文档库 最新最全的文档下载
当前位置:文档库 › 摩尔根的果蝇遗传研究

摩尔根的果蝇遗传研究

摩尔根的果蝇遗传研究
摩尔根的果蝇遗传研究

摩尔根的果蝇遗传研究

冯永康

(四川省特级教师,业余科学史研究者)

摩尔根(T.H.Morgan,1866~1945)是第一位以遗传学成就而荣获诺贝尔生理学或医学奖的科学家,是细胞遗传学的创始人。在孟德尔遗传学向分子遗传学发展的过程中,摩尔根起着承上启下、继往开来的作用。

摩尔根的科学生涯经历了对孟德尔遗传学从“拥护—反对—继承并发展”的3个阶段。这种转变,来自于他对白眼雄果蝇的发现与研究。

1.白眼果蝇的发现与基因定位

1910年5月,摩尔根从他的“蝇室”果蝇饲养瓶中观察到一种奇怪的变异。他发现了在野生型红眼果蝇群体里,有一只长有白眼而不是正常红眼的雄果蝇。白眼突变雄果蝇的发现,使摩尔根立刻认识到这只白眼雄果蝇的巨大价值。从此,他将研究的兴趣从进化转移到遗传的研究中。

摩尔根利用这只白眼雄果蝇与红眼雌果蝇进行了杂交实验。通过杂交实验所进行的眼色遗传分析表明,白眼雄蝇与红眼果蝇杂交,子一代全是红眼果蝇。子一代自交,子二代的结果呈现孟德尔式的性状分离,其中红眼果蝇2688只,白眼果蝇728只,两者比率约为3.4:1。但在子二代,约占1/4的白眼果蝇则全是雄性个性。正是这后一结果(白眼果蝇全是雄性),引起了他的思考。他认为:如果假定控制眼色的基因位于X染色体上,而Y染色体上不带控制眼色的等位基因,那么实验结果就能得到完满的解释。红眼基因(+)是显性,带有红眼基因的X染色体用X+表示;白眼基因(w)是隐性,带有白眼基因的X染色体用Xw表示。基因型为XwY的雄果蝇,由于Y染色体上没有控制眼色的基因,隐性基因得以表现,所以是白眼果蝇。当白眼雄果蝇与野生型雌果蝇X+X+杂交,子一代的基因型是X+Xw和

X+Y,即雌雄果蝇都为红色复眼,且雌果蝇是杂合体。子一代个体相互交配,结果是在子二代中有3/4是红眼果蝇,1/4是白眼果蝇。雌果蝇全为红色复眼,但其中有一半是纯合体,另一半为杂合体。雄果蝇则红眼、白眼各占一半。

这样,摩尔根第一次把一个具体的基因(白眼基因)定位于一个特定的染色体(X染色体)上,开辟了一条遗传学和细胞学紧密结合的研究道路。

2.孟德尔定律的“例外”──连锁和互换遗传现象的阐释

摩尔根证明了基因位于染色体上。但一种生物的基因数目远远多于染色体的数目,因而一条染色体上存在着多个基因,就成为一个必然的推论。

早在1906年,遗传学的早期倡导者、英国遗传学家贝特森(W.Batesen)和他的学生庞尼特(R·C·Punnett)在用香豌豆进行的杂交实验中,就发现了生物性状的连锁遗传现象,但当时他们无法对此做出正确的解释。

1912年,摩尔根和他的学生在果蝇的白眼和红眼、黄体和褐体这两对相对性状的遗传实验研究中,发现了与贝特森在香豌豆杂交实验中同样的连锁遗传现象。到1912年底时,他们一共发现了40种用肉眼可见的异常的果蝇突变。每当发现一个突变体后,立即让其交配,“制造”出大批带有研究者需要的基因的果蝇。摩尔根把培养的带有白眼基因的雌蝇作为 1号染色体(即X染色体)的标记,用带班点的果蝇标记2号染色体,体色为橄榄色的标记3号染色体,弯翅果蝇标记4号染色体。以后,用这些雌蝇与新发现的突变雄蝇交配,摩尔根即可看出雄蝇的新发现的基因同哪个标记基因连锁在一起遗传了。比方说,要是同弯翅基因一起,那么,这个新的突变基因显然是在4号染色体上。摩尔根把所发现的几十个突变性状归纳为4组,这4组性状(基因)与果蝇的4对大染色体是对应的。基因的遗传可分为若干组;同组的基因一道遗传,而基因组的数目与染色体数相同,这就意味着基因很可能是染色体的一部分。

摩尔根在对连锁现象的进一步研究中,发现另一个事实:小翅和白眼基因都位于性染色体上,是连锁基因。但其后代中仅有白眼小翅的雄蝇,而且还生出一些白眼正常翅或正常眼小翅的后代。这似乎与刚得出的连锁遗传相矛盾。于是,他根据自己的实验结果创造出了“互换”的术语,即指染色体之间交换基因的过程。这种交换当两个连锁基因相隔相近时就不容易发生,当相隔较远时就容易发生。

摩尔根与他的学生还进一步提出了一种独到见解:断裂发生在两个特定基因之间的机会,将随两基因间距离的增加而增加。于是,两个遗传特性之间的距离,可以根据它们的连锁遗传被重组分离的机会来估计。也就是说,既然基因之间的交换与其间的距离密切相关。那么,我们就可以通过实验结果中交换发生的情况,反过来估计出基因间的距离,并由此可以制作出基因在染色体上的排列图。他的学生斯特蒂文特(A.H.Sturtevant)曾回忆道:“1911年下半年……我突然想到,连锁紧密程度的差异也许可以用来测量染色体上呈直线分布的基因的顺序。我回到家里,顾不上做我大学课程的作业,花了大半夜时间画出了第一张染色体图,其中包括伴性基因y(黄体色)、w(白眼)、v(硃砂眼)、m(小翅)和r(残翅)。这张图上的基因顺序和后来的标准染色体图一样,它们的相对距离也和标准图大体一致。”通过这样一个具有创新意义的大胆设想和一系列精密设计的杂交实验,运用染色体理论,摩尔根成功地揭示出了第三个遗传规律──连锁互换律。

3.遗传学的“圣经”──《基因论》

在摩尔根的周围,聚合了一群才华出众的学生。他们聪明能干,既善于独立开展工作,又有集体主义精神。他的学生斯特蒂文特描述“蝇室”里的情形:“我们是一个集体。每人都有他自己的实验要做,但谁对别人正在做什么都了如指掌,对每一项新的结果都自由讨论。我们不大管谁的实验是优先的课题,我们也不大在乎一种新的想法或新的解释是谁最先想到的。”正是这样的同力合作,摩尔根和他的学生以果蝇为实验材料,取得了遗传学研究中一系列成果。这包括:证实了孟德尔定律的可靠性;揭示了连锁互换律;证明了基因是存在于染色体上实实在在的物质,而且呈直线排列。他们还证明了生物的性别决定于染色体;发现了染色体的重复、缺失、易位、倒位、三体性、三倍性和并连X染色体;发现了位置效应、基因多效性、复等位基因以及受复等位基因影响的单一性状等。

