的最 小厚度为 (A)/2;(B)/4;(C)/2n;(D)/4n 8.夫琅和费单缝衍射中,零级中央亮条纹的光强为I0,光波波长为,当缝两边到屏上的P 点的光程差 为 /4时,P点的光强约为 (A)I0/2;(B)I0/4;(C)2I0/5;(D)4I0/5 9.将折射率为n1=1.5 的有机玻璃浸没在油中,油的折射 率为 n2=1.10,试问:全反射的临 界角为

光学题库及答案

光学试题库(计算题) 12401 已知折射光线和反射光线成900角,如果空气中的入射角为600 ,求光在该介质中的速度。 14402 在水塘下深h 处有一捕鱼灯泡,如果水面是平静的,水的折射率为n ,则从水面上能够看到的圆形亮斑的半径为多少 14403 把一个点光源放在湖水面上h 处,试求直接从水面逸出的光能的百分比(忽略水和吸收和表面透镜损失)。 23401 平行平面玻璃板的折射率为0n ,厚度为0t 板的下方有一物点P ,P 到板的 下表面的距离为0l ,观察者透过玻璃板在P 的正上方看到P 的像,求像的位置。 23402 一平面平行玻璃板的折射率为n ,厚度为d ,点光源Q 发出的近于正入射的的光束在上表面反射成像于'1Q ,光线穿过上表面后在下表面反射,再从上表 面出射的光线成像于'2Q 。求'1Q 和'2Q 间的距离。 23403 来自一透镜的光线正朝着P 点会 聚,如图所示,要在'P 点成像,必须如 图插入折射率n=的玻璃片.求玻璃片的 厚度.已知 =2mm . 23404 容器内有两种液体深度分别为 1h 和2h ,折射率分别为1n 和2n ,液面外空气的折射率为n ,试计算容器底到液面的像似深度。 23405 一层水(n=)浮在一层乙醇(n=)之上,水层厚度3cm ,乙醇厚5cm ,从正方向看,水槽的底好象在水面下多远 24401 玻璃棱镜的折射率n=,如果光线在一工作面垂直入射,若要求棱镜的另一

侧无光线折射时,所需棱镜的最小顶角为多大 24402 一个顶角为300的三棱镜,光线垂直于顶角的一个边入射,而从顶角的另一边出射,其方向偏转300,求其三棱镜的折射率。 24404 有一玻璃三棱镜,顶角为 ,折射率为n ,欲使一条光线由棱镜的一个面进入,而沿另一个界面射出,此光线的入射角最小为多少 24405 玻璃棱镜的折射棱角A为600,对某一波长的光的折射率为,现将该棱镜浸入到折射率为4/3的水中,试问当平行光束通过棱镜时,其最小偏向角是多少32401 高为2cm的物体,在曲率半径为12cm的凹球面镜左方距顶点4cm处。求像的位置和性质,并作光路图。 32402 一物在球面镜前15cm时,成实像于镜前10cm处。如果虚物在镜后15cm处,则成像在什么地方是凹镜还是凸镜 32403 凹面镜所成的实像是实物的5倍,将镜向物体移近2cm ,则像仍是实的,并是物体的7倍,求凹面镜的焦距。 32404 一凹面镜,已知物与像相距1m ,且物高是像高的4倍,物和像都是实的,求凹面镜的曲率半径。 32405 一高度为的物体,位于凹面镜前,像高为,求分别成实像和虚像时的曲率半径。 32406 凹面镜的曲率半径为80 cm ,一垂直于光轴的物体置于镜前何处能成放大两倍的实像置于何处能成放大两倍的虚像 32407 要求一虚物成放大4倍的正立实像,物像共轭为50 m m ,求球面镜的曲率半径. 32408 一个实物置在曲率半径为R的凹面镜前什么地方才能:(1)得到放大3倍的

