文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池三元镍钴锰正极材料研究现状综述

锂离子电池三元镍钴锰正极材料研究现状综述

锂离子电池三元镍钴锰正极材料研究现状综述
锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状

摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。

三元系正极材料的结果:

LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。

由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

锂的高安全性及低成本等优点,利用分子水平的掺杂、包覆和表面修饰等方法来合成锰镍钴等多元素协同的复合正极材料,因其良好的研究基础及应用前景而成为近年来研究热点之一。对于LiMn x Co y Ni1- x-y O2材料来说,各元素的比例对其性能有显著的影响。Ni的存在能使LiMn x Co y Ni1-x-y O2的晶胞参数a和c值分别增加, c/a减小,晶胞体积增大,有助于提高材料的可逆嵌锂容量。但过多Ni2+的存在又会因为位错现象而使材料的循环性能变差。Co 能有效稳定复合物的层状结构并抑制3a与3b位置阳离子的混合,即减小Li层与过渡金属层的阳离子混合,从而使锂离子的脱嵌更容易,并能提高材料的导电性以及改善其充放电循环性能; 但随Co 的比例增大,晶胞参数中的c和a值分别减小(但c/ a值增加) ,晶胞体积变小,导致材料的可逆嵌锂容量下降。而引入Mn后,除了能大幅度降低成本外,还能有效改善材料的安全性能。但Mn 的含量太高则容易出现尖晶石相,从而破坏材料的层状结构。

LiNi1/3Co1/3Mn1/3O2的电化学特征

LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料在充电过程中的反应有以下特征:

(1)在3.75-4.54V之间有两个平台且容量可以充到250Ma.h/g,为理论容量的91%。

(2)通过XANES和EXAFS分析得到3.9V左右为Ni2+/Ni3+,在3.9V-4.1V之间为Ni3+/Ni4+。当高于4.1V时,Ni4+不再参与反应。

(3)Co3+/Co4+与上述两个平台都有关。

(4)充到4.7V时Mn4+没有变化,因此Mn4+只是作为一种结构物

质而不参与反应。

通过其在3.0-4.5V的循环伏安图可以看出LiNi1/3Co1/3Mn1/3O2第一次在4.289V有一不可逆阳极氧化峰,对应于第一次不可逆容量。在3.825V有一阳极氧化峰,这一对氧化还原峰在反复扫描时,峰电位和峰强度都保持不变,说明这种材料具有良好的稳定性。

合成方法对LiNi1/3Co1/3Mn1/3O2电化学性能的影响

LiNi1/3Co1/3Mn1/3O2的制备方法主要有固相法,共沉淀法,溶胶-凝胶法和喷雾热解法。

固相法

固相法是将计量比例的锂盐,镍和钴及锰的氧化物或盐混合,在高温下处理,由于固相法中Ni,Co,Mn的均匀混合需要相当长的时间,因此一般要在1000℃以上处理才能得到性能良好的LiNi1/3Co1/3Mn1/3O2正极材料。通过EXAFS研究,发现首次放电效率小是由于在放电过程中,Ni4+没有完全还原成Ni3+造成的。

金属乙酸盐与锂盐混合烧结—有机盐

Cheng等人将充分混合的化学计量的LiCH3COO?2H2O、Ni(CH3COO)

4H2O、Mn(CH3COO)2?4H2O 和Co(CH3COO)2?4H2O混合物加热到400 ℃2?

得到前驱体。球磨1h,然后在空气中加热到900℃并保温20h得到LiNi1/3Co1/3Mn1/3O2 粉末,在充电电流密度为20mAh/g 时,首次充电容量为176 mAh/g ,上限电压达4. 5V ,在50℃下循环35 次容量保持率为81 %以上,显示出较好的循环性能。

金属氧化物与锂盐混合烧结

Zhaoxiang Wang等人将化学计量的Ni2O3(85%)、Co2O3 (99%) 和MnO2与7%过量的LiOH?H2O充分混合后在850~1100℃烧结24h得到纯相的LiNi1/3Co1/3Mn1/3O2,其晶格参数为a=0.28236nm , c =1.44087 nm,XRD 衍射图谱说明产物具有a-NaFeO2型层状结构,晶型完美,电化学性能测试表现出良好的电化学性能。

金属氢氧化物与锂盐混合烧结

Naoaki等人将Ni(OH)2、Co(OH)2和Mn(OH)2按Co∶Ni∶Mn =0.98∶1.O2∶0.98 充分混合,球磨,在150℃下预热1h ,然后在空气中加热到1000℃烧结14h得到LiNi1/3Co1/3Mn1/3O2,其晶格参数为a= 0.2862nm, c=1.4227nm与计算的理论结果(a = 0.2831 nm , c = 1.388nm)接近,LiNi1/3Co1/3Mn1/3O2的晶胞体积为100.6×10-30m3 ,其值在LiCoO2和LiNiO2之间。组装成实验电池后,在30℃下,在充电电流密度为0.17 mA/cm2时,在2.5~4.6 V放电,充电容量为200mAh/g ,并表现出优异的循环性能。

共沉淀法

用氢氧化物作沉淀剂

Lee 等人以NiSO4、CoSO4、MnSO4和NaOH为原料,以NH4OH为络合剂合成球形Ni1/3Co1/3Mn1/3(OH)2前驱体,然后与LiOH?H2O充分混合,烧结得到层状球形的LiNi1/3Co1/3Mn1/3O2粉末。组装成实验电池,2.8~4.3V,2.8~4.4和2.8~4.5V电压范围内LiNi1/3Co1/3Mn1/3O2放电比容量分别为159 ,168 mAh/g和177 mAh/g ,并且在30℃时在20 mAh/g的