1926年,摩尔根总结自己20余年来研究果蝇遗传学的成果,出版了集染色体遗传学之大成的名著《基因论》(《The Teory of the Gene》),系统地阐述了遗传学在细胞水平上的基因理论,丰富和发展了孟德尔遗传学说,使遗传学获得了前所未有的大发展。在这部称为遗传学的“圣经”中,摩尔根写道:“只有当这些理论能帮助我们作出特种数字的和定量的预测时,它们才有存在的价值,这便是基因论同以前许多生物学理论的主要区别。我们仍然很难放弃这个可爱的假设:基因之所以稳定,是因为它具有一个有机的化学实体。”

这些研究成果,为摩尔根赢得了极高的声誉。他的学生穆勒(H.J.Muller)说:“摩尔根得出的关于基因互换的证据和他提出的基因相距越远互换频率越高的意见是一声惊雷,比之孟德尔定律的发现毫不逊色,它迎来了滋润我们整个现代遗传学的春雨。”果蝇研究的成果确立了摩尔根“20世纪的孟德尔”的地位。1933年,鉴于对遗传的染色体理论的贡献,摩尔根被授予诺贝尔生理学奖或医学奖,成为遗传学研究领域中第一个诺贝尔奖金获得者。

主要参考文献:

1.(美)伊恩·夏因、西尔维亚·罗贝尔著,庚镇城译,摩尔根传,上海·复旦大学出版社,1986

2.(美)加兰·艾伦著,梅兵译《遗传学的冒险者──摩尔根》,上海科学技术出版社,2003

附:果蝇作为“培养”诺贝尔奖得主的“明星昆虫”,已先后有5次获得诺贝尔生理

学或医学奖。

第1次:1933年,遗传学大师摩尔根(T.H.Morgan)第一个获诺贝尔生理学或医学奖。

第2次:1946年,美国遗传学家穆勒(H.J.Muller)证明了X射线能使果蝇的突变率提高150倍,同时,辐射也

会引起染色体畸变,获诺贝尔生理学或医学奖。

第3次:1995年,美国生物学家刘易斯(E.B.Lewis)和发育遗传学家维绍斯(E.Wieschaus)以及德国发

育遗传学家福尔哈德(C. N.Volhard)一起分享了当年的获诺贝尔生理学或医学奖。他们发现了果

蝇中的特定基因,并且表明了果蝇基因在染色体上与人类的相似之处。

第4次:2004年,美国科学家理查德·阿克塞尔(R.Axel)和琳达·巴克(L.B.Buck),发现了果蝇在嗅

觉功能上有个特定的大脑区域,获得当年的获诺贝尔生理学或医学奖。

第5次:2011年,诺贝尔生理学或医学奖授予在免疫学研究领域“先天免疫激活方面的发现”的三位科学家。

其中卢森堡出生的法国科学家霍夫曼(J.A.Hoffmann)发现了一种称为Toll的基因参与了果蝇胚胎

发育,同时也在构建果蝇的防御病毒和真菌的先天性免疫中扮

基于科学史的摩尔根果蝇杂交实验再探究

基于科学史的摩尔根果蝇杂交实验再探究人教版高中生物学必修2第2章第2节“基因在染色体上”的主要内容是摩尔根如何通过实验巧妙的证明“基因在染色体上”。通过实际听课及对本节课教学案例的搜集与分析,发现在实际教学过程中存在一些问题。本文在梳理常见问题的基础上,对科学史进行了深入挖掘,为一线教师更好的开展基于科学史的实验教学提供思路和借鉴。 1 摩尔根果蝇杂交实验教学中存在的问题 1.1 对果蝇杂交实验的历史路径认识不清晰 新教材P31(旧教材P29)描述“后来他们又通过测交等方法,进一步验证了这些解释”。 但教材并未说明摩尔根做了哪些测交,导致教师在讲授这部分内容时,忽略科学史发展的真正路径,错误的从已知出发,引导学生做出假设进行推断。比如,介绍完摩尔根的果蝇杂交实验现象后,就让学生尝试按照①眼色基因仅位于Y染色体上;②眼色基因仅位于X染色体上;③眼色基因位于X、Y染色体的同源区段上的3种假设在染色体上标注基因(如W表示X染色体上的红眼基因,w表示X染色体上的白眼基因),解释摩尔根的实验现象。 实际上,摩尔根在实验过程中并未面临过这样的问题,并不存在同时提出这三种假设然后一一排除,最终保留正确假设的过程。这样做不仅不符合科学史,也造成了推理环节的缺失,让学生对实验本质的理解出现障碍,从而使这个知识点成为学生学习的难点。

1.2 对教材理解不透彻,缺乏科学思维的引导 教师之所以对实验的真实过程认识不清晰,有一个重要原因就是对教材中的某些关键表述没有深入理解。比如新教材P31“由于白眼的遗传和性别相联系,而且与X 染色体的遗传相似,于是摩尔根及其同事设想.....”,通过什么实验确定白眼的遗传一定与性别相联系呢?何为与X染色体的遗传相似?这句话的背后是摩尔根做出假设的依据,不能理解这句话的含义,就会出现上述的第一个问题。 再比如,不乏有教师在讲本实验的测交实验时,单纯的以验证“控制眼色的基因位于X染色体上”为目的,错误的认为:如果用F1中的红雌与白雄测交,那么后代出现的四种表现型(红眼雌蝇,白眼雌蝇,红眼雄蝇,白眼雄蝇)的比例为1:1:1:1,是不能判断眼色基因与X染色体的关系,所以摩尔根的测交实验并没有这一组。 实际上这样的观点是将问题转化为:基因到底在常染色体还是性染色体上。这是有违摩尔根的初衷的,摩尔根真正的意图是想要通过实验找到基因在染色体上的证据,来验证自己对萨顿观点的怀疑是否正确。测交1结果与预测一致,可以证明基因在染色体上随着减数第一次分裂发生分离。因此在教师用书(旧)的第58页中描述到:“子一代红眼雌果蝇与白眼雄果蝇交配......后代......比例是1:1:1:1。摩尔根圆满地说明了他的实验结果”。 2 摩尔根果蝇杂交实验的真实历程 2.1 摩尔根果蝇杂交实验的背景