基本光学原理图文稿

基本光学原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

基本光学原理 第一节几何光学的基本原理 几何光学的含义及其范畴,是以光的直线传播性质为基础,研究光在透明介质中传播的光学。几何光学的理论基础,就是建立在通过观察和实验得到的几个基本定律。由于光的直线传播性对于光的实际行为只有近似的意义,所以,以它作为基础的几何光学,就只能应用于有限的范围和给出近似的结果。但这些对于了解与摄影有关的光学系统而言,已是足够的了。 一、光线 在几何光学中可用一条表示光传播的方向的几何线来代表光,并称这条线为光线。 二、光的传播定律 1.光的直线传播定律:光在均匀透明的介质中,光沿直线传播。 2.光的反射和折射定律:当光线由一均匀介质进入另一介质时,光线在两个介质的分界面上被分为反射光线和折射光线。这两条光线的进行方向,可分别由反射定律和折射定律来表述。 反射定律:反射线在入射线和法线所决定的平面上;反射线和入射线分别位于法线的两侧;反射角和入射角相等。

在反射现象里光路是可逆的。 折射定律:折射线在入射线和法线所决定的平面内;折射线和入射线分别位于法线的两侧 入射角i的正弦与折射角r的正弦的比,对于给定的两种媒质来说,是一个常数,叫做第二媒质对于第一种媒质的折射率,在这里我们用n21来表示。 前面所讲的n21是第二种媒质对于第一种媒质的折射率,叫做这两种媒质的相对折射率,即某种媒质对于真空的折射率叫做这种媒质的绝对折射率,简称媒质的折射率,用n表示。 因为光在空气中传播的速度与光在真空中传播的速度相差很小,所以通常用媒质对空气的折射率代替媒质的折射率。n=1。 光在任何媒质中传播的速度都小于在真空中的速度,所以,任何媒质的折射率都大于1。由此可以推论,光在一种媒质中传播的速度越小,这种媒质的折射率越大。两种媒质相比较如第一种媒质的折射率大于第二种媒质的折射率,则光在第一种媒质中的传播速度小于光在第二种媒质中的传播速度,相对而言第一种媒质称为光密媒质,第二种媒质称为光疏媒质。当光线从光疏媒质射进光密媒质时 ∴Sini>Sinr i>r 这时,r<i说明光线近法线折射。

2、光学答案

光测答案2014年1月9日 1、像电灯这样自己发光的物体叫做光源。在月亮、镜子、点亮的日光灯、太阳、星星中属于光源的是点亮的日光灯、太阳、星星。 2、物体影子的方向与同一光源从不同的方位照射有关。 3、用手电筒从上面和侧面照射一只陶瓷盆,所产生的影子形状不同、长短不 同。 4、用手电筒照射距离墙面不同远、大小相同的物体,所产生的影子长短不同。 5、影子产生的条件是光源、物体、影屏。 6、从不同侧面照射得到的物体的影子叫做投影。 7、光碰到镜面改变了传播方向,被反射回去,这种现象叫做光的反射。 也叫反光。生活中我知道运用光的反射原理的物品有照镜子、看书、白色墙壁、潜望镜、反光镜、月球的光、电筒灯罩、凹面镜等。 8、同一时间,同一地点阳光下不同物体的影子方向相同。 9、不同时间,阳光下同一物体的影子方向和长短发生变化。 10、阳光下,上午的影子由长变短,下午的影子由短变长,正午的影子最短。 11、光在空气中是以直线的形式传播的,光在空气中是以每秒约30万千米的速 度传播的,太阳离地球的距离为1.5亿千米,从太阳发出光到达地球约需要8分钟。 12、夜晚汽车车灯射出笔直的光的现象能证明光是以直线形式传播的。 13、影子总是在物体背光的一侧。 14、教室的墙面涂成白色的主要原因是有利于光的反射。 15、光强,得到的温度就高;光弱,得到的温度就低。 16、太阳灶就是利用凹面镜能把光线会聚起来产生高温的原理制造的。 17、不能用放大镜或望远镜直接看太阳。 18、眼睛有一个能控制入射光线的器官,就是瞳孔。当光强时,瞳孔会缩小; 当光弱时,瞳孔就会放大。 19、在物体的颜色与吸热实验中,升温最快的是黑色。 20、一天中阳光下物体的影子最长的时候在早晨和傍晚,最短的时候是在正午。 21、潜望镜是利用光的反射原理制成的。 22、奥运会圣火是利用凹面镜聚光聚热取得的。 23、反射光是以直线传播的。

