文档库 最新最全的文档下载
当前位置:文档库 › 有机催化不对称Michael加成反应

有机催化不对称Michael加成反应

有机催化不对称Michael加成反应
有机催化不对称Michael加成反应

催化加氢总结

催化加氢学习知识总结 一、概述 催化加氢是石油馏分在氢气的存在下催化加工过程的通称。 ?炼油厂的加氢过程主要有两大类: ◆加氢处理(加氢精制) ◆加氢裂化 ?加氢精制/ 加氢处理 ◆产品精制 ◆原料预处理 ◆润滑油加氢 ◆临氢降凝 ?加氢裂化 ◆馏分油加氢裂化 ◆重(渣)油加氢裂化 ?根据其主要目的或精制深度的不同有: ◆加氢脱硫(HDS) ◆加氢脱氮(HDN) ◆加氢脱金属(HDM) 加氢精制原理流程图 1-加热炉;2-反应器;3-分离器; 4-稳定塔;5-循环压缩机 ◆加氢裂化:在较高的反应压力下,较重的原料在氢压及催化剂存在下进行裂解和加 氢反应,使之成为较轻的燃料或制取乙烯的原料。可分为: ●馏分油加氢裂化 ●渣油加氢裂化 加氢精制与加氢裂化的不同点:在于其反应条件比较缓和,因而原料中的平均分子量和分子的碳骨架结构变化很小。 二、催化加氢的意义

1、具有绿色化的化学反应,原子经济性。 催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。 2、产品收率高、质量好 普通的加氢反应副反应很少,因此产品的质量很高。 3、反应条件温和; 4、设备通用性 三、国内外几家主要公司的馏分油加氢裂化催化剂 四、加氢过程的主要影响因素 1 反应压力 反应压力的影响往往是通过氢分压来体现的,系统的氢分压取决于操作压力、氢油比、循环氢纯度和原料的汽化率等 ①汽油加氢精制 ?氢分压在2.5MPa~3.5PMa后,汽油加氢精制反应的深度不受热力学控制,而是取 决于反应速度和反应时间。 ?在气相条件下进行,提高反应压力使汽油的反应时间延长,压力对它的反应速度影 响很小,因此加氢精制深度提高。 ?如果压力不变,通过氢油比来提高氢分压,则精制深度下降。 ②柴油加氢精制 ?在精制条件下,可以是气相也可是气液混相。 ?处于气相时,提高反应压力使汽油的反应时间延长,因此加氢精制深度提高。 ?但在有液相存在时,提高压力将会使精制效果变差。氢通过液膜向催化剂表面扩散

不对称催化在有机化学中的应用(有机合成作业)

不对称催化在有机化学中的应用 不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。 不对称催化领域最关键的技术是高效手性催化剂的开发,因为手性催化剂是催化反应产生不对称诱导和控制作用的源泉。美国孟山都公司的Knowles和德国的Homer在1968年分别发现了使用手性麟一锗催化剂的不对称催化氢化反应,从此不对称催化反应迅速发展。近几十年来手性配体的开发是不对称催化领域最为关注的焦点,并已合成出上千种手性配体,其中BINAP和(DHQD)2PHAL等已实现工业化应用,对映选择性已达到或接近100%,在氢化、环氧化、环丙烷化、烯烃异构化、氢氰化、氢硅烷化、双烯加成、烯丙基烷基化等几十种反应中取得成功,同时在均相催化剂负载化、水溶性配体固载化等研究中也取得了突出成果。以下是不对称催化研究的一些实例。 一、脯胺酸及其衍生物催化的不对称Michael加成反应 Listd、组在2001年首次用脯氨酸作催化剂研究了不对称Michael成反应。以DMSO为溶剂进行催化反应,获得了较好的收率,但是选择性却很差。这与之前报道的脯氨酸催化的不对称Aldol反应相比,e.e值明显降低。 随后,2002年Endersd、组对该反应进行了进一步的探索。在筛选L.脯氨酸用量时,发现反应中实际起催化作用的是溶解于溶剂DMSO中的L.脯氨酸,为此于体系中加入一定量甲醇或以甲醇为溶剂来增大L.脯氨酸的溶解度,同时加大催化剂的用量,该反应的e.e.能够提高到57%,但是反应时间大大延长。 Leyd小组用脯氨酸衍生的四氮唑为催化剂17进行的不对称Michael反应,不仅克服了脯氨酸需要使用大极性的DMSO溶剂,而且还使e.e.值明显提高。研究表明,四氮唑环上H的酸性和脯氨酸的酸性相当,仍然是一个双功能型的催化剂。

的合成及其不对称催化氢化性能研究

广西师范大学 硕士学位论文 含NH官能团Ni(Ⅱ)配合物的合成及其不对称催化氢化性能研究 姓名:张玉贞 申请学位级别:硕士 专业:无机化学 指导教师:陈自卢;梁福沛 20070501