电流密度下具有优异的循环性能。

用碳酸盐作沉淀剂

禹筱元等人采用共沉淀法以NH4HCO3和Na2CO3为沉淀剂合成Ni、Mn、Co三元共沉淀前驱体,然后与Li2CO3球磨混合,在950℃下热处理20h ,冷却到室温得产物为球形或近球形形貌,颗粒均匀的LiNi1/3Co1/3Mn1/3O2正极材料。测得LiNi1/3Co1/3Mn1/3O2材料的晶格常数为

a=0.2866nm, c=1.4262nm电性能测试表明Li/LiNi1/3 Co1/3Mn1/3O2在2.8~4.6 V、0.1 C下的首次放电比容量为190.29 mAh/g,在2.75~4.2V、1 C下的初始放电比容量为145.5 mAh/g ,循环100次后容量保持率为98.41 %。

溶胶-凝胶法

溶胶-凝胶法是将有机或无机化合物经溶液,水解等过程形成溶胶,在一定条件下凝胶化等过程而发生固化,然后经热处理制备固体氧化物的方法。此法制备的产物具有化学成分均匀、纯度高、颗粒小、化学计量比可以精确控制等优点,有利于材料晶体的生成和生长,可以降低反应温度,缩短反应时间。Kim等人,将Ni(CH3COO)2?4H2O、Mn (CH3COO)2?4H2O和Co(CH3COO)2?4H2O溶解到蒸馏水中,用乙醇酸作为络合剂,在反应过程中滴加NH4OH 来调节pH 值在7.0~7.5之间,然后将反应体系在70~80℃下蒸发得到粘性的透明胶体。将胶体在450℃于空气中烘5 h得到粉末,球磨后于950℃烧结,并保温20 h ,淬冷至室温,得到非化学计量的Li [Li0.1Ni0.35–x/2Co x Mn0.55–x/2]O2(0≤x ≤0.3)。经电性能测试,在 2.5~4.6V之间循环有较高的放电容量为:184~

195 mAh/g ,表现出优异的电化学性能。

喷雾热解法

De-Cheng等人用喷雾干燥法制备Li/LiNi1/3Co1/3Mn1/3O2。将用蒸馏水溶解的LiNO3,Ni(CH3COO)2?4H2O、Mn(CH3COO)2?4H2O和Co(CH3COO)2?4H2O 作为最初的溶液。将溶液抽到微型的喷雾干燥仪中,制得前驱体。首先将前驱体加热到300℃,然后于900℃烧结,并保温20h得到LiNi1/3Co1/3Mn1/3O2粉末,在充电电流密度为20mAh/g时, 首次充电容量为208mAh/g ,充电电压达4.5 V,在50℃下循环35次容量保持率为85%以上,显示出较好的循环性能。

LiNi l/3Co l/3Mn l/3O2的修饰改性

由于Ni2+与Li+半径相近,在LiNi l/3Co1/3Mn l/3O2中仍然存在阳离子混排现象,导致电化学性能变差。为了消除或抑制阳离子混排现象,GH.Kim等选择Mg分别对LiNi l/3Co1/3Mn1/3O2中Ni、Co、Mn元素进行取代。Mg取代过渡金属在不同程度上减少了阳离子混排现象。当掺杂Mg取代部分的Ni或Co位时,会导致容量的减少,循环性能变差。当掺杂Mg取代部分的Mn位时,材料LiNil/3CO1/3Mnl/3O2的比容量、循环性能和在高氧化态下的热稳定性都得到提高。掺杂Ti可以提高材料LiNiO2在充电状态下的热稳定性,因此研究者在LiNi1/3Co1/3Mn1/3O2中引进Al、Ti元素,实验结果表明,掺杂Al、Ti对LiNi l/3Co1/3Mn l/3O2的结构没有改变,随着Al、Ti掺杂量的增加,只有参数有轻微的变小。掺杂Al、Ti取代部分Co会升高放电电压平台,提高材料在4.3V 下的热稳定性。Ti的加入同样可以提高LiNi l/3Co1/3Mn l/3O2材料在4.3V