遗传学实验

实验一果蝇遗传性状的观察 背景知识 果蝇是在世界各地常见的昆虫,属于昆虫纲,双翅目,果蝇科,果蝇属(Drosophila)。果蝇属有3000多种,我国发现800多种,遗传学研究中通常用的是黑腹果蝇(D.melanogaster)。作为遗传学研究的材料,果蝇具有非常突出的优点。它形体小,生长迅速,繁殖率高,饲养方便;世代周期短(约12天即可繁殖一带);突变性状多;染色体数目少,基因组小;实验处理十分方便,容易重复实验,便于观察和分析。果蝇的遗传学研究广泛而深入,尤其在基因分离、连锁、互换等方面十分突出,为遗传学的发展做出了突出的贡献。目前果蝇仍然是遗传学、细胞生物学、分子生物学、发育生物学等研究中常用的模式生物。 一、实验目的 1.掌握果蝇的基本特征及鉴别雌、雄果蝇的方法,熟悉常见突变型。 2.了解果蝇生活周期特征及各阶段的形态变化。 二、实验材料 野生型和几种常见的突变型黑腹果蝇(Drosophila melanogaster)。 三、仪器设备 双筒立体解剖镜,培养瓶(粗平底试管或牛奶瓶)及麻醉瓶(与培养瓶一致的空瓶),白瓷板,毛笔。 四、药品试剂 乙醚,玉米粉,酵母粉,蔗糖,丙酸。 五、实验内容和步骤 (一)生活周期的观察 果蝇是完全变态昆虫,其完整的生活周期可分为4个明显的时期,即卵、幼虫、蛹和成虫(图1-1)用放大镜从培养瓶外即可观察到这4个时期,也可取出用立体解剖镜仔细观察。 果蝇的生活周期长短与温度关系很密切,低温使生活周期延长,生活力减低,高于30℃使果蝇不育甚至死亡。果蝇培养的最适温度为20~25℃,25℃培养条件下果蝇从受精卵到成虫约10天,其中卵和幼虫期5天,蛹4天。成虫果蝇在25℃时约成活15天。 卵:受精卵白色,椭圆型,腹面稍扁平,长约0.5mm,在前端背面伸出一触丝,他能使卵附着在事物上。 幼虫:受精卵经24h就可孵化成幼虫,幼虫经2次蜕皮到第3龄期体长可达4~5mm。肉眼观察可见幼虫一端稍尖为头部,上有一黑色沟状口器。 蛹:幼虫4天左右即开始化蛹。化蛹前3龄幼虫停止摄食,爬到相对干燥的表面(如培养瓶壁),渐次形成一个菱形的蛹,起初颜色淡黄、柔软,以后逐渐硬化变成深褐色,此时即将羽化。 成虫:刚从蛹壳中羽化出来的果蝇,虫体较肥大,翅还未展开,体表也未完全几丁质化,所以成半透明的乳白色。透过腹部体壁还可以观察到消化道和性

果蝇杂交实验报告

果蝇杂交实验报告 实验日期:2012年9月28日 -2012年10月20日 小组编号:周五5组 小组成员:白坦蹊陈朱媛呼波王启明 【摘要】 实验利用果蝇,这一常用的遗传学模式生物,进行杂交实验,验证了基因的分离定律、自由组合定律、伴性遗传、基因连锁交换等遗传学规律。报告对实验数据进行了卡方检验,对三隐性状中的基因遗传距离进行了计算,证明实验数据基本符合假设的。 【实验原理】 一、遗传定律 1.基因分离定律 一对等位基因在杂合状态中保持相对的独立性,在配子形成时,按原样分离到不同的配子中去,理论上配子分离比是1∶1,F2代基因型分离比是1∶2∶1,若显性完全,F2代表型分离比是3∶1 。 控制体色性状的突变基因位于2号常染色体,正常体色对黑体完全显性,用正常体色果蝇与黑体果蝇交配,得到F1代都是正常体色,F1代雌雄个体之间相互交配,F2代产生性状分离,出现两种表现型。 2.基因自由组合定律 不同相对性状的等位基因在配子形成过程中,等位基因间的分离和组合是互不干扰,各自独立分配到配子中去,它们所决定的两对相对性状在F2代是自由组合的,在杂种第二代表型分离比就呈9∶3∶3∶1。 控制体色性状的突变基因位于2号常染色体,正常体色对黑体完全显性,控制眼色性状的突变基因位于性染色体。红眼对白眼完全显性,用黑体红眼果蝇(♀)与正常体色白眼果蝇(♂)交配,得到F1代都是正常体色,F1代雌雄个体之间相互交配,F2代产生性状分离,出现四种表现型。 3.伴性遗传 位于性染色体上的基因,其传递方式与位于常染色体上的基因不同,它的传递方式与雌雄性别有关,因此称为伴性遗传。 果蝇的性染色体有X和Y两种,雌蝇为XX,雄蝇为XY。红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。 当红眼雌蝇与白眼雄蝇杂交时,F1代雌性果蝇、雄性果蝇都为红眼,F2代雌性果蝇都是红眼,雄性果蝇红眼和白眼的比例为1∶1;当白眼雌蝇与红眼雄蝇杂交时,F1代雌性果蝇为红眼,而雄性果蝇为白眼,此现象又称为绞花式遗传,F2代雌性果蝇的红眼与白眼比例为1∶1,雄性果蝇的红眼与白眼比例也是1∶1 。 4.连锁与交换定律 连锁是指在同一同源染色体上的非等位基因连在一起而遗传的现象;互换是指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组。同一条染色体上的基因是连锁的,而同源染色体基因之间可以发生一定频度的交换,因此在子代中将发现一定频度的重组型,但一般比亲组型少得多。 5.基因定位 基因定位就是确定基因在染色体上的位置,确定基因的位置主要是确定基因之间的距离和顺序,而它们之间的距离是用交换值来表示的。只要准确地估算出交换值,并确定基因在染色体上的相对位置就可以把它们标志在染色体上,绘制成图。

