文档库 最新最全的文档下载
当前位置:文档库 › Calculation of crank train friction in a heavy duty truck engine and comparison with measured data

Calculation of crank train friction in a heavy duty truck engine and comparison with measured data

Calculation of crank train friction in a heavy duty truck engine and comparison with measured data
Calculation of crank train friction in a heavy duty truck engine and comparison with measured data

Special Issue Article

Calculation of crank train friction in a

heavy duty truck engine and comparison

with measured data

Phil Carden1,Carl Pisani1,Emmanuel Laine′2,Ian Field2,

Maryann Devine3,Andreas Schoeni4and Peter Beyer4

Abstract

This article describes measurements and calculations of friction losses in the crank train of an IVECO heavy duty truck engine.The main objectives were to quantify the effect on friction of variation in lubricant viscosity and to demonstrate the ability of CAE tools to predict friction at contacts in the crank train.Results of various measurements of friction are described.Cycle-averaged whole engine friction was derived from measurements of cylinder pressure and brake torque. In addition a motored friction teardown test was performed to separate the losses from different engine systems. Commercially available analysis tools were used to calculate friction at contacts in the crank train under the same conditions as the tests and this article describes key assumptions and input data and presents calculated results compared with measured data.

Keywords

Friction,engine,piston,piston rings,bearings,crankshaft

Date received:22March2012;accepted:12June2012

Introduction

Manufacturers of all kinds of automotive engines are currently trying to reduce friction to improve fuel con-sumption and so reduce CO2emissions.One possibil-ity for friction reduction on heavy duty diesel engines is the use of low viscosity oil1and one of the aims of this project was to investigate the e?ect of low viscos-ity oil on the engine friction.

The test engine was an IVECO Cursor13EU4 engine which is a typical heavy duty truck engine of I6con?guration having12.9L displacement with bore of135mm and stroke of150mm.This engine delivers peak torque of2500Nm between1000and1600r/min and peak power of412kW at1900r/min.

Engine friction is di?cult to measure with con?-dence(see Van Basshuysen and Schafer2or Xin3for an introduction to the subject).The various measure-ment techniques for piston friction are reviewed in Noorman et al.4and Nagar and Miers.5Friction between the piston assembly and liner has previously been measured by two methods.The?oating liner method4–9has the advantage that friction force is measured directly by force sensors under the move-able liner but the method has the major disadvantage that it cannot be applied to a production engine and is usually applied to a single cylinder test rig.

The alternative method for measuring piston fric-tion is sometimes referred to as the instantaneous IMEP method10and involves accurate measurement of cylinder pressure,strain in the connecting rod and crankshaft position.The gas force acting on the piston is calculated from the cylinder pressure,the rod force is calculated from the rod strain and the iner-tia force is calculated from the motion of the piston. The friction force is then calculated by taking a bal-ance of forces acting on the piston.This technique has the advantage that it could be applied to a production engine(if telemetry could be used to get the rod strain signal out)but the major disadvantage is the level of 1Ricardo Consulting Engineers Ltd,Bridge Works,Shoreham-by-Sea, UK

2Infineum UK Limited,Milton Hill,Abingdon,UK

3Infineum US,Linden,NJ,USA

4FPT Industrial,Arbon,Switzerland

Corresponding author:

Phil Carden,Ricardo Consulting Engineers Ltd,Bridge Works, Shoreham-by-Sea,BN435FG,UK.

Email:phil.carden@https://www.wendangku.net/doc/f45379691.html,

Proc IMechE Part J:

J Engineering Tribology

227(2)168–184

!Ricardo UK Ltd2012

Reprints and permissions:

https://www.wendangku.net/doc/f45379691.html,/journalsPermissions.nav

DOI:10.1177/1350650112453679

https://www.wendangku.net/doc/f45379691.html,

accuracy that can be expected because the friction is calculated by subtracting one large number from another.11

Both methods have proved useful for software val-idation but there must remain doubts about the dif-ferences in operating conditions between rigs and real engines.Also both methods appear to have increasing problems in making high?delity measurements at high engine speeds and loads when vibration inter-feres with the desired signals.

For the work described here it was essential to use a production heavy duty engine and was also neces-sary to gain some understanding of the overall friction response of the whole engine rather than just the piston.Two di?erent measurement methods were adopted.In the?rst the whole engine friction was deduced from measurements of cylinder pressure and brake torque under a range of di?erent operating speeds and loads.This technique is always subject to large potential errors in the absolute level of friction as discussed in the next section but was expected to have enough resolution to reveal the in?uences of engine load and oil viscosity on friction.

In addition a?ve-stage motored friction teardown test was performed giving information about the variation of friction at sub-system level across the engine speed range with no load under controlled temperature conditions.All tests were performed using two di?erent lubricants.On the?rst stage of the motored test the crank train friction was mea-sured alone(losses due to friction at pistons and crankshaft)with all other sources of loss removed. The errors should be small in this test but,of course the engine is not?red so the in?uence of gas pres-sures is not felt by the contacts in the crank train and the component temperature pro?les,particularly for pistons and liners,are not representative of a ?red engine.Despite these drawbacks this test method is widely used in industry and is very valu-able for ranking engines against one another in terms of friction.The philosophy here was to validate the software by simulating the motored operating conditions.

Crank train friction is also hard to calculate,par-ticularly for the piston skirt and rings on a?red engine,where loads and speeds vary widely and rap-idly during each half stroke and the local oil tempera-ture must be assumed.Ricardo Software codes ENGDYN,PISDYN and RINGPAK were used to create detailed models to solve Reynolds equation and calculate oil?lm thickness at the crankshaft bear-ings,piston skirt/liner contact and piston ring/liner contacts.There is a vast literature on this subject and this has recently been reviewed thoroughly.3 The focus of this article is on the key assumptions and boundary conditions and the subsequent results rather than the details of the mathematical models used in the software,which have been published before.12,16–18Estimation of whole engine friction from measurements of cylinder pressure and brake torque

The friction of the whole engine(FMEP)was deter-mined from measurements of cylinder pressure(used to calculate IMEP)and brake torque(used to calcu-late BMEP)under?red conditions with oil and cool-ant temperature controlled to90?1 C.The cylinder pressure was measured in3of the6cylinders using water cooled Kistler6061B pressure sensors.The brake torque was measured using an HBM in-line torque meter.

Data was recorded at the speed and load points indicated in Table1with the two lubricants with properties described in Table 2.The engine was ?ushed3times and the oil?lter was changed before making measurements with the second lubricant.

It is relatively easy to calculate the friction mean e?ective pressure(FMEP)using equation(1) FMEP?IMEPàBMEPe1THowever,the technique is subject to large potential errors because IMEP and BMEP are both much larger than FMEP.For example if IMEP is21bar and BMEP is20bar and there is?1%error in IMEP and?0.1%error in BMEP then the error in FMEP could be as high as?30%.This means that the results can only be used as a rough guide to the abso-lute level of friction but the resolution and repeatabil-ity should enable sensitivity to variations of load and oil viscosity to be evaluated with better con?dence.