光学原理及应用

光学的基本原理及应用 人类很早就开始了对光的观察研究,逐渐积累了丰富的知识。远在2400多年前,我国的墨翟(公元前468—前376)及其弟子们所著的《墨经》一书,就记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,可以说是世界上最早的光学著作。 现在,光学已成为物理学的一个重要分支,并在实际中有广泛应用.光学既是物理学中一门古老的基础学科,又是现代科学领域中最活跃的前沿科学之一,具有强大的生命力和不可估量的发展前景。 按研究目的的不同,光学知识可以粗略地分为两大类.一类利用光线的概念研究光的传播规律,但不研究光的本质属性,这类光学称为几何光学;另一类主要研究光的本性(包括光的波动性和粒子性)以及光和物质的相互作用规律,通常称为物理光学。 一、光学现象原理 光的传播速度很快,地球上的光源发出的光,到达我们眼睛所用的时间很短,根本无法觉察,所以历史上很长一段时间里,大家都认为光的传播是不需要时间的.直到17世纪,人们才认识到光是以有限的速度传播的。 光速是物理学中一个非常重要的基本常量,科学家们一直努力更精确地测定光速.目前认为真空中光速的最可靠的值为

c=299 792 458 m/s 在通常的计算中可取 c=3.00×108m/s 玻璃、水、空气等各种物质中的光速都比真空中的光速小. (一)直线传播 光能够在空气、水、玻璃透明物质中传播,这些物质叫做介质.在小学自然和初中物理中我们已经学过,光在一种均匀介质中是沿直线传播的.自然界的许多现象,如影、日食、月食、小孔成像等,都是光沿直线传播产生的. 由于光沿直线传播,因此可以沿光的传播方向作直线,并在直线上标出箭头,表示光的传播方向,这样的直线叫做光线。物理学中常常用光线表示光的传播方向。有的光源,例如白炽灯泡,它发出的光是向四面八方传播的;但是有的光源,例如激光器,它产生的光束可以射得很远,宽度却没有明显的增加.在每束激光中都可以作出许多条光线,这些光线互相平行,所以叫做平行光线.做简单实验的时候,太阳光线也可以看做平行光线.

光学原理

光学原理 Principles of Optics 课程编号:07370460 学分: 2 学时: 30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:大学物理 适用专业:无机非金属材料工程(光电材料与器件) 教材:《光学教程》,姚启钧主编,高等教育出版社,2008年6月第4版。 开课学院:材料科学与工程学院 一、课程的性质与任务: 本课程是属于专业选修课,是研究光的本性、光的传播和光与物质相互作用的基础学科,光学的基本理论渗透在自然科学的很多领域,应用于生产技术的各个部门,是自然科学的许多领域和工程技术的基础。激光的出现和发展,使光学的研究进入了一个崭新的阶段,成为现代科学技术的前沿阵地之一。本课程要求学生掌握几何光学的基本概念、成像规律和作图方法,理解典型光学仪器的基本原理;要求学生掌握有关光的传播规律及其本性,了解干涉、衍射和偏振等基本现象、原理和规律,并了解它们在科研、生产和实践中的应用;本课程力求使学生使学生对光的传播规律和光与物质相互作用时出项的现象和光的本性有一个深刻的认识。 二、课程的基本内容及要求: 第一章绪论 1.教学内容 (1)光学的研究内容和方法 (2)光学的发展简史 2.教学要求 重点了解光学的研究内容和方法,对光学简史要有一定了解。 第二章光的干涉 1.教学内容 (1)波动的独立性、叠加性和相干性 (2)由单色波叠加所形成的干涉图样 (3)分波面双光束干涉 (4)干涉条纹的可见度 (5)菲涅尔公式 (6)分振幅薄膜干涉-等倾干涉