下的热稳定性。为了得到更高比容量的LiNi l/3Co1/3Mn l/3O2,一方面是掺入高价态元素,增加材料中活性元素Ni的含量。Park等通过在LiNi1/3 Co l/3Mn1/3O2中掺入高价Mo6+部分取代Mn,不仅提高了放电比容量,还提高了材料的循环性能。另一方面是掺入能被氧化的元素,增加材料中活性元素的量。D.T.Liu和J.Guo等的研究表明,Fe在LiNi l/3 Co l/3Mn l/3O2中部分取代Co后,Ni和Fe能被同时氧化,得到相对较高的容量。Cr的掺入同样能在充电过程与Ni同时被氧化,得到较高的首次放电比容量,掺人Cr还能提高材料颗粒的大小、库仑效率和循环性能,并且允许大电流放电。在正极材料Li[Ni1/3Co1/3Mn1/3Cr x]O2中,当Cr的含量为x=0.02时,在2.3~4.6V电压范围内,以30mA/g电流密度充放电,放电比容量为241.9mAh/g。Kageyama等研究了掺F 对材料LiNi l/3Co1/3Mn1/3O2的影响。F的掺入会导致过渡金属的价态变化,引起一个复杂的晶格常数的变化,促进合成材料的颗粒在合成过程中增大,提高结晶程度,并且掺入少量的F能改善正极材料的界面,避免与电解液接触发生分解反应,提高正极材料的循环性能。LLiad和G.H.Kim等通过在LiNi l/3CO l/3Mn1/3O2中掺杂(A1和F)或(Mg和F),提高了材料结构的稳定性、可逆比容量和循环性能,并提高了材料的振实密度,从而提高了电池的能量密度。D.C Li和Y.Kinl等分别通过喷雾干燥法和溶胶一凝胶法研究了ZrO、TiO2和A12O3包覆对材料LiNi1/3Co1/3Mn1/3O2的影响。ZrO、TiO2和A12O3氧化物的包覆能阻止充放电过程中阻抗变大,提高材料的循环性能,其中ZrO的包覆引发材料表面阻抗增大幅度最小,A12O3的包覆不会降低初始放电容量。

其它三元复合材料

目前研究的三元复合系列材料主要有Li/LiNi0.5-x Co2x Mn0.5-x O2,Li/LiNi1-x-y Co x Mn y O2,Li/LiCo1-x-y Ni x Mn y O2, Li/LiMn1-x-y Ni y Co x O2等,以下是最近几年研究的个别材料

LiNi0.01Co0.01Mn1.98O4

唐致远等采用SAC(starch-assisted combustion)法和高温固相法分别合成锂离子电池正极材料LiNi0.01Co0.01Mn1.98O4,使用X 射线衍射仪、BET 法、粒度分析仪及扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料, 用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究. 结果表明, 两种方法制备的材料均为纯尖晶石相; SAC 法制备的LiNi0.01Co0.01Mn1.98O4颗粒小, 粒径分布均匀, 具有更好的结晶形态。 SAC法制备材料在0.1C 充放电条件下的初始放电容量为121.2mAh/g, 100次循环后容量损失仅为3.5%, 5C放电的初始放电容量则达到了103.5mAh/g。SAC法的一步工序具有操作简单、成本低廉的优势, 有望实现商业应用。

唐致远等采用溶胶凝胶法合成锂离子电池正极材料LiMn2O4、LiNi0.01Co0.01Mn1.98O4和LiNi0.01Co0.01Mn1.98O3.95F0.05。使用X 射线衍射、扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究。结果表明,合成的LiNi0.01Co0.01Mn1.98O3.95F0.05材料的初始容量高于L LiNi0.01Co0.01Mn1.98O4,而

循环性能优于LiNi0.01Co0.01Mn1.98O4和LiMn2O4,显示了阴阳离子复合掺杂对于阳离子单一掺杂的优势。

LiNi1/2Co1/6Mn1/3O2

国海鹏等用Co2+浓度递增的金属离子混合溶液分次共沉淀方法制备Ni1/2Co1/6Mn1/3O2(OH)2,以其为前驱体,通过高温固相反应得到具有Co含量梯度的层状LiNi1/2Co1/6Mn1/3O2,探讨了焙烧温度及Co含量梯度对材料的结构和电化学性能的影响。通过x射线衍射、扫描电镜、热重分析及恒电流充放电测试对合成的样品进行了表征。结果表明,700℃合成产物即具有类LiNi2的六方层状结构,800和850℃合成产物阳离子排列有序度高,层状结构显著。材料结晶度好,粒度均匀,粒径在亚微米级。合成温度800℃的梯度材料具有最佳的电化学性能,2.5~4.2V 0.1C倍率充放电50次后,梯度材料的容量仍保持在171.2 mAh/g.相同的焙烧温度,梯度材料比均匀材料的电化学性能更加优异。

LiNi0.4Co0.2Mn0.4O2

张进等以提高锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2的循环性能为目的,采用熔融浸渍法制备了A12O3和ZnO表面包覆的LiNi0.4Co0.2Mn0.4O2正极材料。微观组织结构分析结果表明,包覆后LiNi0.4Co0.2Mn0.4O2颗粒表面形成了一层厚度不均匀的纳米氧化物。电化学测试表明,ZnO和A12O3包覆提高了材料的循环稳定性,在1C恒流充放电循环50次后容量保持率由包覆前的79.7%分别提高到88.4%和100%。

LiNi0.3Co0.4Mn0.3O2

苏继桃等采用共沉淀法制备前驱体,并采用高温固相法合成单相层状结构LiNi0.3Co0.4Mn0.3O2材料,用X射线衍射,恒电流充放电方法对所合成材料与LiNi1/3Co1/3Mn1/3O2材料进行结构和电化学性能对比分析。研究结果表明,LiNi0.3Co0.4Mn0.3O2具有有序的二维层状结构,在2.75-4.3V电压区间以0.1C倍率进行充放电,首次放电容量,效率分别为152.3mAh/g和84.4%,LiNi0.3Co0.4Mn0.3O2具有更高的放电平台,以0.2C倍率进行30次充放电循环,容量保持率仍有97.4% LiNi0.45Co0.10Mn0.45O2