含NH官能团Ni(Ⅱ)配合物的合成及其不对称催化氢化性能研究 中文摘要 2004级无机化学研究生:张玉贞指导教师:陈自卢博士 梁福沛教授 以过渡金属配合物为催化剂催化氢化羰基化合物是近几十年来比较活跃的一个课题。特别是从上世纪90年代以来,对于后过渡金属(如Rh、Ru、Ir)含NH官能团配合物的催化研究更是取得了突破性进步。日本Noyori因在此方面的卓越成就而荣获2001年诺贝尔化学奖。 含NH官能团配合物的催化研究目前主要集中在贵金属(如Rh、Ru、Ir)。而对于3d 金属NH官能团配合物的催化性能研究还非常罕见。本论文合成了一系列Ni(Ⅱ)的NH官能团配合物,对其结构进行了表征,并且选取其中6种配合物检测其催化性能。 1.NiCl2与配体乙二胺(en)、邻苯二胺(opda)和N, N, N’, N’-四甲基乙二胺(tmen)反应得到了三种新配合物:[Ni(en)(2,2′-bipy)(H2O)2]Cl2(1), [Ni(en)(H2O)2(tmen)]Cl2·2H2O (2), [Ni(opda)(Phen)Cl2]· CH3OH(3)。配合物(1)属单斜晶系,P21/c空间群,晶胞参数为:a = 14.132(5) ?, b = 8.371(3) ?, c = 15.454(6) ?, β = 115.734(5)°;配合物(2)属正交晶系,P bcn空间群,晶胞参数为:a = 15.005(4) ?, b = 9.591(3) ?, c = 12.505(3) ?;配合物(3)属单斜晶系,C2/c空间群,晶胞参数分别为:a = 13.898(4) ?, b = 18.246(5) ?, c = 10.015(3) ?, β = 126.313(3) °。 2.NiCl2与环己烷乙二胺(dach)和(R, R)-1、2-二苯基乙二胺[(R, R)-dpen] 反应得到了六个新配合物:[Ni(dach)(tmen)(H2O)2]Cl2·2H2O(5),[Ni(dach)(2,2′-bipy)2(Cl)2]·2H2O (6),[Ni2((R, R)-dpen)4(H2O)2Cl2]Cl2·CH3CH2OCH3(8),[Ni((R, R)-dpen)(phen)(CH3OH)2]Cl2(9),[Ni2(dach)2(phen)2 (Cl)2(H2O)2]Cl2(10), [Ni((R,R)-dpen)(tmen)(H2O)2]Cl2(11)。配合物(5)属正交晶系,I ba2空间群,晶胞参数为:a = 14.160(2) ?, b = 9.8435(14) ?, c = 15.221(2) ?;配合物(6)属单斜晶系,C2/c空间群,晶胞参数为:a = 15.270(15) ?, b =17.732(17) ?, c = 10.244(10) ?, β = 127.535(10)°。配合物(8)属三斜晶系,P1空间群,晶胞参数为:a = 19.738(7) ?, b =10.439(8) ?, c = 16.418(12) ?, α =105.044(11)°,β = 98.591(10)°,γ =90.003(11) °。配合物(9)属单斜晶系,C2/c空间群,晶胞参数为:a = 15.270(15) ?, b = 17.732(17) ?, c = 10.244(10) ?, β = 127.535(10)°,配合物(10)属单斜晶系,P21/n空间群,晶胞参数为:a =12.378(3) ?, b = 13.836(3) ?, c = 21.279(5) ?, β = 101.273(3)°。配合物(11)属三斜晶系,P1空间群,晶胞参数为:a = 9.017(3) ?, b =11.690(4) ?, c = 13.095(5) ?, α = 77.431(4)°,β = 89.984(4) °,γ =69.298(5)°。

催化氢化反应安全操作规范讲义

竭诚为您提供优质文档/双击可除催化氢化反应安全操作规范讲义 篇一:精细化工之氢化反应的控制 精细化工之氢化反应的过程控制 一、前言 精细化工是生产精细化学品的化工行业,主要包括医药、染料、农药、涂料、表面活性剂、催化剂,助剂和化学试剂等传统的化工部门,也包括食品添加剂、饲料添加剂、油田化学品、电子工业用化学品、皮革化学品、功能高分子材料和生命科学用材料等近20年来逐渐发展起来的新领域,通 常具有以下特点: 1.品种多,更新换代快; 2.产量小,大多以间歇方式生产; 3.由于具有功能性或最终使用性,因此要求产品质量高; 4.技术密集高,要求不断进行新产品的技术开发和应用技术的研究,重视技术服务; 5.设备投资较小; 根据省安全生产监督管理局“关于推进化工企业自动化控制及安全联锁技术改造工作的意见”的要求,根据国内现

行的危险度评价法,从物质、容量、温度、压力和操作等5 个方面,对化工企业各装置的危险度大小进行综合分析,危险等级在高度及以上(危险度分值≥16)的化工生产、储存装置,重点是硝化、氧化、磺化、氯化、氟化、重氮化、加氢反应等危险工艺的化工生产装置,进行化工企业自动化控制及安全联锁技术的改造。由于,精细化工生产过程与一般大化工、石油化工生产具有不同的特点与要求,对它的生产过程进行控制一直是行业内推行的难点,不论是他的环境控制、还是安全控制或者是他的工艺控制都是较难实施的问题。本文仅就精细化工的特点,结合安全改造实施的具体要求,讨论一下具体实施工作中的经验与看法,供大家参考。 二、氢化反应的特点 氢化是有机化合物与氢分子的反应,在医药化工领域,氢化一般有如下两种类型:不饱和键的氢化、脱去某些保护基团(又称氢解)。 在氢化中,高压可以可增加氢在溶剂中的溶解度,氢压对反应速度的影响可以是线性的,也可以是二次方的,甚至更强烈的影响。因此,氢化反应大多采用高压工艺环境。 另外,催化剂在氢化反应中起着重要的作用,大部分氢化都是在催化剂的催化下才得以完成的。 篇二:高压氢化釜操作要点 高压反应釜的操作过程分为安装、加氢、取样、泄氢、