T able1.Load/speed points for fired whole engine testing. Engine speed

(r/min)Part load Full load

800Min load,5,10,15bar18bar 1000Min load,5,10,15,20bar24bar 1200Min load,5,10,15,20bar25bar 1400Min load,5,10,15,20bar25bar 1600Min load,5,10,15,20bar24bar 1800Min load,5,10,15,20bar22bar 2000Min load,5,10,15bar18bar 2200Min load,5,10bar13bar

T able2.Lubricant properties.

Name Baseline

Low

viscosity Kinematic viscosity at40 C(cSt)75.7733.64 Kinematic viscosity at100 C(cSt)12.28 6.53 Density(kg/m3)862.8850.1

Carden et al.169

Figure 1shows the FMEP plotted against speed for various engine load (BMEP)levels.The graph shows the expected trends (friction increases with engine speed and engine load)but the non-smooth curves and the outlying points are representative of the under-lying potential error.Figure 2shows a comparison between the friction levels with the baseline oil and the low viscosity oil at full load and minimum load.This also shows the expected trends (friction was reduced by the lower oil viscosity and a greater reduc-tion was observed at low load where lubrication regime at contacts was more likely to be hydrodynamic).

Measurement of engine friction by motored teardown test

A ?ve-stage motored teardown test was performed.At each stage the oil and coolant temperatures were con-trolled to 90?1 C.The details of the builds were as follows.

Build 1–Crank train only.Cylinder head removed and replaced by a steel plate designed to block oil and coolant passages to the cylinder head and enable cylinder head bolt loads to distort the bores in a real-istic way but with large holes above the cylinders so pumping losses are avoided.Valve train,timing drive,oil pump,coolant pump and FEAD belt were not ?tted.

Build 2–As Build 1but with pistons and connect-ing rods removed and replaced by dummy weights bolted to the crank pins.

Build 3–As Build 2but with cylinder head,timing drive gears,camshaft and valve trains ?tted.Injector rockers were not ?tted.

Build 4–As Build 3but with oil pump ?tted.External oil circuit still in place to condition the oil to 90?1 C.

Build 5–As Build 4but with coolant pump and other FEAD belt and gear-driven auxiliaries ?tted.The auxiliaries were alternator,compressor,air con-ditioning pump,power-assisted steering pump and low pressure fuel pump and none of these were loaded during the test.

For this motored test an-line torque meter with a range of 500Nm and accuracy of 0.1%was chosen.The oil and coolant temperatures were controlled to within ?1 C using Ricardo test bed heating/cooling control units and at each build stage the engine was motored for 30min at 1200r/min to stabilise before taking measurements.The oil gallery pressure was manually set at each speed to achieve the same pres-sure (?0.05bar)as that measured on the ?red engine.Each measured torque value was the average of 3points taken while going up and down the speed range at intervals of 200r/min.Each build was mea-sured with both lubricants as shown in Table 2and ?ushed 3times

beforehand.

Figure 1.Measured whole engine friction with baseline

lubricant.

Figure 2.Effect of oil viscosity on friction at full load and minimum load.

170Proc IMechE Part J:J Engineering Tribology 227(2)

The results were processed to give losses for the following groups by subtraction as necessary:.Crankshaft group loss from Build 2directly .Reciprocating group loss from Build 1àBuild 2.Valvetrain group loss from Build 3àBuild 2.Oil pump group loss from Build 4àBuild 3.

Auxiliaries group loss from Build 5àBuild 4

Figure 3shows the distribution of measured losses under motored conditions from the various groups across the speed range using the baseline lubricant.The losses due to the crank train group,which were the focus of this study,were given by directly from Build 1and include losses of the crankshaft group and the reciprocating group.It can be seen on Figure 3that the crank train losses account for 55%of the total at 1000r/min and 57%of the total at 2000r/min.Figure 4shows the measured losses for the crank train group with baseline and low viscosity lubricants.The low viscosity lubricant reduced crank train losses under motored conditions by 19%at 1000r/min and 15%at 2000r/min.

The crank train group includes the friction losses at top piston ring/liner contact,second piston ring/liner contact,oil control ring/liner contact,piston skirt/liner contact,small end bearings,big end bearings,main bearings and crankshaft seals.In addition wind-age losses as the crankshaft and connecting rod move through crankcase gas were present together with losses due to pumping of the crankcase gas from one bay to the next as pistons move up and down.Further losses due to shearing of the lubricant as it escaped through the thrust gaps at each big end and main bearing may also have been present.

It is not possible to separate these detailed losses by any known measurement technique but calculations can potentially o?er some insight into their relative magnitudes.

Calculation of piston ring friction

Piston ring friction was calculated using Ricardo RINGPAK software.This program has fully coupled and integrated models for ring axial and twist dynam-ics,inter-ring gas dynamics,ring radial dynamics,lubrication at the ring/liner interface,oil consumption and wear.There is not enough space in this article to describe the model fully but this has been done previously.12

RINGPAK was used to calculate the oil ?lm thick-ness and friction power loss at each piston ring through one engine cycle of 720 .The following key assumptions were made:

.Secondary motion of the piston was ignored in the ring analysis.

.Measured mean cylinder pressure data were used to excite the model for ?red engine cases and for the motored case without cylinder head the pres-sure above the piston was assumed to be atmos-pheric.Figure 5shows the peak values of cylinder pressure across the speed range.

.Inertial forces due to the piston and connecting rod were included and for the motored cases these were the only applied

forces.

Figure 4.Measured crank train loss from motored teardown test with two

lubricants.

Figure 3.Measured losses from motored teardown test with baseline lubricant.

Carden et al.171

.Shear thinning of the lubricant was ignored because it was a small e?ect for the oils used.

.Thickness of the oil on the liner before the oil ring on the downstroke was assumed to be5m m and thickness of the oil?lm presented to the other rings was calculated internally in RINGPAK.

.Composite surface roughness was calculated assuming liner roughness of0.2Rpk and ring face roughness of0.5Ra..The calculated oil?lm thickness at each piston ring was divided by the composite surface roughness at each time step.If the result was less than4then the Greenwood–Tripp algorithm13was used to calcu-late the asperity contact load.The asperity contact friction force was then calculated by multiplying the asperity contact force by an assumed friction coe?cient of0.12(typical value for boundary lubricated contact from Xin3)and integrating over the contact area.

.For motored cases the local oil temperature in the contact was assumed to be90 C.Since in this test the oil temperature in the main gallery was con-trolled to90 C the implication here was that the drop in oil temperature between main gallery and liner was matched by the increase in oil tempera-ture due to shear heating between piston and the liner.