摩尔根的果蝇实验室

摩尔根的果蝇实验室 假如你们问我怎么会有这些发现……我的回答是:一靠勤奋,……二靠明智地使用各种假说——我所说的“明智”,指的是愿意放弃任何假说,除非能为它们找到可靠的证据,三靠实验材料得当,……最后还靠少开些遗传学大会。 托马斯·亨特·摩尔根在国际遗传学大会上的主席致辞 托马斯·亨特·摩尔根的大名看来要名垂史册了,这实现了他父亲的愿望。摩尔根只有一个儿子,而儿子名下全是女儿。摩尔根这一支系后继无人,全家为之惋借。这时,他们想起了摩尔根的外孙詹姆斯·芒廷说的一句话:“赞美这个姓氏吧,把基因传递下去!”但更为重要的是摩尔根把这份文化遗产传给了几十个年青的遗传学家。 摩尔根在自己身边聚合了一群才华出众的学生,他们聪明能干,既善于独立开展工作,又有集体主义精神。摩尔根完全可以从哥伦比亚大学的研究生中挑选自己的工作班子,而且也确有许多研究生在蝇室内外干过一段时间研究工作。但他实在算得上知人善任,唯才是举,毫无门户之见,绝不计较对方的学历。他曾一度替一位普通动物学教授代课,在班上遇见了艾尔弗雷德·亨利·斯特蒂文特和卡尔文·B.布里奇斯。他俩都是年仅十几岁的本科学生。斯特蒂文特写了一篇文章,论述他父兄在亚拉巴马州的农场里养的马的毛色。摩尔根看了稿子,印象很深,于是帮助他发表,题目是《纯种马谱系之研究》。后来,摩尔根让他干果蝇计数的工作。可惜斯特蒂文特是色盲,限制了他发现体色突变的能力。但工作不到两年,他年仅二十一岁时就做出了一件极为了不起的贡献:画出了基因在染色体上呈直线排列的顺序,不久后定名为“染色体图”。 1910年,摩尔根给年青的大学生上尔文·布里奇斯一份在实验室洗瓶子的工作。当布里奇斯透过厚厚的玻璃瓶发现了一只硃砂眼突变果蝇时,他马上被提升为摩尔根的私人助手,因为他的视力非同小可,这种突变常人用显微镜也不一定能看得出来。据说当时摩尔根还得自掏腰包支付布里奇斯的薪金。后来布里奇斯发现了好多突变。他还发现了一些不寻常的遗传方式,他自己推测,这是由于一对染色体没有像通常那样分向两极,他称这种现象为“不分离现象(nondisjunction)”。他英年早逝,至1938年离开人世,始终是摩尔根亲密的同伴。布里奇斯和斯特蒂文特一样,读完大学取得学士学位后就直接在摩尔根指导下攻读博士学位。他们十七年的主要工作是“为哥伦比亚大学数苍蝇”。 在摩尔根蝇室工作的学生中,知名度最高的也许要算H.J.马勒。他1910年已在哥伦比亚大学取得学士学位,当时正在读硕士研究生。1911和1912两年他在康奈尔大学医学院学习,但过后又回哥伦比亚大学读博士学位,同时兼任助教或带学生实验,时间当是1912-1915年和1918-1920年,中间那段时间在赖斯大学朱利安·赫胥黎手下工作。虽然马勒不像斯特蒂文特和布里奇斯那样自始至终同原来的老师保持亲密的关系,但他们师

摩尔根果蝇实验中白眼基因为何不能在Y染色体上

摩尔根果蝇实验中,白眼基因为什么不能在Y染色体上 1.对教材内容的分析 1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌)× 白眼(雄) ↓ F1红眼(雌、雄) ↓F1雌雄交配 F2红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢?

摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢?是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢? 教材出示了摩尔根的假设,他认为:控制白眼性状的隐性基因由X染色体所携带,Y染色体上不带有白眼基因的等位基因, 即控制果蝇眼色的基因在Ⅰ区段上。之后摩尔根用这个假设合理的解释了他所得到的实验现象即实验一。后来通过测交实验 进行了验证。到这里,难免让人产生如此疑问:摩尔根怎么如此“草率”的认为控制眼色的基因在Ⅰ区段上?难道不需要排除基因在Ⅱ、Ⅲ区段的可能性吗? 事实上,摩尔根的果蝇实验是很严谨的,他除了做了上面的实验一,还做了如下两个实验。 实验二:将实验一中所得的F1中的红眼雌蝇和白眼雄蝇进行杂交。 P 红眼(雌)×白眼(雄) ↓

果蝇杂交实验实验报告38154

果蝇杂交实验正式报告 姓名: 学号: 班级: 日期:年月日

果蝇的杂交实验 一、实验目的 1、了解伴性遗传和常染色体遗传的区别; 2、进一步理解和验证伴性遗传和分离、连锁交换定律; 3、学习并掌握基因定位的方法。 二、实验原理 红眼和白眼是一对相对性状,控制该对性状的基因位于X染色体上,且红眼对白眼是完全显性。当正交红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼;反交时雌蝇都是红眼,雄蝇都是白眼。 三、实验材料和器具 野生型雌蝇雄蝇,突变型雌蝇雄蝇、放大镜、麻醉瓶、毛笔、超净台、乙醚、酒精棉球、酵母、玉米粉、丙酸、蔗糖、琼脂 四、实验流程 配培养基→选处女蝇→杂交(正交,反交)→观察F1 五、实验步骤 1、配培养基 2、选处女蝇在超净台上选取野生型和突变型的雄蝇雌蝇 3、杂交 (1)正交取红眼雌蝇5个和白眼雄蝇4个,放入培养瓶中(♀)红眼(+ +x x w) x)×(♂)白眼(y (2)反交取红眼雌蝇3个和白眼雄蝇4个,(♀)白眼(w w x x)×(♂)红眼(y x+) 贴上标签,放于恒温箱饲养 4、观察并记录 分别将正反交的F1代用乙醚麻醉,倒在白纸上,分别数红白眼的雌蝇和雄蝇,记录数据。 六、实验结果与分析

在正交实验中,F1代雌雄硬都是红眼;在反交实验中,雌性都是红眼,雄性都是白眼,但也出现了个不该出现的雌性白眼分析:在伴性遗传中,也有个别例外产生,这是由于2条X不分离造成的,F1中出现的不该出现的雌性白眼,但是这种情况极为罕见。 七、注意事项 要经常观察,如果培养瓶内有生霉的,必须将果蝇转移到干净的培养瓶中 F1代幼虫出现即可将亲本放出或处死 要严格控制温度,偏高的温度或者偏低的温度都可能引起果蝇的死亡 亲本必须是处女蝇,其原因是雌蝇生殖器官有受精囊,可以保存交配所得的大量精子,能使交配后卵巢产生的卵受精。在杂交时若不是处女蝇,其体内已储有另一类型雄蝇的精子,会严重影响实验结果,导致整个实验失败。 在F1代羽化前,一定要将亲本全部清除干净并处死,以免出现回交现象,影响结果 果蝇的麻醉要适当,掌握好麻醉时间,麻醉过度会使果蝇直接死亡 取果蝇的时候用毛笔,避免用其他锋利的器具,避免戳伤果蝇,影响生长繁育 八、个人总结 第一次饲养果蝇,开始时感觉这么复杂和漫长的实验是一个很大