芳香杂环化合物不对称催化氢化反应的研究进展

2005年第25卷有机化学V ol. 25, 2005第6期, 634~640 Chinese Journal of Organic Chemistry No. 6, 634~640 ygzhou@https://www.wendangku.net/doc/f413987504.html, * E-mail: Received August 2, 2004; revised October 25, 2004; accepted November 23, 2004.

No. 6 卢胜梅等:芳香杂环化合物不对称催化氢化反应的研究进展 635 坏稠环的芳香性比完全破坏单环的芳香性所需能量低. 另外, 芳香杂环化合物的氢化比非芳香杂环化合物容易, 这一方面因为杂原子对所在的环有活化作用; 另一方面, 杂原子上的孤对电子可参与和催化剂的金属原子配位, 使催化活性中心靠近底物从而发生氢化反应. 所以在芳香稠杂环化合物氢化时, 一般都是含杂原子的环被氢化[5]. 在均相催化体系中, 第一例报道的芳香杂环化合物的氢化是在1987年, Murata 等[8]使用原位产生的(+)-(DIOP)RhH 作催化剂, 乙醇作溶剂, 室温下对2-位取代的喹喔啉1进行不对称氢化(Eq. 1), 反应需36~72 h, 产物2-甲基-1,2,3,4-四氢喹喔啉只有3%的对映选择性(Table 1, Entry 1). 虽然ee 值很低, 但毕竟实现了对芳香杂环化合物均相不对称氢化, 为后来致力于研究芳香杂环化合物不对称氢化的工作者开辟了道路 . 1998年, Bianchini 研究小组[9]利用邻位金属化铱的二氢复合物fac -exo -(R )-[IrH 2{C 6H 4C*H(Me)N(CH 2CH 2- PPh 2)2}] (L1) 作催化剂, 实现了对2-甲基喹喔啉(1)的高对映选择性氢化, 取得了高达90%的ee 值(Table 1, Entry 2), 但转化率只有54%, 当转化率为97%时, ee 值为73% (Table 1, Entry 3), 反应要在100 ℃进行, 甲醇和异丙醇是最好的溶剂选择. 这是目前对2-甲基喹喔啉氢化取得的最好结果. 同一研究组在2001年又报道了用[(R ,R )-BDPBzPIr(COD)]OTf 和[(R ,R )-BDPBzPRh(NBD)]- OTf 作催化剂, 对2-甲基喹喔啉(1)进行氢化[10], 但ee 值不理想, 分别为23%和11% (Table 1, Entries 4 and 5). 在反应中, 他们发现铑的活性比铱的高, 但对映选择性低. 2003年, Henschke 和Casy 等使用Noyori 的RuCl 2- 氢化为模型反应, 50 ℃, 3.0 MPa 的氢气压力下, 对一系列的手性双磷配体和手性二氨的组合进行了筛选,结果发现(S )-xyl-hexaPHEMP (L3)和(S ,S )-DACH 的组合取得了较好的结果(73% ee ) (Table 1, Entry 6), 所有反应20 h 内转化率都在94%以上, 且S /C 为1000/1[11]. 该催化体系的活性很好, 但对映选择性只是中等. 表1 2-甲基喹喔啉的不对称氢化 Table 1 Asymmetric hydrogenation of 2-methylquinoxaline Entry Catalyst Yield/% ee /% 1 (+)-(DIOP)RhH 72.0 3 2 L1 53.7 90a 3 L1 96.5 73b 4 [L2Ir(COD)]OTf 40.7 23a 5 [L2Rh(NBD)]OTf 93.2 11a 6 RuCl 2/L3/(S ,S )-DACH 99.0 73c a CH 3OH 作溶剂; b i -PrOH 作溶剂; c t -BuOH 作溶剂. 2000年, Ito 等[12]首次报道了对N -Ac 和Boc 保护的2-位取代吲哚进行不对称催化氢化(Eq. 2), 反应在60 ℃下完成, 取得了最高为95%的ee 值. 他们使用的是一个反式鳌合配位的二茂铁双磷配体L4, 金属前体是[Rh(NBD)2]SbF 6. 这一催化体系对2-位取代的N -Ac 保护的吲哚, 无论是收率或对映选择性都取得了令人满意的结果, 碱碳酸铯的加入是取得高对映选择性所必须的. 对N -Boc 保护的吲哚氢化对映选择性不如N -Ac. 但对于3-位取代的N -Ac 保护的吲哚2在上面标准条件下, 反应不能转化完全, 除了所要的氢化产物3外, 还得到 了N 上Ac 被脱除的产物4 (Eq. 3).