.For full load and minimum load cases the local oil temperature in the contact region was assumed to be the average of the liner temperature and the ring temperature.Graphs showing typical assumed variation in these temperatures are shown in Figures6and7.These assumed temperatures were based on measured data from a similar engine.In practice the shear heating e?ect will raise the local oil temperature to a slightly higher value than that of the surfaces but this was not accounted for in this analysis.

.The ring face pro?les were taken from the drawings and so represent new pro?les rather than worn

pro?les.

Figure7.Assumed liner

temperature.

Figure6.Assumed ring

temperatures.

Figure5.Peak cylinder pressure.

172Proc IMechE Part J:J Engineering Tribology227(2)

There is not enough space in this article to include all the input data.

Some typical RINGPAK results are given in Figures 8,9and 10.The results presented in these graphs are at 1600r/min with baseline lubricant but similar calculations were made at other speeds and using the low viscosity oil.

Figure 8shows the calculated minimum oil ?lm thickness,friction force and friction power loss

against crank angle for the top piston ring under motored conditions,minimum load conditions and full load conditions.Under motored conditions the low oil temperature results in large oil ?lm thickness at each mid stroke and each stroke had similar level of power loss.Under full load conditions the oil tem-perature was much higher at the top ring and this led to a lower level of oil ?lm thickness in each stroke.At the start of the expansion stroke the cylin-der pressure was very high and this led to

high

Figure 8.Minimum oil film thickness,friction force and friction power loss at top ring/liner contact at 1600r/min under various load conditions.

Carden et al.173

pressure behind the top ring.The combination of high pressure and high oil temperature led to predicted period of boundary lubrication and thus the calcu-lated friction power loss at the top ring was signi?-cantly a?ected by the engine load.

The analysis predicts that the asperity contact fric-tion power loss at the top ring during the ?rst half of the expansion stroke is signi?cant.The authors expect that this predicted friction power loss would be lower than that indicated if the worn pro?le of the top ring was used instead of the new pro?le as indicated in Priest et al.14but there was no opportunity to measure worn ring pro?les in this study.

Figure 9shows the calculated minimum oil ?lm thickness,friction force and friction power loss against crank angle for the second piston ring

under

Figure 9.Minimum oil film thickness,friction force and friction power loss at second ring/liner contact at 1600r/min under various load conditions.

174Proc IMechE Part J:J Engineering Tribology 227(2)

motored conditions,minimum load conditions and full load conditions.This showed a similar trend to the top ring but the e?ect of the gas pressure was much reduced.The level of calculated minimum oil ?lm thickness at the two top rings was similar to results presented in Tian.15

Figure 10shows the calculated minimum oil ?lm thickness,friction force and friction power loss against crank angle for the upper rail of the oil control ring under motored conditions,minimum load conditions and full load conditions.The lower rail had a very similar response.In this case the friction power loss was a?ected by tem-perature assumptions as load was increased but not by the cylinder pressure.The thin rail face and the higher ring tension combined to result in lower

?lm

Figure 10.Minimum oil film thickness,friction force and friction power loss at oil control ring top rail/liner contact at 1600r/min under various load conditions.

Carden et al.175

thickness and so some asperity contact friction was predicted throughout each stroke.

Figure 11shows the e?ect of engine speed and load on the combined cyclic averaged power loss at the piston rings for one cylinder.Results indicate that under motored conditions the piston ring friction rises strongly with speed and the friction loss with low viscosity oil was signi?cantly lower than that with the baseline oil.In this case the lubricant tem-perature was assumed to be 90 C at all speeds and for both oils.Under minimum load conditions at low engine speed the calculated piston friction loss was similar to the motored condition but at high speed the predicted friction loss was lower.At full load con-dition the predicted piston ring friction was signi-?cantly increased.Under ?red (full load and minimum load)conditions the predicted piston ring friction with low viscosity oil was increased compared with the baseline.

Calculation of piston skirt friction

Piston skirt/liner friction was calculated using Ricardo PISDYN software.There is not enough space in this article to describe the model fully but this has been done previously.16,17

PISDYN was used to calculate the oil ?lm thick-ness and friction power loss on both sides of the piston skirt at intervals of 1 through one engine

cycle of 720 .The following key assumptions were made:

.Skirt/liner gap was assumed to be fully ?ooded with oil.

.Measured mean cylinder pressure data were used to excite the model for ?red engine cases and for the motored case without cylinder head the pres-sure above the piston was assumed to be atmos-pheric.Figure 5shows the peak values of cylinder pressure across the speed range.

.Inertial forces due to the piston and connecting rod were included and for the motored cases these were the only applied forces.

.Shear thinning of the lubricant was ignored because it was a small e?ect for the oils https://www.wendangku.net/doc/f45379691.html,posite surface roughness was calculated assuming a worn skirt roughness of 3.9Ra and liner roughness of 0.2Rpk.

.The calculated oil ?lm thickness at each location on the piston skirt was divided by the compos-ite surface roughness at each time step.If the result was less than 4then the Greenwood–Tripp algorithm 13was used to calculate the asperity contact load.The asperity contact friction force was then calculated by multiplying the asperity contact force by an assumed friction coe?cient of 0.12(typ-ical value for boundary lubricated contact from Xin 3)and integrating over the contact area.

.For motored cases the local oil temperature in the contact was assumed to be 90 C.Since in this test the oil temperature in the main gallery was controlled to 90 C the implication here was that the drop in oil temperature between main gallery and liner was matched by the increase in oil temperature due to shear heating between piston skirt and the liner..For full load and minimum load cases the local oil temperature in each calculation cell in the skirt/liner contact zone was assumed to be the average of the local liner temperature (Figure 7)and the skirt tem-perature (see Table 3for assumed skirt temperatures based on measured data from a similar

engine).

Figure 11.Effect of load,speed and oil viscosity on piston ring friction power loss.

T able 3.assumed piston skirt temperature data.

Piston skirt temperature ( C)

Speed (r/min)Motored Minimum load Full load 80090901011000909210212009092102140090941021600909510218009098103200090991042200

90

98

103

176Proc IMechE Part J:J Engineering Tribology 227(2)

.The cold piston skirt pro?le was taken from the drawing and adapted to the hot shape using FE models of the piston with di?erent imposed piston temperature distribution for each load/speed case.

.Circumferential bore distortion was ignored (partly because FE models of the complete engine struc-ture were not available and partly because this engine has wet liners so circumferential bore dis-tortion should be minimal).

.Axial bore distortion was modeled assuming a simple conical shape due to thermal expansion (higher bore temperature at the top of the liner than the bottom).A straight line was ?tted through the data shown in Figure 7and the high temperature region at the top of the bore

was

Figure 12.Side force,minimum oil film thickness and friction power loss the piston skirt at 1600r/min under various load conditions.