张宝等以Li2CO3和Ni-Co-Mn三元系氧化物为原料,在空气中通过固相反应制备LiNi0.45Co0.1Mn0.45O2。研究反应条件对产物结构的影响,采用扫描电镜(SEM)表征样品的形貌,用粒度分析,振实密度和比表面测定等手段比较不同合成条件对产物性能的影响。研究结果表明:当n(Li)/n(M)不同时,合成的产物性能差别很大,较适宜的n(Li)/n(M)为 1.4/1,球磨可以提高产物的振实密度和比表面,并且对改善材料电化学性能有显著影响,在 2.75-4.25V电压范围内LiNi0.45Co0.10Mn0.45O2首次放电比容量达到125.9mAh/g,50次循环后放电比容量为128.7mAh/g。

LiNi0.25Co0.5Mn0.25O2

王昌胤等人以LiOH.H2O和Ni,Co,Mn过渡金属或其氧化物为原料,采用固相法制备了锂离子电池正极材料LiNi0.25Co0.5Mn0.25O2。对产物进行了XRD,SEM及电化学性能测试。结果表明:过渡金属原料对所得产物性能的影响很大,在其他原料相同的情况下,以金属Mn为原料

所得产物相比以MnO2为原料所得产物具有结晶程度更加完整,颗粒尺寸更大,振实密度更高,电化学性能更好等特点,以金属Ni,Co,Mn 为原料所得产物的不可逆容量较低,首次放电比容量可达171.6 mAh/g,振实密度达2.87gcm-3

LiNi0.8Co0.1Mn0.1O2

王希敏等采用共沉淀法得到前驱体Ni0.8Co0.1Mn0.1(OH)2利用前驱体与LiOH.H2O的高温固相反应得到高振实密度的锂离子电池层状正极材料LiNi0.8Co0.1Mn0.1O2(2.3-2.5g/cm3). 初步探讨了合成条件对材料电化学性能的影响. 通过X射线衍射(XRD) 扫描电镜(SEM) 热重-差热分析(TG/DTG)以及恒电流充放电测试对合成的样品进行了测试和表征.结果表明在750℃氧气气氛下合成的材料具有较好的电化学性能. 通过XRD分析可知该材料为典型的六方晶系a-NaFeO2结构SEM 测试发现产物粒子是由500-800nm的一次小晶粒堆积形成的二次类球形粒子。电化学测试表明其首次放电容量和库仑效率分别为168.6mAh/g和90.5%,20次循环后容量为161.7mAh/g保持率达到95.9%是一种具有应用前景的新型锂离子电池正极材料

其它系列材料

Wang等合成了LiMn0.2Co0.l Ni0.7O2,LiMn0.2Co0.25Ni0.55O2和LiMn0.2Co0.3Ni0.5O2,循环稳定性一般,具有140-180 mAh/g的容量,放电电压低于LiCoO2具有与LiCoO2和LiNiO2相同的电化学行为。Oh等合成了Li[Ni0.5-x Mn0.5-x Co2x]O2(x = 0,0.05,0.10,0.15,0.20,0.33),经验证它们是单相的,放电容量随Co含量的增加而线性增加。LiNi0.4M

n0.4Co0.2O2, 在2.8-4.4V时具有175mAh/ g的初始容量,进行到30次

循环时仍具有很好的容量保持性,Co的掺入使阻抗降低。袁超群等以LiOH.H2O,Ni(OH)2 4H2O和MnO2为原料,在水热反应釜中预处理,然后进行高温固相反应,合成了一系列锂镍钴锰氧化物LiNi0.75-x Co x Mn0.25(x=0.05,0.10,0.15,0.20,0.25)。通过X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌,粒径及电化学性能进行了表征。结果表明:当x=0.20时,所合成的正极材料以50mA/g的电流密度在3-4.3V之间充放电时,首次放电比容量达172.5mAh/g,首次放电效率高达90.9%,30个循环后其放电比容量依然保持在161.1mAh/g。Lu等首次合成了LiNi x Co l-2x Mn x O2(x= 1/4,3/8),其在2.5-4.4 V时具有160mAh/g的容量,在热稳定方面优于LiCoO2。当x = 3/8时,最高截止电压降到4.2 V,循环稳定性得到提高。Chen等合成了LiCo x Mn y Ni l-x-y O2系列材料,经验证它们是纯相的。所合成的LiCo0.1Mn0.2Ni0.7O2和LiCo0.2Mn0.2Ni0.6O2的电化学性能较好,初始容量达150mAh/g.

结束语

从最近有关研究可以看出,层状Li-Co-Ni-Mn材料是很有开发价值的锂离子电池正极材料,特别是LiNi1/3Co1/3Mn l/3O2和LiNi0.6Co

O2具有很多优点:很高的容量,很好的循环稳定性、高倍率性能、0.2Mn0.2

热稳定性,在较高的温度下也有良好的循环稳定性,所以特别适合用作电动汽车用锂离子电池的正极材料。但合成方法还有必要优化,如目前的缎烧温度还较高,有必要找出低温合成方法,合成步骤还不简

化,不利于工业化生产。应尽量找出稳定又方便的合成方法,尽量降低Ni特别是Co的含量。应该进行掺杂研究,找出合适的掺杂元素和掺杂量,特别是应进行高价元素的掺杂研究,以得到性能优异、价格低廉和环保的材料。

锂离子电池三元镍钴锰正极材料研究现状综述

三元系锂电池正极材料研究现状 摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。 三元系正极材料的结果: LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。 由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸

三元镍钴锰正极材料的制备及改性

三元镍钴锰正极材料的制备及改性 摘要:三元镍钴锰正极材料作为锂电池正极材料,具有较高的可逆容量、结构 稳定性、热稳定性,它是当下电动汽车领域最具前景的锂离子电池正极材料之一。基于此,作者总结国内外与三元镍钴锰正极材料的制备及改性相关的知识,并结 合自己的理解,从材料制备方法和掺杂改性方面,介绍了三元镍钴锰正极材料制 备技术及改性技术的研究进展。 关键词:三元镍钴锰;正极材料;制备;改性 1三元镍钴锰正极材料的制备工艺 目前合成富镍三元材料的主流方法是首先采用共沉淀方法合成三元前驱体, 然后加入锂盐采用高温固相法合成最终产品。也有其他合成方法,如溶胶-凝胶、 共沉淀法等,但是不同的制备技术,最终所得材料的粒子尺寸和孔结构千差万别,对材料结晶程度、结构稳定性和锂离子传输过程产生巨大影响,进而影响材料电 化学性能。图1为 Li[Ni x Co y Mn z ]O 2晶体结构示意图。 图1 Li[Ni x Co y Mn z ]O 2晶体结构示意图 1.1高温固相法 高温固相法合成工艺简单,产量大,易于实现工业化,但产物粒径相对较大,粒径分布一致性差等缺陷,影响了其性能。Jiang[3]等在固相法制备三元111的过 程中发现,采用特殊的煅烧技术—等离子体辅助煅烧技术,不仅可以极大地降低 煅烧温度、缩减煅烧时间,同时也可以显著提升材料的电化学性能。与普通气体 不同,等离子体实质上是一种电离的气体,具有超高的电导率,且存在一定磁场 效应。在等离子体氛围煅烧过程中,由于等离子体的特殊物理特性,可以提高机 械混合后金属离子之间的化学反应活性,加快煅烧过程中元素的扩散速率,从而 实现三元镍钴锰正极材料的低温快速制备。他们以NiO、MnO2、Co3O4和 Li2CO3为原料经过机械混合后,置入配有等离子体发生装置煅烧炉中,在通入氧 气的条件下,经过600℃低温煅烧40min即可得到高性能Li(Ni1/3Co1/3Mn1/3)O2。与非等离子体氛围1100℃煅烧24h的三元正极材料相比,材料在0.1C(2.8~4.3V) 的初始容量从129.5mAh/g显著增加到218.9mAh/g,循环60圈后稳定性也从 71.89%提高至91.27%。Jiang等[3]的研究中,从提高煅烧过程中反应物活性的角 度入手,采用等离子体辅助煅烧技术,不仅极大地提高了材料的电化学性能,而 且弥补了固相法能耗过大的缺陷,为三元镍钴锰正极材料固相制备方法提供了新 方向。同时,在高温固相合成中,由于阳离子混排现象在高温时更加明显,所以 在煅烧结束时减慢降温的速率并且持续通氧气,控制氧分压,可以有效抑制阳离 子的混排。 1.2共沉淀法 化学共沉淀法一般是向原料中添加适当的沉淀剂与络合剂,使溶液中已经混 合均匀的各组分按化学计量比共同沉淀下来,再把它煅烧分解制备出目标产品。 通过改进传统的共沉淀方法,采用超声共沉淀技术制备LiNi0.6Co0.2Mn0.2O2,成 品有很好的层状结构和低的阳离子混排程度。采用改进的共沉淀法制备出浓度梯 度Li(Ni0.86Co0.10Mn0.04)O2正极材料,材料颗粒从核心到表层,Ni的含量逐渐 下降而Mn、Co的含量逐渐上升,该材料在3~4.4V电压平台下,首次放电比容量 达209mAh?g-1,在55℃、0.2C循环100次后容量保持率为86%,效果显著。 1.3溶胶-凝胶法