有机小分子催化不对称羟醛缩合反应的研究

有机小分子催化不对称羟醛缩合反应的研究 不对称羟醛缩合反应是有机合成中最有效的碳—碳键形成反应之一。反应产物β-羟基酮的特殊结构,使其在天然产物的合成中占有非常重要的地位[1]。发展不对称羟醛缩合反应成为有机合成化学中的一项热门研究课题。 不对称羟醛缩合反应大体可以分成两类:一类是将底物酮或酯衍生为烯醇的形式进行反应,如Mukaiyama Aldol 反应[2];另一类是醛与酮之间的直接不对称羟醛缩合反应(Scheme 1),如有机小分子的不对称催化反应。这类反应因具有操作简单和原子经济性的显著优点而成为化学家们近年来的研究热点。 有机小分子作为不对称催化剂,还具有许多特殊的优点:与过渡金属催化剂相比,无毒无害易得、反应体系无重金属残留、较小的分子量、易于从产物中分离出来重复利用等特点,符合当前大力倡导的环境友好的绿色化学要求。脯氨酸是不对称合成反应中最常用的催化剂[3,4],其分子中既有羧基又有氨基,反应中生成的亚胺或烯胺中间体结构较为稳定,反应条件易于控制,因此,在不对称羟醛缩合反应中应用广泛。本文将主要讨论脯氨酸催化的不对称羟醛缩合反应予以介绍。 1 非水相中的不对称羟醛缩合反应

1.1 脯氨酸及其衍生物 1.1.1 L-脯氨酸 早在20世纪70年代, Hajos[5a]和Eder[5b]就发现脯氨酸能够催化分子内的羟醛缩合反应, 并具有高度的对映异构体选择性和较高的化学产率。该反应还被人们用来合成许多有用的化合物[6], 特别是用于类固醇和许多天然产物的合成中[7]。后来有关这方面的研究鲜有报道。直到2000年, Barbas和List 等[8]报道了脯氨酸催化的分子间不对称羟醛缩合反应, 并进行了深入的研究(Eq.1),大大拓宽了这一反应的应用前景。 Barbas研究小组[8a]首先以丙酮和对硝基苯甲醛作为反应物,研究了各种氨基酸对此反应的催化能力。研究结果表明:五元环效果最好,四元环次之,六元环活性很低,而非环状结构的普通氨基酸几乎没有催化活性。把羧基变成酰胺也不发生反应,这说明羧基的质子在催化反应中也起了关键作用。 作者由此对脯氨酸催化反应的机理进行了假设(Scheme 2),认为脯氨酸类似于醛缩酶(micro-aldo-ase)的功能,它不仅提供亲核的氨基基团,而且羧基可作为一种酸/碱助催化剂,可以促进机理中每一个单独步骤,包括:(a)氨基的亲核进攻, (b)醇氨中间体的脱水,(c)亚胺的脱质子化作用,(d)碳—碳键形成, (e, f)亚胺-醛中间物的水解。近年来陆续有文献对此反应机理进行报道[9],通过计算等多方面研究,证实了这种独特新颖的不对称羟醛缩合反应可能是通过上述烯胺机理进行的。

不对称催化氢化反应中配体研究进展

不对称催化氢化反应中配体研究进展Ξ 乔 振,王 敏 (中国农业大学应用化学系,北京 100094) 摘要:较系统地总结了用于不对称催化氢化反应的各类配体的特点及性能,对于每类配体的最新研究成果进行了较详细的评述。参考文献81篇。 关 键 词:不对称;催化氢化;配体;综述 中图分类号:O463.38,O621.3文献标识码:A文章编号:100521511(2002)012008209 Progress of L igands i n A sy mm etr ic Catalytic Hydrogenation Q I AO Zhen, W AN G M in (D epartm en t of A pp lied Chem istry,Ch ina A gricu ltu ral U n iversity,Beijing100094,Ch ina) Abstract:T he featu res and developm en t of every k ind of ligands in asymm etric catalytic hy2 drogenati on are syo tem atically discu ssed w ith81references. Keywords:asymm etric;catalytic hydrogenati on;ligand;developm en t;review 对潜手性不饱和底物(烯、酮、亚胺等)的不对称催化氢化是合成各种手性物质的重要途径。在过渡金属催化的不对称氢化反应中,手性配体作为手性诱导试剂对产物的光学纯度起着关键性的作用。在过去的30多年中,人们对不对称催化反应的研究取得了巨大的成就(如产物的对映体过量可达100%e.e.),并应用于许多重要药物(如左旋多巴、萘普生、布洛芬)及天然产物(如橙花醇等)的工业合成。但仍有不少具体反应的反应活性及对应选择性不太理想。因此设计及开发新的手性配体一直是不对称合成研究的一个重要和活跃的领域[1]。本文就近几年来出现的用于不对称催化氢化反应的新配体及其相关应用作一概述。 1 阻转异构体配体(A trop is m er ic L igands) 1.1 联萘系列配体 阻转异构体配体的手性由于其分子上基团的位阻作用使分子旋转受阻而产生(ax ial ch irality)。早在1977年,T am ao等[2]利用联萘酚 (1,1′2b is222nap h tho l)合成了第一个用于不对称催化氢化的阻转异构体配体N ap ho s(1),与R h ( )形成的络合物催化氢化乙酰肉桂酸得到54%e.e.的氢化产物,随后Grubb s[3]又合成了(-)21,1′2联萘22,2′2双二苯基膦酸酯(2),在R h ( )催化的脱氢氨基酸的不对称氢化反应中得到76%e.e.的产物;1980年,M iyano[4]合成了1,1′2联萘22,2′2双二苯基膦酰胺(3);接着N oyo ri[5]合成了1,1′2联萘22,2′2双二苯基膦(B I NA P,4) (Chart1),R h-B I NA P在催化氢化苯甲酰基肉桂酸时得到了100%e.e.的产物(Schem e1)。随后人们[6]对B I NA P的应用展开了广泛而深入的研究,证明B I NA P与R h( ),R u( )等过渡金属的络合物对不饱和键(C=C,C=O)的催化氢化具有高度的反应活性及对映选择性,并应用于其它催化领域(如氢硅烷化、烯胺异构化等)。B I2 NA P还成功地用于医药(如萘普生、布洛芬等)及天然产物(如香叶醇)的工业合成,大大降低了工业成本。B I NA P的开发成功并广泛应用,使人们对阻转异构体的的研究异常活跃起来。 — 8 — 合成化学 Ch inese Jou rnal of Syn thetic Chem istry  Ξ收稿日期:2000212224 作者简介:乔振,男,汉族,山东省农药研究所高级工程师,现为中国农业大学农药学专业博士。 通讯联系人:王敏,男,回族,教授,博士生导师,主要从事不对称合成研究。E2m ail:w angm in@m https://www.wendangku.net/doc/f413987504.html,