Carden et al.177

ignored as skirt/liner contact does not occur in this region.

There is not enough space in this article to include all the input data.

Some typical PISDYN results are given in Figure 12.The results presented in these graphs are at 1600r/min with baseline lubricant but similar cal-culations were made at other speeds and using the low viscosity oil.

Under motored conditions the piston side force was similar in each stroke and governed by inertial e?ects.The graph showing minimum oil ?lm thick-ness requires careful interpretation because it shows the minimum value found by PISDYN after consider-ing all locations on the piston at each crank angle.Thus the location of the minimum ?lm thickness changes from one crank angle to the next.The graph indicates that low ?lm thickness occurs shortly

after the start of each upstroke (compression and exhaust)and this is related to predicted piston tilting at these locations.In addition low ?lm thickness occurred before and after TDC ?ring under full load conditions due to the increased gas forces.Low ?lm thickness resulted in periods of predicted boundary lubrication and this led to predicted periods of asper-ity contact power loss but the overall mean piston skirt losses were dominated by hydrodynamic losses with peaks in power loss at the centre of each stroke as shown in the graph.Short periods of high min-imum ?lm thickness are also indicated (mainly close to TDC)and under these conditions a full oil ?lm may not be maintained in the gap between skirt and liner.Figure 13shows a typical map of hydrodynamic pressure on the thrust side of the piston at 90 after TDC on the expansion stroke.The ?gure shows half of the skirt and the model assumes the skirt is sym-metric.The grid area indicates the area of the lubri-cation mesh on the skirt.The contours indicate

areas

Figure 13.Map of hydrodynamic pressure on thrust side of piston skirt at 90 after TDC at full load and 1600

r/min.

Figure 14.Map of oil film thickness on thrust side of piston skirt at 90 after TDC at full load and 1600r/min.

178Proc IMechE Part J:J Engineering Tribology 227(2)

Figure 17.Effect of load,speed and oil viscosity on small end bearing friction power

loss.

Figure 16.Effect of load,speed and oil viscosity on crank bearing friction power

loss.

Figure 15.Effect of load,speed and oil viscosity on piston skirt friction power

loss.

Figure https://www.wendangku.net/doc/f45379691.html,parison of measured and calculated losses for crank train group under motored conditions with baseline oil.

Carden et al.179

of equal pressure.Figure 14shows the corresponding map of oil ?lm thickness at the same instant.

Figure 15shows the e?ect of engine speed and load on the cycle averaged power loss at the piston skirt for one cylinder.Results indicate that under motored conditions the piston skirt friction rises strongly with speed and the friction loss with low viscosity oil was signi?cantly lower than that with the baseline oil.In this case the lubricant temperature was assumed to be 90 C at all speeds and for both oils.Under minimum load conditions at low engine speed the calculated piston skirt friction loss was similar to the motored condition but at high speed the predicted loss was lower mainly due to the e?ect of the hotter oil at mid stroke.At full load condition the predicted piston skirt friction was signi?cantly increased and there was not much di?erence between baseline and low viscosity oil.The implication here was that the predicted reduction in hydrodynamic loss was balanced by an increase in asperity contact loss.

Calculation of bearing friction

Friction at main bearings,big end bearings and small end bearings was calculated using Ricardo ENGDYN software.This program has many options for alterna-tive models for bearing calculations.There is not enough space in this article to describe the models fully but this has been done previously.18

For the results presented in this article the follow-ing key assumptions were made:

.Main bearing loads were calculated using a dynamic model based on sti?ness-quality ?nite element models of the crankshaft and cylinder block.In this way the load sharing at the main bearings and the 3D vibration e?ects were accounted for.The ?ywheel and TV damper were also included in the model.

.Measured mean cylinder pressure data were used to excite the model for ?red engine cases.

.Inertial forces due to the piston,connecting rod and crankshaft were included and for the motored cases these were the only applied forces.

.Each main and big end bearing was modelled using Booker mobility method with Okvirk short bearing theory 19so calculated results include hydro-dynamic shear losses only and not asperity contact losses.Previous work using more sophisticated and time-consuming models suggested that this assumption was justi?ed in this case because the calculated oil ?lm thickness under the conditions of the test was always high enough to avoid signi?-cant asperity contact with oil supply temperature of 90 C.

.Although the piston pin was in fact a ?oating type it was assumed to be ?xed in the piston so the rela-tive motion at the small end occurred only between the pin and the connecting rod.

.The small end bearing was modelled using a ?nite di?erence solver for Reynold’s equation so when oil ?lm thickness was less than 4times the compos-ite surface roughness the asperity contact load was calculated using the Greenwood–Tripp algo-rithm.13The asperity contact friction force was then calculated by multiplying the asperity contact force by an assumed friction coe?cient of 0.12(typical value for boundary lubricated contact from Xin 3)and integrating over the contact area..Each oil was modelled using the relevant tempera-ture/viscosity curve calculated using the Walther equation and shear thinning was ignored because for the oils used it was a small e?ect.

.Perfect alignment of bearings and perfectly round bearings and journals were assumed.

.A thermal balance was included (so the e?ective oil temperature was calculated from oil supply tem-perature,calculated ?ow rate and calculated power loss due to oil shear).

.Mean bearing clearance was used at each bearing after measurements were made to validate this assumption.

.The measured oil supply pressure was entered at each speed Figure 16shows the e?ect of engine speed and load on the cycle averaged power loss for all main bearings and big end bearings.Results indicate that

under

Figure https://www.wendangku.net/doc/f45379691.html,parison of measured and calculated losses for crank train group under motored conditions with low viscosity oil.

180Proc IMechE Part J:J Engineering Tribology 227(2)

motored conditions the crankshaft bearing friction rises strongly with speed and the friction loss with low viscosity oil was signi?cantly lower than that with the baseline oil.In this case the lubricant supply temperature was assumed to be90 C at all speeds and for both oils.Under minimum load con-ditions at low engine speed the calculated crankshaft bearing friction loss was similar to the motored con-dition but at high speed the predicted loss was slightly lower partly due to the hotter oil and partly due to cancellation of gas and inertia forces during parts of the cycle.At full load condition the predicted crank-shaft bearing friction was increased due to higher loads during the expansion stroke.

Figure17shows the e?ect of engine speed and load on the cycle averaged power loss for one small end bearing.Results indicate that under motored condi-tions and minimum load conditions the power loss increased with speed and the low viscosity oil had a small e?ect on the friction level.However under full load conditions higher losses were predicted at the small end bearing and these were dominated by asper-ity contact loss rather than hydrodynamic e?ects.This was expected.20However despite this increase in pre-dicted friction the contribution of the small end bear-ing loss to the total friction was still very small (Figures18and19).The calculated friction at the small end bearing with low viscosity oil was increased. The small end bearing is one location that may bene?t from the use of advanced coatings to prevent wear if low viscosity oil is used.