镍钴锰三元技术资料

正极材料微观结构的改善和宏观性能的提高与制备方法密不可分,不同的制备方法导致所制备的材料在结构、粒子的形貌、比表面积和电化学性质等方面有很大的差别。 目前LiNi1/3Co1/3Mn1/3O2的制备技术主要有固相合成法、化学沉淀法、溶胶凝胶法、水热合成法、喷雾降解法等。 溶胶-凝胶法:先将原料溶液混合均匀,制成均匀的溶胶,并使之凝胶,在凝胶过程中或在凝胶后成型、干燥,然后煅烧或烧结得所需粉体材料。溶胶凝胶技术需要的设备简单,过程易于控制,与传统固相反应法相比,具有较低的合成及烧结温度,可以制得高化学均匀性、高化学纯度的材料,但是合成周期比较长,合成工艺相对复杂,成本高,工业化生成的难度较大 化学共沉淀法:一般是把化学原料以溶液状态混合,并向溶液中加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解制备出微细粉料。化学共沉淀法分为直接化学共沉淀法和间接化学共沉淀法。直接化学共沉淀法是将Li、Ni、Co、Mn的盐同时共沉淀,过滤洗涤干燥后再进行高温焙烧。间接化学共沉淀法是先合成Ni、Co、Mn三元混合共沉淀,然后再过滤洗涤干燥后,与锂盐混合烧结;或者在生成Ni、Co、Mn三元混合共沉淀后不经过过滤而是将包含锂盐和混合共沉淀的溶液蒸发或冷冻干燥,然后再对干燥物进行高温焙烧。与传统的固相合成技术相比,采用共沉淀方法可以使材料达到分子或原子线度化学计量比混合,易得到粒径小、混合均匀的前驱体,且煅烧温度较低,合成产物组分均匀,重现性好,条件容易控制,操作简单,目前工业上已有规模生产 水热合成法:水热合成技术是指在高温高压的过饱和水溶液中进行化学合成的方法,属于湿化学法合成的一种。利用水热法合成的粉末一般结晶度高,并且通过优化合成条件可以不含有任何结晶水,且粉末的大小、均匀性、形状、成份可以得到严格的控制。水热合成省略了锻烧步骤和研磨的步骤,因此粉末的纯度高,晶体缺陷的密度降低。但是对于锂离子电池来说水热法并不是很好,当用水热法以CoOOH为前驱体合成LiCoO2时,研究表明在160℃的高压釜中反应48h,可以从混合物得到单相的Li CoO2,但其循环性能并不好,需要在高温下热处理,提高其结晶度后,LiCoO2的循环性能得以改善 其他方法:将镍、钴、锰、硝酸锂在氨基乙酸中于400℃点燃,燃烧产物碾碎后在空气中800℃加热4h,冷却后得到正极材料;将蒸馏水溶解的硝酸锂、镍钴锰盐通过喷雾干燥法制备得到正极材料;以镍钴锰盐为原料,柠檬酸为络合剂,配成溶液送入超声喷雾热分解装置,得到[Ni1/3Co1/3Mn1/3]O2前驱体,再将前驱体与锂盐混合高温烧结得到正极材料 评定三元材料好坏的方法因素(各种检测方法总结) 1、性能测试 循环性能测试:测试循环一定次数后容量保持率的大小;容量大小;容量衰减程度; 倍率性能测试:以一定倍率放电,看平均电压及容量保持率。平均电压越高越好。 高低温性能测试:在低温、常温、高温下电压降的多少,容量保持率多少无杂质峰;(006)/(102)及(108)/(110)峰明显分开说明层状结构明显;I(003)/I(104)比值越大,大于1.2,阳离子有序程度越高;R值(I(006)+I(102)/I(101))越小,晶体结构越有序; 2、SEM分析:产物形貌是否粘结,是否为球形,是否团聚,颗粒大小是否均匀,是否均匀分散,颗粒大小适中,表面是否粗糙,排列是否紧密, 3、成分分析:采用ICP-AES元素分析方法测定合成样品中各金属元素的 含量是否与理论值一致。 4、热重差热分析:即TG-DTA分析。在升温过程中测试样品晶型结构的转变、 材料自身熔融、吸附等物理变化;脱去结晶水、材料受热分解、在空气气氛中氧化还原等化

国家标准镍钴锰氢氧化物

国家标准《镍钴锰氢氧化物》 编制说明 (讨论稿) 《镍钴锰氢氧化物》编制组 编写单位:金川集团股份有限公司 2018年6月11日

国家标准《镍钴锰氢氧化物》编制说明 一、工作简况 1. 任务来源及计划要求 根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为20173793-T-610,项目完成时间为2019年12月。 2. 标准修订的目的及意义 受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。作为三元正极材料最关键的原材料,镍钴锰氢氧化物在过去十年里也得到了快速发展。为了满足下游客户的各种不同需求,镍钴锰氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。为了跟上产业发展的步伐,提高镍钴锰氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。 3. 产品简介 3.1 性质 镍钴锰氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。 3.2 用途 车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。 镍钴锰氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。

锂电池镍钴锰三元材料最新研究进展

锂电池镍钴锰三元材料最新研究进展 镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。 据披露,2014年中国锂离子电池正极材料产值达95.75亿元,其中三元材料为27.4 亿元,占有率为28.6%;在动力电池领域,三元材料正强势崛起,2014年上市的北汽EV200、奇瑞eQ、江淮iEV4、众泰云100等均采用三元动力电池。 2015年上海国际车展,在新能源汽车中,三元锂电池的占有率超过了磷酸铁锂电池成为一大亮点,包括吉利、奇瑞、长安、众泰、中华等大部分国内主流车企都纷纷推出采用三元动力电池的新能源车型。许多专家预言:三元材料凭借其优异的性能和合理的制造成本有望在不久的将来取代价格高昂的钴酸锂材料。 人们发现:镍钴锰三元正极材料中镍钴锰比例可在一定范围内调整,并且其性能随着镍钴锰的比例的不同而变化,因此,出于进一步降低钴镍等高成本过渡金属的含量,以及进一步提高正极材料的性能的目的;世界各国在具有不同镍钴锰组成的三元材料的研究和开发方面做了大量的工作,已经提出了多个具有不同镍钴锰比例组成的三元材料体系。包括333,523,811体系等。一些体系已经成功地实现了工业化生产和应用。 本文将较为系统地介绍近年来几种主要的镍钴锰三元材料的最新研究进展及其成果,以及人们为了改进这些材料的性能而开展的掺杂、包覆等方面的一些研究进展。 1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。