对摩尔根果蝇杂交实验的疑问与解惑

对摩尔根果蝇杂交实验的疑问与解惑 合肥二中赵春宏(230022) 摘要本文针对课堂教学中教师和学生提出的,关于摩尔根果蝇杂交实验中存在的疑问,通过查阅资料,分析解决了相关问题,并进一步思考教材的设计,如何挖掘利用素材,培养学生思维。 关键词摩尔根果蝇杂交实验测交 高中生物必修2第2章第2节《基因在染色体上》一节,是培养学生思维的很好素材。本节介绍了科学家对遗传现象的探究过程,难点较多,有教师和学生对摩尔根的果蝇交配实验的描述和解释存有疑问。结合这些疑问,我通过查阅资料和分析理解,对问题进行了解答。 1疑问1:开始发现的白眼果蝇进行几次交配? 1.1疑问来源 教材32页“科学家的故事”介绍:在实验室,白眼果蝇临死前抖擞精神,与一只红眼果蝇交配,把突变基因传了下来。 教师教学用书57页叙述同上,但58页第二段叙述:“摩尔根做了回交实验。用最初出现的那只白眼雄蝇和它的后代中的红眼雌蝇交配,结果……”。 显然以上两处叙述有矛盾。 1.2资料描述 查找的国内遗传学著作,也有两种不同的叙述。但在美国学者的相关著作中都没有提到“用最初出现的那只白眼雄蝇和它的后代中的红眼雌蝇交配”。 《遗传学的先驱摩尔根评传》第五章叙述:它这样养精蓄锐,终于同一只正常的红眼雌蝇交配以后才死去,留下了突变基因,以后繁衍成一个大家系。之后叙述是:用白眼雄蝇同正常雌蝇杂交,后代全为红眼;白眼雌蝇与正常雄蝇杂交,后代一半为白眼,而且全为雄性。 在摩尔根的《基因论》中提到“孙代白眼雄蝇”与红眼雌蝇交配。 1.3分析解答 综合有关资料可以得出以下结论: 结论(1):最初出现的白眼雄蝇死亡前应该与多只红眼雌蝇进行了交配,只是在与某只红眼雌蝇交配后死去。 因为摩尔根所用的黑腹果蝇最多一次只能产生上百个后代,而很多资料显示F1得到1237个个体。很显然得到这么多后代,只能是开始那一只白眼雄蝇与多只红眼雌蝇交配的结果。正常情况下,摩尔根为了能让那只白眼果蝇顺利实现交配,他会将那只白眼果蝇与多只未交配的雌蝇放在一起,这样那只“白眼儿”就可能与多只雌蝇交配。 结论(2):最初出现的那只白眼雄蝇没有进行回交,教师教学用书58页第二段叙述有误。 很多资料描述摩尔根所做的回交实验有:(1)让F 2的白眼雄蝇与F1的红眼雌蝇交配;(2)让F 3的白眼雌蝇与F1的红眼雄蝇交配。 2疑问2:摩尔根通过哪种测交,进一步验证了解释

果蝇杂交实验实验报告

果蝇杂交实验【实验目的】 通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中熟练运用生物统计的方法对实验数据进行分析。 【实验原理】 1. 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有3000多种,我国已发现800多种。大部分的物种以腐烂的水果或植物体为食,少部分则只取用 以 果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。果蝇的生活史如下: 雌蝇→减数分裂→卵 受精 雄蝇→减数分裂→精子 羽化(第八天) (可活26~33天)产第一批卵

蛹(第四天) 第二次蜕皮第一批卵孵化 (第二天)(第零天) 第一次蜕皮幼虫 (第一天) 果蝇的生活周期和各发育阶段的经过时间 果蝇的性别及突变性状的鉴别: 果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。 色体上,直刚毛对焦刚毛为完全显性。用具有这两对相对性状的纯合亲本杂交,其性状的遗传行为应符合自由组合定律。 4. 生物某些性状的遗传常与性别联系在一起,这种现象称为伴性遗传(sex-linked inheritance),这是由于支配某些性状的基因位于性染色体上。果蝇属XY型生物,共有四对染色体,第一对为性染色体,其余三对为常染色体。雌果蝇的性染色体构型为XX,、雄果蝇为XY。控制果蝇眼色的基因位于X染色体上,在Y染色体则没有与之相应的等位基因。将红眼(+)果蝇和白眼(w)果蝇杂交,其后代眼色的表现与性别有关。而且,正反交的结果不同。 5. 不完全连锁基因在形成配子时,随同源染色体非姊妹染色体单体之间发生交换而交

遗传学实验果蝇杂交设计书

遗传学实验果蝇杂交设计书 一、单因子试验 1、实验原理 分离定律(law of segregation)也称孟德尔分离定律。一对基因在杂合状态下不互相影响,各自保持相对的独立性,而在形成配子的时候,就会互相分开,并按照原样分配到不同的配子中去。 在一般情况下,配子的理论分离比是1:1,子二代(F2)的基因型分离比是1:2:1,若显性完全,F2的表型分离比是3:1。杂种后代分离出来的隐性基因纯合体与原来隐性亲本在表型上是一样的,隐性基因并不因为和显性基因在一起而改变它的性质。 单因子杂交是指一对等位基因间的杂交。野生型果蝇是长翅(+/+),其长翅超出腹部末端约1/3.残翅果蝇的双翅已经退化,只留下少量残迹(vg/vg),无飞翔能力。Vg的基因座位于第二染色体,。对长翅(+)完全隐性。 用野生型长翅果蝇与残翅果蝇杂交,子一代(F1)全是长翅。子一代系内交配,子二代产生性状分离,长翅:残翅为3:1,。 基因型为+/vg(长翅)雌雄均可产生两种配子+和vg,并且各占1/2,。简单列表可知F2的性状比为3:1。 2、实验步骤 (1)确定杂交亲本,挑选处女蝇。 选用2#与18#为亲本进行杂交实验。 选用野生型长翅和突变型残翅果蝇为杂交亲本。雌蝇一定要选处女蝇。处女蝇的挑选方法:亲本饲养2周之后,提前10—12小时把培养瓶内所有活的成虫倒干净,然后在倒掉成虫的12小时内吧新羽化的成虫倒出来,装进消毒过的培养瓶或者平底试管进行适度麻醉,麻醉后放在消毒过的白瓷板或者硬纸板上把雌雄蝇分别挑出,雌蝇即为处女蝇。根据实验所需处女蝇数量的多少,可连续收集,但不要超过3天。 (2)配好杂交组合,进行正、反杂交。 正交组合:野生型长翅(♀)×突变型残翅(♂)。用消毒过的毛笔把3—4只长翅处女蝇扫入培养瓶中,然后把培养瓶水平放置,一面麻醉状态下的果蝇沾到培养基或水珠而被闷死,随机用同样方法扫入3—4只残翅雄蝇,塞紧棉塞,贴好标签,保持水平直至果蝇苏醒后放入25℃恒温培养箱中培养。 反交组合:将亲本性别交换。 (3)培养7天之后把亲本果蝇成虫全部倒出来处死。 (4)再过7天F1成蝇出现,把F1成蝇转移到经过消毒的空瓶子里进行适度麻醉,观察F1翅形的变化,并把结果记录。把5~6对适度麻醉的F1转入另一培养瓶,标明信息。 表2 正、反交F1果蝇翅形观察结果记录表