钌系催化剂在不对称催化氢化反应中的应用

钌系催化剂在不对称催化氢化反应中的应用 何伟平20083310 应化08-1班 摘要:潜手性酮不对称加氢生成的手性仲醇是合成手性药物和精细化学品的重要中间体,钌催化剂对催化无论是简单酮还是β-酮酸酯的不对称加氢反应具有显著的优越性。 关键字:不对称氢化、钌、酮、β-酮酸酯。 不对称催化反应作为一个手性增量过程已成为人工合成旋光性产物最有效的手段之一。其中不对称氢化反应发展较快,是研究得较多的一类反应。不对称催化具有容量大、产率高、反应速度快、产物分离相对容易、催化剂的手性易于通过改变配体来修饰等优点,使该领域成为国际化学家研究的热点。酮的不对称催化加氢已成为合成手性醇最重要的方法之一,而钌催化剂对催化酮的不对称加氢反应具有的高活性和高对映选择,使它一直被各国化学家所关注。本文对钌系催化剂不对称催化氢化简单酮和β-酮酸酯的最新进展进行综述。 1 简单酮的不对称氢化 对不含官能团的简单芳香酮来说,由于除酮羰基外不具有与催化剂中心金属进行配位的辅助功能基团, 因此导致钌-膦配合物催化剂对这类酮加氢的对映选择性不高。直到1995年Noyori发现Ru(Ⅱ) –BINAP-diam ineKOH催化体系后,才使得简单芳香酮的不对称催化加氢在催化活性和对映选择性上有了突破性的进展。此后,膦配体、钌、手性二胺形成的三元配合物常用作简单酮进行不对称催化氢化反应的催化剂。图1 可能的过渡态机理研究表明,手性双胺双膦钌催化剂之所以获 得很高的催化活性和对映选择性. 一个可能的原因 是:在反应过程中,上述催化剂可与反应底物酮生成 催化活性的六元环过渡态。首先,手性胺膦钌络合物 在碱的作用下生成Ru-H 络合物,红外光谱已证实了 该结构的存在。此外,手性配体中的“NH”官能团, 在催化反应过程中,通过形成氢—氧键,可能生成电 荷交替的六元环过渡态(图1)。 同时,催化剂各配体的存在使底物酮只能沿着特 定的反应通道与催化剂络合,从而有利于单一对映体产物的生成。 厦门大学李岩云等根据金属原子簇络合物含有多个金属中心,可望发挥多个金属原子间的协同作用,参与对底物的有效络合与活化的依据,成功设计并合成了用羰基钌原子簇 Ru 3(CO) 12 作为催化剂的前体,分别与手性双胺双膦配体组合的手性原子簇催化体系。相对 于单核钌催化剂,其转化率和ee值均有大幅提高(表 1)。 表 1 原子簇/手性胺膦配体混和体系催化芳香酮的不对称转移氢化 酮手性催化剂产率 (%) ee (%) 1 苯乙酮 Ru3(CO)12/5 91 81 2 苯乙酮 Ru3(CO)12/1 11 83