Comparison of measurements with calculated results

The calculated power losses for the contacts under motored conditions were adjusted so that they accounted for the losses of the whole crank trains measured on the motored test(6sets of pistons, rings,small end bearings,big end bearings and

https://www.wendangku.net/doc/f45379691.html,parison between measured and calculated losses for the whole engine under fired conditions at minimum load with baseline oil.

Carden et al.181

7main bearings)and the power losses were converted into FMEP values in bar.The results are shown com-pared with measured data from the motored tests in Figures18and19for baseline and low viscosity oils, respectively.In each case the sum of the calculated losses was lower than the measured loss.This is likely to be partly because other power losses,such as crankshaft seal friction,crank shaft windage, crankcase pumping,oil churning,thrust bearing losses,etc.,were present on the actual engine.The response of the sum of the calculated values to engine speed is reasonably good(slope of calculated line is similar to measured slope).The comparison with baseline oil shows better agreement between the measured and calculated results than that with low viscosity oil.This indicates that the analytical methods have over-predicted the in?uence of the low viscosity oil as the gap between measured and calculated data was larger in Figure19.

Direct comparison between the calculated crank train friction under?red conditions(minimum load and full load)and measured data was not possible because the?red measurement technique used could only give measured friction for the whole engine.To circumvent this problem and provide a partial val-idation under?red condition it was assumed that the losses at the valve train group,oil pump,coolant pump and front end accessory drive(FEAD)were not sensitive to engine load and so the same as the values measured on the motored teardown test.

Figure20shows the measured losses for the whole engine under minimum load conditions with baseline oil compared with the sum of calculated crank train losses under minimum load conditions,measured losses at the valve train group,oil pump,coolant pump and FEAD and measured losses due to the fuel injection equipment(provided by IVECO). Figure21shows similar data for the baseline oil under full load conditions.

It is important to bear in mind the signi?cant potential error in the absolute measured data for the whole engine friction.However,Figures20and21 demonstrate a reasonable level of agreement between calculations and measurements under?red engine conditions.

Figure22shows calculated total crank train fric-tion presented as FMEP in bar under?red and motored conditions for the two di?erent oils.Thus

https://www.wendangku.net/doc/f45379691.html,parison between measured and calculated losses for the whole engine under fired conditions at full load with baseline oil.

182Proc IMechE Part J:J Engineering Tribology227(2)

showing the sensitivity of the models to load,speed and oil viscosity.

Conclusions

The following conclusions can be drawn:

.Measured whole engine friction data obtained under?red conditions indicated the expected trends in terms of variation with load,speed and oil viscosity but the inherent inaccuracy of the method dictates caution when interpreting the results.

.Measured data from the motored teardown test indicated the contribution of the crank train to the total friction under motored conditions and also quanti?ed the potential reduction in crank train friction due to the low viscosity lubricant.

.Analysis was used to quantify friction at each piston ring,piston skirt,each main bearing,big end bearing and small end bearing and their vari-ation with load,speed and oil viscosity.

.Total calculated crank train friction was lower than the measured data obtained from the motored tear-down test but some known sources of loss were not included in the calculations so this was expected. .However the total calculated crank train friction showed a greater response to the oil viscosity than the measurement(i.e.the gap between meas-urements and calculations was greater with the low viscosity oil)..CAE models were also used to calculate total crank train friction loss under?red engine conditions (minimum load and full load)and the results were compared with measured data for whole engine friction(measured motored data for those systems not expected to be sensitive to engine load were used in the comparison).This work showed reasonable level of agreement.

Funding

This research received no speci?c grant from any funding agency in the public,commercial,or not-for-pro?t sectors. Acknowledgements

The authors thank the senior management at Ricardo, In?neum and FPT Industrial for permission to publish this work.Thanks also to David Bell,Jon Plail and Jan Hronza of Ricardo Software for assistance with CAE model development.

References

1.Van Dam W,Miller T and Parsons,G.Optimizing low

viscosity lubricants for improved fuel economy in heavy duty diesel engines.SAE paper2011-01-1206,2011. 2.Van Basshuysen R and Schafer F.Internal combustion

engine handbook:basics,components,systems,and per-spectives.Warrendale,PA:SAE International,2004. 3.Xin Q.Diesel engine system design.Cambridge:

Woodhead Publishing Limited,2011.

4.Noorman MT,Assanis DN,Patterson DJ,et al.Overview

of techniques for measuring friction using bench tests and fired engines.SAE paper2000-01-1780,2000.

5.Nagar P and Miers S.Friction between piston and

cylinder of in IC engine:a review.SAE paper2011-01-1405,2011.

6.Furahama S and Takaguchi M.Measurement of piston

frictional force in actual operating diesel engine.SAE paper790855,1979.

7.Furuhama S and Sasaki S.New device for the measure-

ment of piston frictional forces in small engines.SAE paper831284,1983.

8.Koch F,Geiger U and Hermsen F-G.PIFFO–Piston

friction force measurements during engine operation.

SAE paper960306,1996.

9.Ha K-P,Kim J-S,Cho M-R,et al.Development of

piston friction force measurement system.SAE paper 2002-01-2902,2002.

10.Uras HM and Patterson DJ.Measurement of piston

and ring assembly friction instantaneous IMEP method.SAE paper830416,1983.

11.Carden P,Bell D,Priest M,et al.Piston assembly fric-

tion losses:comparison of measured and predicted data.

SAE paper2006-01-0426,2006.

12.Gulwadi SD.Analysis of tribological performance of a

piston ring pack.Tribol Trans2000;43(2):151–162. 13.Greenwood JA and Tripp JH.The contact of two nom-

inally flat rough surfaces.Proc Instn Mech Engrs1970;

185:625–633.

14.Priest M,Dowson D and Taylor CM.Predictive wear

modelling of lubricated piston rings in a diesel engine.

Wear1999;231:89–101.

Figure22.Effect of load,speed and oil viscosity on calculated

crank train friction.

Carden et al.183

15.Tian T.Dynamic behaviours of piston rings and their

practical impact.Part2:Oil transport,friction and wear of ring/liner interface and their effects on piston and ring dynamics.Proc IMechE Part J:J Engineering Tribology2002;216:229.

16.Perchanok M.Modeling of piston-cylinder lubrication

with a flexible skirt and cylinder wall.SAE paper2000-01-2804,2000.

17.Duyar M,Bell D and Perchanok M.A comprehensive

piston skirt lubrication model using a mass conserving EHL model.SAE paper2005-01-1640,2005.18.Gulwadi SD and Shrimpling G.Journal bearing ana-

lysis in engines using simulation techniques.SAE paper 2003-01-0245,2003.