镍钴锰三元正极制备方法

1镍钴锰三元正极材料结构特征 镍钴锰三元材料通常可以表示为:LiNixCoyMnzO2,其中x+y+z=1;依据3种元素的摩尔比(x∶y∶z比值)的不同,分别将其称为不同的体系,如组成中镍钴锰摩尔比(x∶y∶z)为1∶1∶1的三元材料,简称为333型。摩尔比为5∶2∶3的体系,称之为523体系等。 333型、523型和811型等三元材料均属于六方晶系的α-NaFeO2型层状岩盐结构,如图1。 镍钴锰三元材料中,3种元素的的主要价态分别是+2价、+3价和+4价,Ni为主要活性元素。其充电时的反应及电荷转移如图2所示。 一般来说,活性金属成分含量越高,材料容量就越大,但当镍的含量过高时,会引起Ni2+占据Li+位置,加剧了阳离子混排,从而导致容量降低。Co正好可以抑制阳离子混排,而且稳定材料层状结构;Mn4+不参与电化学反应,可提供安全性和稳定性,同时降低成本。 2镍钴锰三元正极材料制备技术的最新研究进展 固相法和共沉淀法是传统制备三元材料的主要方法,为了进一步改善三元材料电化学性能,在改进固相法和共沉法的同时,新的方法诸如溶胶凝胶、喷雾干燥、喷雾热解、流变相、燃烧、热聚合、模板、静电纺丝、熔融盐、离子交换、微波辅助、红外线辅助、超声波辅助等被提出。 2.1固相法

三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333,扫描电镜图(SEM)显示其粒径均匀分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放电比容量可达161mAh/g。TAN等采用采用纳米棒作为锰源制备得到的333粒子粒径均匀分布在150~200nm。 固相法制得的材料的一次粒子粒径大小在100~500nm,但由于高温焙烧,一次纳米粒子极易团聚成大小不一的二次粒子,因此,方法本身尚待进一步的改进。 2.2共沉淀法 共沉淀法是基于固相法而诞生的方法,它可以解决传统固相法混料不均和粒径分布过宽等问题,通过控制原料浓度、滴加速度、搅拌速度、pH值以及反应温度可制备核壳结构、球形、纳米花等各种形貌且粒径分布比较均一的三元材料。 原料浓度、滴加速度、搅拌速度、pH值以及反应温度是制备高振实密度、粒径分布均一三元材料的关键因素,LIANG等通过控制pH=11.2,络合剂氨水浓度0.6mol/L,搅拌速度800r/min,T=50℃,制备得到振实密度达2.59g/cm3,粒径均匀分布的622材料(图3),0.1C(2.8~4.3V)循环100圈,容量保持率高达94.7%。 鉴于811三元材料具有高比容量(可达200mAh/g,2.8~4.3V),424三元材料则可提供优异的结构和热稳定性的特点。有研究者试图合成具有核壳结构的(核为811,壳层l为424)三元材料,HOU等采用分布沉淀,先往连续搅拌反应釜(CSTR)中泵入8∶1∶1(镍钴锰比例)的原料,待811核形成后在泵入镍钴锰比例为1∶1∶1的原料溶液,形成第一层壳层,然后再泵入组成为4∶2∶2的原溶液,最终制备得到核组成为811,具有壳组成为333、424的双层壳层的循环性能优异的523材料。4C倍率下,这种材料循环300圈容量保持率达90.9%,而采用传统沉淀法制备的523仅为72.4%。 HUA等采用共沉淀法制备了线性梯度的811型,从颗粒内核至表面,镍含量依次递减,锰含量依次递增,从表1可明显看到线性梯度分布的811三元材料大倍率下放电容量和循环性明显优于元素均匀分布的811型。

高压镍钴锰三元正极材料研究进展及应用前景展望

龙源期刊网 https://www.wendangku.net/doc/f411310241.html, 高压镍钴锰三元正极材料研究进展及应用前景展望 作者:吴英强倪欢孟德超王莉何向明 来源:《新材料产业》2015年第09期 锂离子电池具有电压高、比能量高、质量轻、体积小、自放电小、寿命长等众多优点,是目前综合性能最好的电池体系之一,广泛应用于高能便携电子设备。在民用领域,锂离子电池正从3C领域(移动电子设备、智能手机、笔记本电脑等)迅速拓展到能源交通领域,包括电动汽车、电网调峰、太阳能、风能电站蓄电等。在国防军事方面,锂离子电池的应用则覆盖了陆(军用通信设备、单兵系统、陆军战车等)、海(潜艇、水下机器人)、空(无人侦察机)等诸多兵种。随着应用范围的迅速扩展,锂离子电池正朝着更高的能量密度(250~ 300Wh/kg)方向发展,同时对电池的安全性及循环寿命提出更高要求。基于当前的嵌入式电 极反应机制及锂离子电池的工艺技术,正极材料的性能是决定锂离子电池的能量密度、安全性及循环寿命等指标的关键因素。 目前研究和应用最多的正极材料主要有:①聚阴离子类型正极材料[1],如磷酸铁锂(LiFePO4)、 LiFe1-xMnxPO4、硅酸盐如硅酸亚铁锂(Li2FeSiO4)等;②尖晶石结构的正 极材料[2],如次锰酸锂(LiMn2O4)、LiMn1.5Ni0.5O4等;③六方层状结构材料LiNi1-x-yCoxMnyO2,如钴酸锂(LiCoO2)、LiNi0.5Mn0.5O2、LiNi1/3Co1/3Mn1/3O2等[3];④富锂层状材料xLi2MnO3·(1-x)LiMO2〔M=锰(Mn),镍(Ni),钴(Co)〕等[4]。其中,LiFePO4广泛应用于动力锂离子电池的正极材料,但受限于理论比容量及电压平台,LiFePO4电池能量密度的提升空间很小。LiMn2O4具有三维的锂离子扩散通道,电压平台高、倍率性 能优越,加上价格上优势,被认为是极具潜力的动力锂离子电池正极材料。然而,LiMn2O4 的理论比容量较低,且高温性能欠佳。通过改性(掺杂)能有效提高其高温性能,但受到理论比容量的限制,LiMn2O4单独使用作为正极在高比能电池领域的应用没有优势。与LiMn2O4处于同一家族的LiMn1.5Ni0.5O4尖晶石正极材料,由于锰离子全部处于正4价,不受Jahn- Teller效应的影响,其高温性能明显改善。在充放电过程中,镍离子为电化学活性过渡金属,其Ni4+/3+,Ni3+/2+氧化还原电位表现出4.7V左右的电压平台,其电池的能量密度比 LiMn2O4的高14.6%,因此受到研究人员的广泛关注及研究兴趣。然而高压(5.0V)电解液的短板限制了LiMn1.5Ni0.5O4材料的应用,虽然和钛酸锂负极搭配使用能取得很好的效果,但造成的能量密度下降将得不偿失。相比之下,富锂层状材料xLi2MnO3·(1-x)LiMO2无论在电压平台还是比容量上都表现出极大的优势。当充电截止电压(vs.Li)达到4.8V时,富锂层状材料可发挥出超过250mAh/g的可逆比容量,在目前所有的嵌入式正极材料中是最高的。正因为如此,富锂层状材料在学术界及工业界都引起极大的研究兴趣,被认为值下一代高比能电池的首选正极材料。然而这类正极材料的劣势也非常明显,例如循环过程的电压衰减[5]、充 放电过程中的电压滞后问题[6]、首次库伦效率低、倍率性能及循环稳定性差、电解液匹配问题、批量制备过程中的批次性问题,以上每一个问题都会严重影响富锂层状材料的产业化进