不对称催化在有机化学中的应用

不对称催化在有机化学中的应用 1110712 胡景皓 不对称催化反应是使用非外消旋手性催化剂进行反应的,仅用少量手性催化剂,可将大量前手性底物对映选择性地的转化为手性产物,具有催化效率高、选择性高、催化剂用量少、对环境污染小、成本低等优点。经过40年的研究,不对称催化已发展成合成手性物质最经济有效的一种方法。 不对称催化领域最关键的技术是高效手性催化剂的开发,因为手性催化剂是催化反应产生不对称诱导和控制作用的源泉。美国孟山都公司的Knowles和德国的Homer在1968年分别发现了使用手性麟一锗催化剂的不对称催化氢化反应,从此不对称催化反应迅速发展。近几十年来手性配体的开发是不对称催化领域最为关注的焦点,并已合成出上千种手性配体,其中BINAP和(DHQD)2PHAL等已实现工业化应用,对映选择性已达到或接近100%,在氢化、环氧化、环丙烷化、烯烃异构化、氢氰化、氢硅烷化、双烯加成、烯丙基烷基化等几十种反应中取得成功,同时在均相催化剂负载化、水溶性配体固载化等研究中也取得了突出成果。以下是不对称催化研究的一些实例。 一、脯胺酸及其衍生物催化的不对称Michael加成反应 Listd、组在2001年首次用脯氨酸作催化剂研究了不对称Michael成反应。以DMSO为溶剂进行催化反应,获得了较好的收率,但是选择性却很差。这与之前报道的脯氨酸催化的不对称Aldol反应相比,e.e值明显降低。 随后,2002年Endersd、组对该反应进行了进一步的探索。在筛选L.脯氨酸用量时,发现反应中实际起催化作用的是溶解于溶剂DMSO中的L.脯氨酸,为此于体系中加入一定量甲醇或以甲醇为溶剂来增大L.脯氨酸的溶解度,同时加大催化剂的用量,该反应的e.e.能够提高到57%,但是反应时间大大延长。

催化氢化反应安全操作原则(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 催化氢化反应安全操作原则(通 用版) Safety management is an important part of production management. Safety and production are in the implementation process

催化氢化反应安全操作原则(通用版) 1.催化剂领用量应遵循按需领用的原则。需要多少领多少,要避免一次领用过多,长期放置不用,而导致催化剂活性降低甚至失活,或者干燥失水甚至自燃。暂时存放须用氮气保护。 2.仪器设备的检查与使用 (1)实验室里进行催化氢化反应,实施前必须仔细检查所用仪器,不得使用有明显破损、有裂痕以及有大气泡的玻璃仪器; (2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子; (3)检查所用的胶管是否老化不可用以及接头处是否松动; 对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括:(1)场地是否整洁有序,避免摆放杂乱导致的安全隐患; (2)氢气及氮气的压力表头使用前必须进行打压试验,确认正

常后方可使用; (3)氢气及氮气钢瓶压力; (4)管路是否有裂纹,是否畅通; (5)各阀门是否漏气,并对确认其开/关状态; (6)热电耦温度计是否正常可用,线路是否完好不露电,插热电偶时注意插到底,使之真实反应体系温度等; 3.投料:向容器中加入溶剂和原料,搅拌溶解后,向容器中吹入氮气一段时间,使体系处于惰性气氛中,再加入催化剂。加入催化剂的动作要快,以尽可能减少催化剂自燃并引燃溶剂的可能性。或者先将催化剂加到溶剂中再一起转入反应器,再加入主原料,但因为体系呈黑色难以观察。 置换体系:用真空抽尽体系中的空气后,用氮气袋向体系中通入氮气,再抽尽氮气,如此重复操作3-5次,然后再抽尽氮气,用氢气袋通入氢气,如此重复操作2-3次,最后通入氢气进行反应。在高压釜中,要求置换次数均要多一些。 4.反应中间取样:取样前,先用氮气置换体系2-3此,或者吹

迈克尔加成反应初步

中国地质大学 姓名:孙旭 班级:031111 学号:20111004203

迈克尔加成反应的初步认识 摘要本文从Michael 反应的发展、反应范围、反应条件、反应历程、反应区的选择性简要叙述Michael addition reactions。 关键词Michael addition reactions 反映的发展 Michael反应是美国化学家Arthur Michael于1887年发现的。早在1883年,Komnenos等人已经报道了第一例碳负离子与α,β-不饱和酯的共轭加成反应 。但是,直到1887年Michael发现使用乙醇钠可以催化丙二酸二乙酯与肉桂酸乙酯的1,4-共轭加成,对该类反应的研究才得以真正发展。此后Michael又系统地研究了各稳定的碳负离子与α,β-不饱和体系进行的共轭加成反应,并在1849年报道了缺电子炔烃也可以

与碳负离子发生类似的反应。几十年来,化学工作者对本反应在有机合成的研究不断深入,反应范围也在不断扩大。本反应在有机合成中用途广泛,有些合成路线复杂、难以合成的化合物,通过本反应可一直被许多具有药理性的物质和天然产物,所以,近年来,对这个仍具有一定生命力的反应的研究十分活跃。 Michael反应是指在强碱作用下稳定的碳负离子与α,β-不饱和羰基化合物共轭加成反应。因此该反应也可以被称为Michael加成反应或者Michael缩合反应,在该反应中可以生成碳负离子的底物被称为Michael 给体,带有与拉电子基团共轭的烯烃或炔烃底物被称为Michael受体,反应产物也被称为Michael加成产物。现在人们把任何带有活泼氢的亲核试剂与活性π-体系发生共轭加成的过程统称为Michael反应。 反应历程及机理 碳-碳双键上有吸引电子的取代基时,其亲电性减弱而亲核性加强,能够接受亲核试剂的进攻。