19.Booker JF.Dynamically loaded journal bearings:

mobility method of solution.ASME J Basic Eng 1965;87(3):537–546.

20.Knoll G,Bargende M,Lang J,et al.Piston pin in mixed

friction contact–elasto-hydrodynamic simulation theory for support analysis.MTZ2009;70:54–60.

184Proc IMechE Part J:J Engineering Tribology227(2)

施工质量控制的内容和方法

22104030施工质量控制的内容和方法 复习要点 1.施工质量控制的基本环节和一般方法 (1)施工质量控制的基本环节包括事前、事中和事后质量控制。 (2)施工质量控制的依据分为共同性依据和专门技术法规性依据。 (3)施工质量控制的一般方法包括质量文件审核和现场质量检查。现场质量检查的内容包括开工前的检查;工序交接检查;隐蔽工程的检查;停工后复工的检查;分项、分部工程完工后的检查以及成品保护的检查。检查的方法主要有目测法、实测法和试验法。试验法又分为理化试验和无损检测。 2.施工准备阶段的质量控制 (1)施工质量控制的准备工作包括工程项目划分与编号以及技术准备的质量控制。 (2)现场施工准备的质量控制包括工程定位和标高基准的控制以及施工平面布置的控制。 (3)材料的质量控制要把好采购订货关、进场检验关以及存储和使用关。 (4)施工机械设备的质量控制包括机械设备的选型、主要性能参数指标的确定以及使用操作要求。 3.施工过程的质量控制 (1)技术交底书应由施工项目技术人员编制,并经项目技术负责人批准实施。交底的形式有:书面、口头、会议、挂牌、样板、示范操作等。 (2)项目开工前应编制测量控制方案,经项目技术负责人批准后实施。 (3)施工过程中的计量工作包括施工生产时的投料计量、施工测量、监测计量以及对项目、产品或过程的测试、检验、分析计量等。其主要任务是统一计量单位制度,组织量值传递,保证量值统一。 (4)工序施工质量控制主要包括工序施工条件质量控制和工序施工质量效果控制。 (5)特殊过程是指该施工过程或工序的施工质量不易或不能通过其后的检验和试验而得到充分验证,或万一发生质量事故则难以挽救的施工过程。其质量控制除按一般过程质量控制的规定执行外,还应由专业技术人员编制作业指导书,经项目技术负责人审批后执行。(6)成品保护的措施一般包括防护、包裹、覆盖、封闭等方法。 4.工程施工质量验收的规定和方法 (1)工程施工质量验收的内容包括施工过程的工程质量验收和施工项目竣工质量验收。(2)施工过程的工程质量验收,是在施工过程中、在施工单位自行质量检查评定的基础上,参与建设活动的有关单位共同对检验批、分项、分部、单位工程的质量进行抽样复验,根据相关标准以书面形式对工程质量达到合格与否做出确认。 (3)施工项目竣工验收工作可分为验收的准备、初步验收(预验收)和正式验收。 一单项选择题

matlab上机作业

第四次 上机作业 1、 从键盘输入一个4位整数,按照如下规则加密后输出。加密规则:每位数字 都加上7,然后用和除以10的余数取代该数字;再把第一位与第三位交换,第二位与第四位交换。 Clear X=ones(1,4); X (1)=input(’输入第一位:‘); X (2)=input(’输入第二位:‘); X (3)=input(’输入第三位:‘); X (4)=input(’输入第四位:‘); X=rem(7+x,10); Y=1000.*x(3)+100.*x(4)+10.*x(1)+x(2) 2、 分别用if 和switch 语句实现以下计算,其中a 、b 、c 的值从键盘输入。 ??? ? ??? <≤+<≤+<≤++=5 .55.3, ln 5.35.1, sin 5.15.0,2x x c b x x b a x c bx ax y c a=input(‘请输入a :’); b=input(‘请输入b :’); c=input(‘请输入c :’); If(x>=0.5&&x<=1.5) y=a.*x^2+b.*x+c Elseif(x>=1.5&&x<=3.5) y=a.*(sin(b))^c+x

Elseif(x>=3.5&&x<=5.5) y=log(abs(b+c./x)) end a=input(‘请输入a:’); b=input(‘请输入b:’); c=input(‘请输入c:’); Switch x case(x>=0.5&&x<=1.5) y=a.*x^2+b.*x+c case(x>=1.5&&x<=3.5) y=a.*(sin(b))^c+x case(x>=3.5&&x<=5.5) y=log(abs(b+c./x)) end 3、产生20个两位随机整数,输出其中小于平均值的偶数。Clear al ;close all ;clc; X=fix(rand(1,20)*89)+10; Disp([‘20个随机数是:’,num2str(x)]); X1=mean(x); Disp([‘平均值为:’,num2str(x1)]); N=find(rem(x,2)==0&x

激励学生学习积极性的方法

激励学生学习积极性的方法 兴趣激励法:俗话说的好,兴趣是最好的老师,如果学生本身对学习感兴趣,那么它往往会获得出色的学习成绩。为了让学生对学习课程产生兴趣,家长和老师必须加以正确引导,使学生自发的对学习产生兴趣。 好奇心激励法:好奇心是个体遇到新奇事物或处在新的外界条件下所产生的注意、操作、提问的心理倾向,尤其是在学生时期,好奇心更是旺盛,如果能够激发学生对学习的好奇心的话,能够极大的提高学习的积极性。 鼓励激励法:人是需要鼓励的动物,当我们受到鼓励的时候会极大的提高我们的自信心和继续下去的动力,学生更是需要鼓励,当他们受到肯定的时候,会极大的提高学习的动力,作为家长和老师不要吝啬你们鼓励话语,你们的一句话可能会影响学生的一生。 目的激励法:俗话说的好,有目标才会有动力,如果学生连自己学习的目的是什么都不知道的话,很难会有坚持下去,作为家长和老师应该用正确的方法引导孩子找到一个适合自己的学习目标,有了这个目标就会激发孩子“勇往直前”。 竞赛激励法:有竞争才会有进步,有竞争才会有动力,人都是攀比动物,有了比较会有进步,有了比较才会有动力,可以不时地举行一些竞赛,使得孩子们知道自己的情况,了解自己的差距,找到自己的目标,从而为之奋斗。 奖品激励法:如果有了奖品的激励很大程度上能够提升学生学习