果蝇杂交实验实验报告

果蝇杂交实验 【实验目的】 通过实验验证分离规律、自由组合规律、伴性遗传和连锁互换规律,掌握果蝇杂交的实验技术和基因定位的三点测验方法,在实验中熟练运用生物统计的方法对实验数据进行分析。 【实验原理】 1. 果蝇(fruit fly)是双翅目(Diptera)昆虫,属果蝇属(genus Drosophila),约有3000多种,我国已发现800多种。大部分的物种以腐烂的水果或植物体为食,少部分则只取用真菌,树液或花粉为其食物。以果蝇作为遗传学研究的材料,利用突变株研究基因和性状之间的关系已近一百年,至今,各种研究遗传学的工具已达完善的地步,果蝇对今日的遗传学的发展有其不可磨灭的贡献;从1980年初,Drs. C. Nesslein-Volhard和E. Weichaus以果蝇作为发育生物学的模式动物,利用其完备的遗传研究工具来探讨基因是如何调控动物体胚胎的发育,也带动了其它模式生物(线虫、斑马鱼、小鼠和拟南芥等)的研究,且有非常具体的成果。 通常用作遗传学实验材料的是黑腹果蝇(Drosophila melanogaster)。用果蝇作为实验材料有许多优点: ⑴饲养容易。在常温下,以玉米粉等作饲料就可以生长,繁殖。 ⑵生长迅速。十天左右就可完成一个世代,每个受精的雌蝇可产

卵400~500个,因此在短时间内就可获得大量的子代,便于遗传学分析。 ⑶染色体数少。只有4对。 ⑷唾腺染色体制作容易。横纹清晰,是细胞学观察的好材料。 ⑸突变性状多,而且多数是形态突变,便于观察。 果蝇的生活史: 果蝇的生活周期长短与温度有密切关系。一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。 生活周期长短与饲养温度的关系 果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。果蝇的生活史如下: 雌蝇→减数分裂→卵 受精 雄蝇→减数分裂→精子 第一批成虫 羽化(第八天) (可活26~33天)产第一批卵

2.2“摩尔根果蝇实验教学中四种假设”教学 素材(人教版必修2).ppt

“摩尔根果蝇实验教学中四种假设”教学 摩尔根的实验:1910年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根用白眼雄果蝇作了果蝇杂交实验并发现后代的特点之后,提出问题:F2中红眼果蝇与白眼果蝇的数目比例是3:1,这是否符合孟德尔遗传定律?毫无疑问,3:1的特点是符合孟德尔遗传定律的,但是发现这种性状的遗传还跟性别有关,于是能推想到控制这种性状的基因在性染色体上。(先展示实验一,学生回答出红眼对白眼为显性,且眼色的性状符合孟德尔定律。但我又提示:细心的摩尔根在实验结果中又有了新的发现:眼色性状与性别有关,而分离定律不能解释性别问题。你认为控制红、白眼的基因位于什么染色体上?学生想到有可能是在性染色体上。学生想到有可能是在性染色体上。我再次提示:果蝇有两种性染色体,分别是X和Y,且存在同源区段和非同源区段 , 你认为控制果蝇眼色的基因是在哪条染色体上?这时让同学讨论交流,并鼓励学生进行假设。) 摩尔根当年按照这个思维过程思考,当他想到控制这种性状的基因在性染色体上之后,他会一下子就做出这个基因在X染色体上的假设吗?应该不会吧!如果考虑周全的话,他应该会做出那些假设呢?按常理应该会有三种假设:控制果蝇眼色的基因可能在:(1)X染色体上(2)在Y染色体上(3)在XY染色体上都有。 (1) 若仅位于Y染色体的非同源区段,则白眼雄蝇表示为XYb红眼雌蝇表示为XX P XX × XYb ↓

↓雌雄交配 F2 XX 、 XYb ①雌果蝇没有红、白眼色这一对相对性状。 ②摩尔根实验中的雄果蝇无论F1还是F2均为白眼。 与客观事实和实验事实均不符,此假说不成立。 (2) 若仅位于X染色体的非同源区段,则白眼雄蝇表示为XbY,红眼雌蝇表示为XBXB, 摩尔根的实验可表示为下图: P XBXB × ↓ F1 XBXb × XBY ↓雌雄交配 F2 XBXB、XBXb、XBY、XbY 按此假设推出的结果与实验结果符合。 (3) 若位于X、Y的同源区段,则白眼雄蝇表示为XbYb,红眼雌蝇表示为XBXB,摩尔根的实验可表示为下图: P XBXB × ↓

摩尔根的假设

对摩尔根果蝇杂交实验的分析及教学策略 1.对教材内容的分析 1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌) ×白眼(雄) ↓ F1 红眼(雌、雄) ↓F1雌雄交配 F2 红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢? 摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢?是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢?

果蝇杂交的实验报告

实验四:果蝇的杂交 姓名:许哲同组者:李永久 班级:生科08级学号:200805140167 实验时间:周二下午 摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。本次通过自行设计实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。 1.引言 孟德尔定律是G.J.孟德尔根据豌豆杂交实验的结果提出的遗传学中最基本的定律,包括分离定律和独立分配定律。孟德尔最早选用豌豆,根据从简单到复杂的原则,提出了分离定律和自由组合定律。对之后遗传学的发展奠定了基础。 分离定律(law of segregation)是指在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。其表现在两个具有相对性状的纯种个体进行杂交,F1代全部表现显性个体的性状,F1代自交,F2代出现隐性个体的性状。并且,在理论上,F2代中,显性个体与隐性个体的比例为3:1。孟德尔最初使用豌豆的花色(红花和白花来验证)。理论如图所示: 图一:分离定律图示 自由组合定律(the Law of Independent Assortment)是指非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,其实质是F1产生配子时,等位基因分离,非同源染色体上的非等位基因自由组合。最初由孟德尔在做两对相对性状(豌豆的子叶颜色黄色,绿色,圆粒和绉粒)的杂交实验时发现,基因分离比为9:3:3:1。(如图所示)