团体标准《NCM811型镍钴锰酸锂》-编制说明(预审稿).doc

《NCM811型镍钴锰酸锂》 团体标准编制说明 (预审稿) 一、工作简况 1.1 任务来源与计划要求 根据《关于下达2018年第二批协会标准制修订计划的通知》(中色协科字[2018]75号)的文件精神,由北京当升材料科技股份有限公司负责起草《NCM811型镍钴锰酸锂》协会标准,项目计划编号:T/CNIA 046-2018,计划完成年限2019年。 1.2 产品简介 新能源车用动力锂电池选用的正极材料主要有锰酸锂、磷酸铁锂和镍钴锰酸锂三元材料,其中镍钴锰酸锂三元材料以其高容量、长寿命、高安全性等综合优势成为动力电池的首选。而三元材料又包括以LiNi1/3Co1/3Mn1/3O2,LiNi0.5Co0.2Mn0.3O2,LiNi0.6Co0.2Mn0.2O2及LiNi0.8Co0.1Mn0.1O2等为代表的不同镍、钴、锰含量组成的材料。 LiNi0.8Co0.1Mn0.1O2(称为NCM811型镍钴锰酸锂)即为镍钴锰酸锂三元材料的一种,其组成为镍钴锰摩尔含量约为79%~85%、5%~16%、5%~16%。 商品化的NCM811型镍钴锰酸锂,从形貌上区分为团聚型和单晶型两种,团聚型为一次颗粒团聚成球形或类球形的二次颗粒,单晶型为颗粒之间无团聚的单晶颗粒,其SEM图如图1所示。 图1 NCM811型镍钴锰酸锂产品SEM图(左为团聚型,右为单晶型)NCM811型镍钴锰酸锂作为应用前景优良的正极材料,制作成的锂离子电池可被应用于电动汽车,3C等领域。

1.3 标准编写的目的和意义 作为国家战略新兴产业,新能源汽车是应对能源危机、大气污染和汽车产业转型升级的有效途径。新能源汽车的续航里程、寿命和安全性等是人们关注的重点,这主要取决于动力锂离子电池尤其是正极材料。目前国内外动力锂电正极材料技术路线主要有3个材料体系:磷酸铁锂体系、锰酸锂体系、三元体系(NCM,NCA)。其中磷酸铁锂作为正极材料的电池充放电循环寿命长,但其缺点是能量密度、高低温性能、充放电倍率特性均存在较大差距,且生产成本较高,磷酸铁锂电池技术和应用已经遇到发展的瓶颈;锰酸锂电池能量密度低、高温下的循环稳定性和存储性能较差,因而锰酸锂仅作为国际第一代动力锂电的正极材料;而多元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,逐步超越磷酸铁锂和锰酸锂成为主流的技术路线。国内外主要电池供应商所选用的材料类型如表1所示。 表1国内外主要电池供应商所选用材料类型 国内外主要电池供应商主要选用镍钴锰酸锂三元材料。镍钴锰三元材料主要有LiNi1/3Co1/3Mn1/3O2(简称NCM111),LiNi0.5Co0.2Mn0.3O2(简称NCM523),LiNi0.6Co0.2Mn0.2O2(简称NCM622),LiNi0.8Co0.1Mn0.1O2(简称NCM811)等。在三元材料系列,技术相对成熟的为NCM111,已经在电动工具、电动自行车、充电宝等产品中得到应用,材料的比容量达到158mAh/g,循环寿命500周。但由于该材料的Co含量占过渡金属(Ni-Co-Mn)总量的33%,Ni+Co总量占比达到67%,材料的成本相对较高,而且由于专利垄断进一步

相关文档