的积极性,当然小编一贯不主张进行奖励教育,这很容易养成学生的得失之心,不利于良好性格的养成,当然如果执行得当的话还是能够起到很好的效果。 更换教学法:这主要是针对老师所说的,如果一味的重复同样的教学模式,难免会使的学生产生疲惫,从而失去兴趣,如果能够经常的变更教学方法,使得学生不知道下一次你又会有什么教学模式从而使他对你产生兴趣,会极大提高学习的积极性。

matlab中常见函数功用

⊙在matlab中clear,clc,clf,hold作用介绍 clear是清变量, clc只清屏, clf清除图形窗口上的旧图形, hold on是为了显示多幅图像时,防止新的窗口替代旧的窗口。 ①format:设置输出格式 对浮点性变量,缺省为format short. format并不影响matlab如何计算和存储变量的值。对浮点型变量的计算,即单精度或双精度,按合适的浮点精度进行,而不论变量是如何显示的。对整型变量采用整型数据。整型变量总是根据不同的类(class)以合适的数据位显示,例如,3位数字显示显示int8范围-128:127。 format short, long不影响整型变量的显示。 format long 显示15位双精度,7为单精度(scaled fixed point) format short 显示5位(scaled fixed point format with 5 digits) format short eng 至少5位加3位指数 format long eng 16位加至少3位指数 format hex 十六进制 format bank 2个十进制位 format + 正、负或零 format rat 有理数近似 format short 缺省显示 format long g 对双精度,显示15位定点或浮点格式,对单精度,显示7位定点或浮点格式。 format short g 5位定点或浮点格式 format short e 5位浮点格式 format long e 双精度为15位浮点格式,单精度为7为浮点格式 ②plot函数 基本形式 >> y=[0 0.58 0.70 0.95 0.83 0.25]; >> plot(y) 生成的图形是以序号为横坐标、数组y的数值为纵坐标画出的折线。 >> x=linspace(0,2*pi,30); % 生成一组线性等距的数值 >> y=sin(x); >> plot(x,y) 生成的图形是上30个点连成的光滑的正弦曲线。 多重线 在同一个画面上可以画许多条曲线,只需多给出几个数组,例如 >> x=0:pi/15:2*pi; >> y=sin(x); >> w=cos(x);

更好激励学生的八种方法-教育文档

更好激励学生的八种方法 现在的孩子们大多都是独生子女,备受家人瞩目和爱护,他们有着自己独特的性格和思想。很多孩子习惯被宠爱被赞扬,却经受不起挫折和打击,当面对竞争失败后容易抱怨,当遇到学习成绩下降后容易放弃,当面对困境时更容易变得脆弱敏感。这个时候,作为教师就要适时地出现在学生的身边,做他们的心灵导师,激励困境中的学生们战胜困难,激励落后的学生们走出阴霾,激励失败的学生们找回自信,为他们的成长保驾护航。如何更好地激励学生,成为每位教师必须具备的素养。 什么是激励呢激励是指激发人的动机和内驱力,朝着期望目标前进的心理过程,旨在调动人的积极性、主动性和创造性。激励活动以人的内在需要为基础。教育工作者必须了解学生的活动动机,特别是要了解学生的学习动机和行为道德的动机,把培养和激发学生的学习动机作为一项重要任务来抓,提高教育和教学质量的同时又能实现对学生心理健康的科学引导。下面笔者浅谈一下激励学生的八种方法。 一、设定目标 通过设置适当的学习目标,诱发学生的积极动机。事实证明,在一个班级里的优等生,知道自己的学习成绩在同班学生之上,所以他所建立的学习目标较高;中等生居于中间的地位,则往往采用中庸之道,安于现状;至于学困生,则常表现出对自己没有

信心,对学习不抱希望,得过且过,安于现状,不求上进的心理。对学困生,教师的工作应该先设立低层次的目标,使他们有取得成功的希望,然后循序渐进,逐步提高,只有这样才能培养和提高他们的成就动机,改变他们对学习的消极态度,提高学习兴趣。反之,如果急于求成,要求过高,不顾层次差别而采取一刀切的做法,必将挫伤相当数量学生的积极性。 二、充分信任 教师对学生充分尊重和信任,可以激发学生的学习积极性。此法对于学困生较为实用,效果明显。大多数学困生都有一种自卑感,认为自己成绩差,老师和同学都看不起自己,有沉重的思想负担,因而对学生失去了应有的积极性,乃至产生厌学情绪,导致成绩很难提高。 三、真心关怀 教师在思想、学习和生活上给学生以关怀,调动学生为实现目标奋发学习的积极性。学生在得到教师的关心、赞许或鼓励时,就会感到温暖和振奋,使学习产生强大的动力;相反,当学生遇到困难或受到挫折时,得不到教师应有的关怀和帮助,甚至还受到冷嘲热讽时,其积极性会受到严重挫伤,影响学习兴趣。 四、情感真挚 师生之间应建立起友爱合作的感情,彼此融洽相处,以诚相待。学生把教师当成自己的知心朋友,就会热爱学习,自觉学习。如果师生间缺乏这种友好合作的关系,缺乏互相间的感情交流,

(完整版)MATLAB常用函数大全

一、MATLAB常用的基本数学函数 abs(x):纯量的绝对值或向量的长度 angle(z):复数z的相角(Phase angle) sqrt(x):开平方 real(z):复数z的实部 imag(z):复数z的虚部 conj(z):复数z的共轭复数 round(x):四舍五入至最近整数 fix(x):无论正负,舍去小数至最近整数 floor(x):地板函数,即舍去正小数至最近整数ceil(x):天花板函数,即加入正小数至最近整数rat(x):将实数x化为分数表示 rats(x):将实数x化为多项分数展开 sign(x):符号函数(Signum function)。 当x<0时,sign(x)=-1; 当x=0时,sign(x)=0; 当x>0时,sign(x)=1。 rem(x,y):求x除以y的馀数 gcd(x,y):整数x和y的最大公因数 lcm(x,y):整数x和y的最小公倍数 exp(x):自然指数 pow2(x):2的指数 log(x):以e为底的对数,即自然对数或 log2(x):以2为底的对数 log10(x):以10为底的对数 二、MATLAB常用的三角函数 sin(x):正弦函数 cos(x):余弦函数

tan(x):正切函数 asin(x):反正弦函数 acos(x):反馀弦函数 atan(x):反正切函数 atan2(x,y):四象限的反正切函数 sinh(x):超越正弦函数 cosh(x):超越馀弦函数 tanh(x):超越正切函数 asinh(x):反超越正弦函数 acosh(x):反超越馀弦函数 atanh(x):反超越正切函数 三、适用於向量的常用函数有: min(x): 向量x的元素的最小值 max(x): 向量x的元素的最大值 mean(x): 向量x的元素的平均值 median(x): 向量x的元素的中位数 std(x): 向量x的元素的标准差 diff(x): 向量x的相邻元素的差 sort(x): 对向量x的元素进行排序(Sorting)length(x): 向量x的元素个数 norm(x): 向量x的欧氏(Euclidean)长度sum(x): 向量x的元素总和 prod(x): 向量x的元素总乘积 cumsum(x): 向量x的累计元素总和cumprod(x): 向量x的累计元素总乘积 dot(x, y): 向量x和y的内积 cross(x, y): 向量x和y的外积 四、MATLAB的永久常数