摩尔根白眼果蝇杂交实验的难点突破

摩尔根白眼果蝇杂交实验的难点突破 云南省大理新世纪中学(671000)刘永生 云南省祥云县第一中学(672100)张洪芬 关键词:摩尔根基因染色体性别决定果蝇 1.摩尔根白眼果蝇杂交实验的常规教学设计思路及其问题 人教版基因在染色体上这一节在教学设计上相对困难,尤其是摩尔根白眼果蝇的杂交实验更是设计的难点。最难的就在于摩尔根为什么直接提出假设:控制白眼性状的基因位于X 染色体上,Y染色体上没有对应的基因。 实际教学中笔者见到过两种处理方式,一种就是直接给出这个假设进行教学,这固然是可以的,但是随之带来的问题是,摩尔根后来的所有实验都可以用Y染色体上有隐性基因来解释。而这明显和假设中的Y染色体上没有对应基因不一致。 另一种处理方法是直接提出很多种假设,比如基因在X染色体上而不在Y染色体上,基因同时存在于X和Y染色体上等等。这种枚举的方式看似合理,但是做出这种假设的前提已经默认基因在染色体上了,接下来所做的从逻辑上讲仅是循环论证。而且如果需要枚举,你需要排除各种可能性,比如基因在细胞质、基因在细胞膜或者属于核质互作等等,而细胞质遗传以及核质互作等都是后来的研究成果,摩尔根那个时代根本不清楚,也无从谈起排除这些可能性。 2.摩尔根白眼果蝇杂交实验的假设中为什么忽视了Y染色体 那么摩尔根是如何说服其他科学家相信控制果蝇白眼性状的基因是位于X染色体上呢?在那篇划时代的论文中,摩尔根这样说到“…half of the spermatozoa carry a sex factor X,the other half lack it,i.e.,the male is heterozygous for sex”[1]。这里摩尔根明确指出了雄性果蝇产生两种精子,一种含有一个X,一种不含有X,也就是说雄性果蝇可以视作是杂合的。这里不禁有人要问:果蝇的性别决定中,摩尔根为什么选择性忽视了雄性中的Y染色体呢?实际情况是这样的,果蝇的性别决定不是人那样取决于有无Y 染色体,而是取决于X染色体的数量,有一条X染色体的将表现为雄性,有两条X染色体的将表现为雌性,例如XO和XY在在果蝇中都表现为雄性,XX和XXY都表现为雌性。摩尔根等人在白眼果蝇杂交实验之前就意识到了这一点[2]。这种情况下,摩尔根包括我们很自然地就会在果蝇的性别决定中选择忽视Y染色体。 摩尔根用白眼果蝇进行一系列杂交实验后,发现白眼性状的遗传与性别相关联,而果蝇的性别又取决于X染色体,这种情况下合理的假设只能是白眼基因与X染色体相关联。从而提出:白眼基因位于X染色体上。 3.假说的合理性是突破摩尔根的白眼果蝇杂交实验的关键 笔者认为,教学中要让学生认识到Y染色体在人和果蝇性别决定中的作用不同,否则学生会用将已经掌握的人类性别决定的知识套用到果蝇上面,这种前概念会影响到对摩尔根假

实验三-果蝇的伴性遗传

实验七果蝇的伴性遗传 14级生物技术1班王堽20140322142 一、目的 1、记录交配结果和掌握统计处理方法; 2、正确认识伴性遗传的正、反交的差别。 二、原理 1910年,摩尔根在实验室中无数红眼果蝇中发现了一只白眼雄蝇。让这只白眼雄蝇与野生红眼雌蝇交配,F1全是红眼果蝇。让F1的雌雄个体相互交配,则F2果蝇中有3/4为红眼,l/4为白眼,但所有白眼果蝇都是雄性的。这表明,白眼这种性状与性别相连系,外祖父的性状通过母亲遗传给儿子。这种与性别相连的性状的遗传方式就是伴性遗传。摩尔根等对这种遗传方式的解释是:果蝇是XY型性别决定动物,控制白眼的隐性基因(W)位在X性染色体上,而Y染色体上却没有它的等位基因。如果这种解释是对的,那么白眼雄蝇就应产生两种精子:一种含有X染色体,其上有白眼基因(W),另一种含有Y染色体,其上没有相应的等位基因;F1杂型合子(Ww)雌蝇则应产生两种卵子:一种所含的X染色体,其上有红眼基因(W);另一种所含的X染色体,其上有白眼基因(W);后者若与白眼雄蝇回交,应产生1/4红眼雌蝇,l/4红眼雄蝇,1/4白眼雌蝇,l/4白眼雄蝇。实验结果与预期的一样,表明白眼基因(W)确在X染色体上。

果蝇的性染色体有X和Y 两种类型.雌蝇细胞内有2条X染色体,为同配性别(XX),雄蝇为XY是异配性别.性染色体上的基因在其遗传过程中,其性状表达规律总是与性别有关.因此,把性染色体上基因决定性状的遗传方式叫伴性遗传。 果蝇的红眼与白眼是一对由性染色体上的基因控制的相对性状。用红眼雌果蝇与白眼雄果蝇交配,F1代雌雄均为红眼果蝇,F1代相互交配,F2代则雌性均为红眼,雄性红眼:白眼=1:1;相反用白眼雌果蝇与红眼雄果蝇交配,F1代雌性均为红眼,,雄性都是白眼,F1相互交配得F2代,雌蝇红眼与白眼比例为1:1,雄蝇红眼与白眼比例亦为1:1。由此可见位于性染色体上的基因,与雌雄性别有关系。 伴性遗传可归纳为下列规律: 1. 当同配性别的性染色体(如哺乳类等为XX为雌性,鸟类ZZ为雄性)传递纯合显性基因时,F1雌、雄个体都为显性性状。F2性状的分离呈3显性:1隐性;性别的分离呈1雌:1雄。其中隐性个体的性别与祖代隐性体一样,即1/2的外孙与其外祖父具有相同的表型特征。 2.当同配性别的性染色体传递纯合体隐性基因时,F1表现为交叉遗传,即母亲的性状传递给儿子,父亲的性状传递给女儿,F2中,性状与性别的比例均表现为1:1。 3.存在于Y染色体差别区段上的基因 在进行伴性遗传实验时,也会出现例外个体,即在 B 杂交组合,F1

遗传学实验 果蝇的伴性遗传 (1)

实验四果蝇的伴性遗传 PB12210261 徐导 中国科学技术大学生命科学学院 【摘要】 果蝇(Drosophila melanogaster)是研究遗传学的经典材料,因为它容易采集、培养;它繁殖率高,生活周期短,一般10-14天能繁殖一代;它的染色体数目是2n=8。本实验选取果蝇为实验材料了解其饲养条件,性状识别,观察完成伴性遗传的研究。 【关键词】 果蝇伴性遗传 【Abstract】 Drosophila melanogaster is a classic material of studying genetics. Firstly, it is easy for us to collect and to feed. Secondly, as we all know, Drosophila melanogaster has a 2n number of 8, which means we could easy to observe it, furthermore, it also has numerous of gene mutations. Finally, its biocycle is very short,therefore it can generate a generation in only 10-14 days. In this experiment we performed the Sex linked inheritance in Drosophila melanogaster. 【Key words】 Drosophila melanogaster Sex linked inheritance 【前言】 位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked inheritance)。果蝇的染色体有X和Y两种,雌性是XX,为同配性别;雄性是XY,为异配性别。伴性基因主要位于X染色体上,而Y染色体上没有相应的等位基因,所以这类遗传也叫X—连锁遗传。【实验部分】 一、实验目的 1、正确认识伴性遗传的正、反交的差别,进一步认识伴性遗传的特点。 2、记录杂交结果,掌握统计处理方法。 3、认识黑腹果蝇的形态学特征,观察果蝇的生活史。 4、正确认识伴性遗传的正、反交的差别,对伴性遗传的特点有感性认知。 5、通过对结果的观察记录,掌握实验的统计学处理方法。 二、基本原理 位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传(sex-linked inheritance)。 果蝇的染色体有X和Y两种,雌性是XX,为同配性别;雄性是XY,为异配性别。伴性基因主要位于X染色体上,而Y染色体上没有相应的等位基因,所以这类遗传也叫X—连锁遗传。 果蝇的红眼与白眼是一对相对性状,由单基因控制,位于X染色体上,基因之间的关系为红眼对白眼完全显性。当红眼果蝇(♀)和白眼果蝇(♂)杂交,F 1代中的果蝇均为红眼,F 代中红眼果蝇∶白眼果蝇=3∶1,但在雌果蝇中全为红 2 代中的雌果蝇为红眼,眼,在雄果蝇中红眼果蝇∶白眼果蝇=1∶1。当反交时,F 1