(7)分振幅薄膜干涉-等厚干涉 (8)迈克尔逊干涉仪 (9) 法布里珀罗干涉仪 2.教学要求 掌握光的相干条件和光程的概念;掌握光的干涉相长和干涉相消的条件;学会分析光的干涉图样;掌握等倾干涉和等厚干涉的基本概念及其应用;介绍迈克耳逊干涉仪和法布里---珀罗干涉仪的原理及其应用。 第三章光的衍射 1.教学内容 (1)惠更斯-菲涅尔原理 (2)菲涅尔半波带和菲涅尔衍射 (3)夫琅禾费单缝衍射 (4)夫琅禾费圆孔衍射 (5)平面衍射光栅 2.教学要求 学会用惠更斯---菲涅耳原理解释光的衍射现象,理解菲涅耳积分式意义;掌握夫琅和费衍射,并能推导夫琅和费衍射光强公式;掌握光栅方程式导并理解其意义。 第四章几何光学的基本原理 1.教学内容 (1)几个基本概念和定律费马原理 (2)光在平面界面上的反射、折射 (3)光在球面上的反射折射 (4)光连续在几个球面界面上的折射 (5)薄透镜 (6)近轴物近轴光线成像的条件 2.教学要求 重点掌握费马原理;掌握光线、实物、虚物、实象和虚象的概念;掌握几何光学的符号法则(采用新笛卡儿符号法则);掌握薄透镜的物象公式;了解光学纤维构造及其应用。 第五章光学仪器的基本原理 1.教学内容 (1)助视仪器的放大本领 (2)显微镜的放大本领 (3)望远镜的放大本领

自适应光学

一、前言 自适应光学是20世纪50年代以来迅速发展起来的光学新技术,在高分辨率天文观测、高能激光武器、激光通讯,激光核聚变,医学等方面的应用越来越广泛。 自适应光学系统能实时探测由大气扰动、环境温度起伏、光轴抖动等因素造成的波面畸变,并通过光学校正系统实时补偿波面误差,现代地基、天基大型望远镜几乎都采用了自适应光学系统。 近年来,随着自适应光学理论与技术的发展,它已被广泛地应用于军事及民用领域,如用于光学遥感载荷多种误差源的实时校正以提高载荷的成像分辨率;用于激光通信的大气扰动补偿;用于激光可控热核聚变实验,提高靶标上的光功率密度;用于医用光学仪器,实现人眼视网膜的高分辨率成像等。 由于大气的湍流运动,大气温度的随机变化产生大气密度的随机变化,从而导致大气折射率的随机变化,这些变化的累积效应导致大气折射率的明显不均匀性,大气折射率微小变化的作用类似于处在大气中的小“透镜”,它们使传输光束出现聚焦、偏折等现象,从而导致光闪烁和光抖动等效应。这些“透镜”的大小近似于湍流漩涡的尺度。大气湍流对光传播的影响,最早反映在天文观测中。湍流的影响严重地限制了大口径天文望远镜分辨率的提高。 1953年,美国天文学家巴布科克提出用实时测量波面误差并实时加以校正的方法来解决大气湍流等动态干扰的设想,如果这一过程足够快,就可以克服动态误差的影响而使光学系统能够自动适应环境

变化,保持理想性能,就是自适应光学((Adaptive OpticsAO)思想的形成,但在当时还没有实现这一设想的现成技术。 本世纪60年代出现了激光,激光的高方向性和高亮度的特点推动人们去进行用强激光作为武器的研究。与观测系统一样,激光武器系统也面临着大气干扰使能量分散的问题。用直径4m的发射系统通过大气发射波长1um的强激光到目标上,即使没有其他误差,只有大气湍流的影响,光斑中心的能量密度只有衍射极限的千分之一,动态干扰也成了实现激光武器的一个重大技术障碍。 到了70年代,高分辨率观测和高集中度激光能量传输的发展,更加迫切地要求解决动态干扰问题,相关技术的发展,也使自适应光学的实现成为可能。 从70年代中期开始自适应光学的研究才真正起步。在1972年,美国研制出了第一套实时大气补偿成像实验系统。这个系统在300米水平光路上成功地对大气湍流效应进行了补偿,经补偿后的图像分辨率接近衍射极限。 1990年以前,美国的自适应光学研究主要服务于军事应用。1982年在夏威夷附近的空军毛伊(Maui)岛光学站上,美国安装了世界上第一台实用的1.6米自适应光学望远镜,用来观察近地轨道上运行的空间目标(卫星,助推器及其残骸),利用其形态特性进行识别和分类。 该系统在可见光波段(0.4~0.7微米)工作,有168个子孔径,波前传感器为横向交变剪切干涉仪,波前校正元件为168单元整体式压电变形镜,采样频率为10000赫兹,带宽为200-1000赫兹,探测

相关文档