催化加氢方程式

催化加氢方程式 石油馏分中的硫化物主要有硫醇、硫醚、二硫化合物及杂环硫化物,在加氢条件下发生氢解反应,生成烃和H2S. 主要反应如下: RSH +H2RH+H2S R S R+2H2+H2S (RS)2+3H22RH+2H2S S +4H2R C4H9+H2S R S +2H 2+H2S 石油馏分中的氮化物主要是杂环氮化物和少量的脂肪胺或芳香胺,在加氢条件下反应生成烃和NH3. 主要反应如下: R CH2NH2+H R CH3+NH3 N +5H2C5H12+NH3 N +7H2C3H7+NH3 N H +4H2C4H10+NH3 石油馏分中的含氧化合物主要是环烷酸及少量的酚、脂肪酸、醛、醚及酮,含氧化合物在加氢条件下通过氢解生成烃和H2O. 主要反应如下: OH+H 2+H2O COOH +3H2CH3+2H2O 石油馏分中的金属主要有镍、钒、铁、钙等,主要存在于重质馏分中,尤其是渣油中。这些金属对石油炼制过程,尤其对各种催化剂参与的反应影响较大,必须除去。渣油中的金属可分为卟啉化合物(如镍和钒的络合物)和非卟啉化合物(如环烷酸铁、钙、镍)。以非卟啉化合物存在的金属反应活性高,很容易在

H 2/H 2S 存在条件下,转化为金属硫化物沉积在催化剂表面上。而以卟啉型存在的金属化合物先可逆地生成中间产物,然后中间产物进一步氢解,生成的硫化态镍以固体形式沉积在催化剂上。加氢脱金属反应如下: 22,''H H S R M R MS RH R H --???→++ 烯烃在加氢条件下主要发生加氢饱和及异构化反应。烯烃饱和是将烯烃通过 加氢转化为相应的烷烃;烯烃异构化包括双键位置的变动和烯烃链的空间形态发生变动。这两类反应都有利于提高产品的质量。其反应描述如下: R -CH=CH 2 + H 2 → R -CH 2-CH 3 R -CH=CH -CH=CH 2 + 2H 2→ R -CH 2-CH 2-CH 2-CH 3 nC n H 2n →iC n H 2n (异构化) iC n H 2n + H 2 →iC n H 2n +2 值得注意的是,烯烃加氢饱和反应是放热效应,且热效应较大,因此对不饱和烃含量高油品加氢时,要注意控制反应温度,避免反应床层超温。

不对称催化

课程名称:不对称催化合成 姓名:文霞 学号: 201337120040 专业:化学工程

不对称催化合成试题 1.什么是不对称合成反应?什么是不对称催化合成反应? 答: 不对称合成(Asymmetric synthesis),也称手性合成、立体选择性合成、对映选择性合成,是研究向反应物引入一个或多个具手性元素的化学反应的有机合成分支。按照Morrison和Mosher的定义,不对称合成是“一个有机反应,其中底物分子整体中的非手性单元由反应剂以不等量地生成立体异构产物的途径转化为手性单元”。这里,反应剂可以是化学试剂、催化剂、溶剂或物理因素。不对称催化合成反应是通过使用手性催化剂来实现不对称合成反应。 2.命名手性化合物的方法有哪几种?主要用什么来表示手性化合物的光学纯度?测量对映体组成的方法主要有哪几种? 答:手性化合物命名的方法有R/S标记法,D/L标记法,赤式苏式标记法。主要用ee值表示光学纯度,测量对映体组成的方法有测定比旋度、核磁共振法、层析法(气相色谱和液相色谱)、毛细管电泳法、X射线衍射法等。 3.除了不对称碳中心的手性化合物外,还有哪些结构具有手性? 答:轴手性、平面手性、螺手性、八面体结构及其他手性结构体。 4.不对称催化剂的设计主要要考虑哪些因素?为什么说它是一个结构工程,同时又是一个功能工程? 答:手性分子催化剂由活性的金属中心和手性配体构成,金属中心决定催化剂的活性,手性配体则控制立体化学,即对映选择性。不对称催化是一种四维的化学,只有当理想的三维结构(x,y,z)和适当的动力(t)结合在一起时才能达到高效率,此时的催化剂设计不叫考虑其结构,还要使其达到催化的功能。5.不对称氢化反应研究发展过程中具有较大影响的研究有哪些?做出突出贡献的有哪几个研究者?不对称氢化反应的的底物主要哪些,其结构特点是什么,为什么? 答:用过渡金属进行对映性催化氢化的新方法 William S. Knowles 和 Ryoji Noyori 不对称氢化反应的的底物主要:烯烃的不对称氢化,包括N-acyl dehydroaminoacids,特别是Rh的双膦配体催化L-DOPA的商业化生产;Enamides 的不对称氢化反应,烯丙基型的化合物的不对称氢化,高烯丙醇型化合物以及α,

催化氢化反应安全操作原则通用版

管理制度编号:YTO-FS-PD740 催化氢化反应安全操作原则通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

催化氢化反应安全操作原则通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.催化剂领用量应遵循按需领用的原则。需要多少领多少,要避免一次领用过多,长期放置不用,而导致催化剂活性降低甚至失活,或者干燥失水甚至自燃。暂时存放须用氮气保护。 2.仪器设备的检查与使用 (1)实验室里进行催化氢化反应,实施前必须仔细检查所用仪器,不得使用有明显破损、有裂痕以及有大气泡的玻璃仪器; (2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子; (3)检查所用的胶管是否老化不可用以及接头处是否松动; 对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括: (1)场地是否整洁有序,避免摆放杂乱导致的安全隐