摩尔根果蝇杂交实验的三种假设

按常理应该会有三种假设:控制果蝇眼色的基因可能在:(1)X染色体上(2)在Y染色体上(3)在XY染色体上都有,如果他不作出这样的三种假设之后一一排除的话,别人可能就会用另外两种假设的观点反驳他! 想到这里,我的思路豁然开朗:如果将实验一的结果展示给学生,让学生进行分析,学生肯定能想到控制眼色性状的基因在性染色体上,但是不一定能得出基因由X染色体所携带这个假设。我想我的学生肯定也能想到另外两种假设,于是在课堂我是这样处理的:先展示实验一,学生回答出红眼对白眼为显性,且眼色的性状符合孟德尔定律。但我又提示:细心的摩尔根在实验结果中又有了新的发现:眼色性状与性别有关,而分离定律不能解释性别问题。你认为控制红、白眼的基因位于什么染色体上?学生想到有可能是在性染色体上。我再次提示:果蝇有两种性染色体,分别是X和Y,你认为控制果蝇眼色的基因是在哪条染色体上?这时让同学讨论交流,并鼓励学生进行假设。学生通过讨论后出现分歧,大部分的学生认为控制果蝇眼色的基因位于Y染色体上,有少部分的学生认为该基因在X染色体上,还有个别学生认为可能两个染色体上都有该基因。 该如何让学生推翻错误假设,得到正确结论呢?这个问题是个难点。一般来说在生物学生推翻错误假设的方法就是亲自去做实验,但是在课堂上做果蝇实验也不太现实。我想最好有一种办法能让学生自己把错误结论推翻,这样学生错得心服口服并且又记忆深刻。经过尝试,我发现可以利用刚刚学过的书写遗传图解的方式来解决这一重难点。但是这种基因型的写法是以前没接触过的,所以我先教会大家性染色体上基因的写法: 举两个例子如白眼雄蝇和红眼雌蝇 如果假设基因位于X染色体上,则白眼雄蝇表示为XbY,红眼雌蝇表示为XBXB 如果假设基因位于Y染色体上, 则白眼雄蝇表示为XYb红眼雌蝇表示为XX 如果假设基因X染色体和Y染色体上都有,则白眼雄蝇表示为XbYb,红眼雌蝇表示为XBXB 然后学生在白纸上尝试用遗传图解解释实验现象,经过尝试,大家发现“基因位于Y染色体上”的假设很明显是不正确的,而其余两种假设都可以解释实验一的现象。再如何二者择一呢?这又是一个新的难题。 我想到类比孟德尔所用的测交方法:如果Aa确实产生两种类型的配子,如何找到一组杂交实验能让A和a的基因显出来呢?应该是让其和隐性纯合子杂交。同样,如果假设控制果蝇眼色的基因在XY染色体上都有,那么一只纯合红眼雄蝇基因型应该是XBYB,如何让它产生的两种配子都显出来呢?应该是让其和隐性纯合子:白眼雌蝇杂交,这就是实验三。如何得到白眼雌蝇呢,在摩尔根所作的实验二就可以得到白眼雌蝇。 那么按照两种不同的假设,用纯合红眼雄蝇和白眼雌蝇杂交分别会得到什么样的结果呢?下面是两种不同的假设所得到的结果: 学生按照这样的方法,用不同的假设分别会得到不同的预期,那么哪一种对呢?展示下面摩尔根作的实验三的结果,结论自然显而易见。 在这个过程中,通过尝试书写遗传图解解释实验现象,不仅能提高应用遗传图解分析和解释遗传学问题的能力,还可以提高学生分析现象、推理验证和解决问题的综合思维能力。 以上教学过程的设计是以摩尔根的果蝇实验为材料,以学生的思维过程为线索进行设计,可能当初摩尔根的思路和我们想的并不完全一样,但是我觉得这种教学过程的设计有利于引起学生探究过程中的矛盾冲突,便于突破教学重点和难点。

摩尔根的假设

1903年,美国遗传学家萨顿用蝗虫细胞作为实验材料,研究精子和卵细胞的形成过程。他发现了减数分裂过程中,基因和染色体的行为的一致性,所以萨顿用类比推理的方法提出假说:基因在染色体上。但是类比推理的出的结论并不具有逻辑的必然性,其正确与否,还需要观察和实验的检验。 接下来,美国生物学家摩尔根用果蝇杂交实验为基因位于染色体上提供了证据。摩尔根选用果蝇作为实验材料的原因:果蝇是一种昆虫,有体小、繁殖快、生育力强、饲养容易等优点。1909年,摩尔根从野生型的红眼果蝇培养瓶中发现了一只白眼的雄果蝇,这只例外的白眼雄果蝇特别引起了他的重视,他抓住这个例外不放,用它作了一系列设计精巧的实验。 摩尔根首先做了实验一: P 红眼(雌)×白眼(雄) ↓ F1 红眼(雌、雄) ↓F1雌雄交配 F2 红眼(雌、雄)白眼(雄) 3/4 1/4 从实验一中,不难看出F1中,全为红眼,说明红眼对白眼为显性,而F2中红眼和白眼数量之比为3:1,这也是符合遗传分离规律的,也表明果蝇的红眼和白眼由一对等位基因来控制。所不同的是白眼性状总与性别相关联。如何解释这一现象呢 摩尔根认为,既然果蝇的眼色遗传与性别相关联,说明控制红眼和白眼的基因在性染色体上。在20世纪初期,生物学家对于果蝇的性染色体有了一定的了解。果蝇是XY型性别决定的生物,果蝇的Y染色体比X染色体长一些。X染色体和Y染色体上的片段可以分为三个区段:X染色体上的非同源区段、Y染色体上的非同源区段和同源区段。(如下图)。在雌果蝇中,有一对同型的性染色体XX,在雄果蝇中,有一对异型的性染色体XY。 那果蝇的眼色基因到底在哪里呢是在Ⅰ、Ⅱ、Ⅲ中哪个区段上呢 教材出示了摩尔根的假设,他认为:控制白眼性状的隐性基因由X染色体所携带,Y染色体上不带有白眼基因的等位基因,即控制果蝇眼色的基因在Ⅰ区段上。之后摩尔根用这个假设合理的解释了他所得到的实验现象即实验一。后来通过测交实验进行了验证。到这里,难

相关文档
相关文档 最新文档