催化氢化反应安全操作原则(2021版)

催化氢化反应安全操作原则 (2021版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0155

催化氢化反应安全操作原则(2021版) 1.催化剂领用量应遵循按需领用的原则。需要多少领多少,要避免一次领用过多,长期放置不用,而导致催化剂活性降低甚至失活,或者干燥失水甚至自燃。暂时存放须用氮气保护。 2.仪器设备的检查与使用 (1)实验室里进行催化氢化反应,实施前必须仔细检查所用仪器,不得使用有明显破损、有裂痕以及有大气泡的玻璃仪器; (2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子; (3)检查所用的胶管是否老化不可用以及接头处是否松动; 对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括:

(1)场地是否整洁有序,避免摆放杂乱导致的安全隐患; (2)氢气及氮气的压力表头使用前必须进行打压试验,确认正常后方可使用; (3)氢气及氮气钢瓶压力; (4)管路是否有裂纹,是否畅通; (5)各阀门是否漏气,并对确认其开/关状态; (6)热电耦温度计是否正常可用,线路是否完好不露电,插热电偶时注意插到底,使之真实反应体系温度等; 3.投料:向容器中加入溶剂和原料,搅拌溶解后,向容器中吹入氮气一段时间,使体系处于惰性气氛中,再加入催化剂。加入催化剂的动作要快,以尽可能减少催化剂自燃并引燃溶剂的可能性。或者先将催化剂加到溶剂中再一起转入反应器,再加入主原料,但因为体系呈黑色难以观察。 置换体系:用真空抽尽体系中的空气后,用氮气袋向体系中通入氮气,再抽尽氮气,如此重复操作3-5次,然后再抽尽氮气,用氢气袋通入氢气,如此重复操作2-3次,最后通入氢气进行反应。

不对称氢化

摘要:不对称催化反应作为一个手性增量过程已成为人工合成旋光性产物最有效的手段之一。其中不对称氢化反应发展较快,是研究得较多的一类反应。不对称催化具有容量大、产率高、反应速度快、产物分离相对容易、催化剂的手性易于通过改变配体来修饰等优点,使该领域成为国际化学家研究的热点。 关键字:不对称氢化、钌、酮、β-酮酸酯。 随着科学技术的发展和人类生活质量的提高,人类对生命的重视和对药物的要求亦越来越高。近30年来,特别是最近10年来手性药物的合成已经成为世界各国十分重视的一个领域。20世纪60年代欧洲曾出现过以外消旋体形式出售的药物“反应停”造成的悲剧,因为其R构型异构体是一种镇静剂,而构型异构体却会导致胎儿的畸型,当外消旋的反应停”作为药物用来治疗妊娠反应时,导致了数以千计的胎儿畸型。为了不使这类悲剧重演,1992年美国食品和药物管理局(FDA)公布了一系列准则以指导这类药物的开发,规定对外消旋药物,必须对其进行拆分并证明其无毒副作用。欧共体也有类似的规定。 最新统计结果表明,1999年世界药品销售总额约3600亿美元,其中手性药物约1177亿美元,占药品总额的32.7%;2000年世界药品销售总额约3900 亿美元,其中手性药物约1325亿美元,比1999年约增加13.9%;预计到2005年手性药物的销售总额将达到约1718亿美元。北美、日本和欧共体都将在今后几年里上市一大批单一对映体的手性药物。所以,获得光学纯物质,已经成为当代化学家所面临的最具挑战性的任务之一。 长期以来,人们只能从天然产物中提取单一对映体药物,或用生物酶催化方法合成。如用一般的化学方法合成得到的是外消旋体,还需经过繁琐的化学拆分。不对称合成开辟了从非手性物质人工合成手性产物的新途径,而在众多的不对称合成反应中,在手性药物工业制备中最有发展前途的是不对称催化法。它具有手性增殖、高立体选择性和经济性等优点。 不对称催化反应体系包括均相不对称催化和多相不对称催化体系。近年来研究得较多的不对称催化反应包括不对称催化氢化、不对称催化环氧化、不对称催化氢甲酰化等。均相不对称催化体系自从20世纪60年代Knowels发现了手性铑一膦配体的不对称催化氢化反应以来,Noyori又成功地合成了BINAP等手性配体,并将其用于不对称催化氢化反应,得到了很好的光学选择

催化氢化反应的安全操作

编号:SM-ZD-92425 催化氢化反应的安全操作Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

催化氢化反应的安全操作 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 催化氢化反应的安全操作 安全监察部编 ★催化氢化反应在哪里进行?手续如何? 1、低于2个psi的催化氢化反应在自己所在的通风柜内进行,一般不须办手续。 可用氧气袋或气球去1号楼的第7层充气。气球最好用双层、3层、甚至4层。我们测过:连套4层的气球,充装到4立升的体积,也不足2个psi,非常安全。 压力换算:1个psi约等于0.068大气压。具体压力换算如下: A:1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm)B:1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大

相关文档
相关文档 最新文档