全面质量管理的常用方法一

全面质量管理的常用方法一 【本讲重点】 排列图 因果分析法 对策表方法 分层法 相关图法 排列图法 什么是排列图 排列图又叫巴雷特图,或主次分析图,它首先是由意大利经济学家巴雷特(Pareto)用于经济分析,后来由美国质量管理专家朱兰(J.M.Juran)将它应用于全面质量管理之中,成为全面质量管理常用的质量分析方法之一。 排列图中有两个纵坐标,一个横坐标,若干个柱状图和一条自左向右逐步上升的折线。左边的纵坐标为频数,右边的纵坐标为频率或称累积占有率。一般说来,横坐标为影响产品质量的各种问题或项目,纵坐标表示影响程度,折线为累计曲线。 排列图法的应用实际上是建立在ABC分析法基础之上的,它将现场中作为问题的废品、缺陷、毛病、事故等,按其现象或者原因进行分类,选取数据,根据废品数量和损失金额多少排列顺序,然后用柱形图表示其大小。因此,排列图法的核心目标是帮助我们找到影响生产质量问题的主要因素。例如,可以将积累出现的频率百分比累加达到70%的因素成为A类因素,它是影响质量的主要因素。 排列图的绘制步骤 排列图能够从任何众多的项目中找出最重要的问题,能清楚地看到问题的大小顺序,能了解该项目在全

体中所占的重要程度,具有较强的说服力,被广泛应用于确定改革的主要目标和效果、调查产生缺陷及故障的原因。因此,企业管理人员必须掌握排列图的绘制,并将其应用到质量过程中去。 一般说来,绘制排列图的步骤如图7-1所示,即:确定调查事项,收集数据,按内容或原因对数据分类,然后进行合计、整理数据,计算累积数,计算累积占有率,作出柱形图,画出累积曲线,填写有关事项。 图7-1 排列图的绘制步骤 排列图的应用实例 某化工机械厂为从事尿素合成的公司生产尿素合成塔,尿素合成塔在生产过程中需要承受一定的压力,上面共有成千上万个焊缝和焊点。由于该厂所生产的十五台尿素合成塔均不同程度地出现了焊缝缺陷,由此对返修所需工时的数据统计如表7-1所示。 表7-1 焊缝缺陷返修工时统计表 序号项目返修工时fi 频率 pi/% 累计频率 fi/% 类别 1焊缝气孔14860.460.4A 2夹渣5120.881.2A 3焊缝成型差208.289.4B 4焊道凹陷15 6.195.5B 5其他11 4.5100C 合计245100 缝成型差、焊道凹陷及其他缺陷,前三个要素累加起来达到了89.4%。根据这些统计数据绘制出如图7-2所示的排列图:横坐标是所列举问题的分类,纵坐标是各类缺陷百分率的频数。

班主任激励学生的14种方法

班主任激励学生的14种方法 德国教育家第斯多惠曾说:“教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。”可见,班主任除不断激励自己外,更重要的是激励学生,充分发挥学生的积极性、主动性和创造性,营造出一种“海阔凭鱼跃,天高任鸟飞”的育人氛围。因此,掌握和运用激励学生的14种方法是非常必要的。 1、物质激励法。物质激励是最简单的方法,就是将一个学生的实际表现和物质奖励直观对接,给予适当的奖励,包括奖品、奖学金。尽管它不是调动学生积极性和创造力的最有效的武器,但对受奖者本人也会起到鼓励、鞭策的作用。 在班级管理中,班主任须恰当运用此法,防止走极端。既不能认为“精神至上”,否定物质的作用,也不能标榜“物质至尊”,以免学生陷入“向钱看”的误区。 2、情感激励法。唐代诗人白居易有言:“感人心者,莫先乎情。”心理学家也认为,任何人都有渴求各种情感的需求。所以,班主任以饱满的热情、诚挚的真情来以情育情、以情感情,学生必然会亲其师而信其道。班主任只有对学生在学习上帮助、生活上关心、心理上疏导,才能切实培养他们的学习生活能力和合作精神,增强他们对班集体的归属感。 3、兴趣激励法。孔子云:“知之者不如好知者,好之者不如乐之者。”因此,在思想教育中,班主任要注意结合社会生活中新颖有趣的事例进行说理,以符合学生求新好奇的心理特点,激发他们思考的兴趣,促使他们在实践中成长。同时,班主任要善于发现和挖掘每个学生身上积极健康的特长和爱好,并加以正确的引导与鼓励,以令其潜力最大限度地发挥。 4、信任激励法。信任是增强学生自信心的催化剂,它有助于师生之间的和谐共振,有利于班级凝聚力的形成。 班主任对学生的信任在“用人不疑”上,更体现在对学生的放手使用上。也只有班主任在基础上的放手使用,才能充分发挥学生的主观能动性和创造性。 5、目标激励法。目标作为一种诱因,具有引导和激励的作用。班主任只有不断启发学生树立高标准,才能真正增强其奋发向上的内在动力。所以,班主任要帮助学生确立适当的人生目标,形成其健康向上的动机,以达到调动其积极性的目的。

MATLAB实验:运算基础,并且附有答案

实验二、MATLAB运算基础 一、实验目的 掌握MATLAB各种表达式的书写规则及常用函数的使用。 掌握MATLAB中字符串、元胞数组和结构的常用函数的使用。 二、实验内容及步骤 1、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11] 1)求它们的乘积C >>C=A*B 2)将矩阵C的右下角3x2子矩阵赋给 D >>I=[3 4 5];J=[2 3];D=C(I,J)也可以 用>>D=C([3 4 5],[2 3]) D = 520 397 705 557 890 717 2、完成下列操作 1)求[100,999]之间能被61整除的数及其个数(提示:先利用冒号表达式,再利用find和length函数。) >> a=100:999;find(rem(a,61)==0) ans = 23 84 145 206 267 328 389 450 511

572 633 694 755 816 877 >> b=a(ans) b = 122 183 244 305 366 427 488 549 610 671 732 793 854 915 976 >> length(b) ans = 15 2)建立一个字符串向量,删除其中的大写字母(提示:利用find函数和空矩阵。)a=’I am maying’; a( find(a>’A’&a<’Z’))=[] 3、已知A=[23 10 -78 0;41 -45 65 5;32 5 0 32; 6 -54 92 14],取出其前3行构成矩阵B,其前两列构成 矩阵C,其左下角3x2子矩阵构成矩阵D,B与C的乘积构成矩阵E,分别求E>B=A([1 2 3 ],:)>> C=A(:,[1 2])>> D=A([2 3 4 ],[1 2 ])>> E=B*C >> E

激励教育的方法

龙源期刊网 https://www.wendangku.net/doc/f45379691.html, 激励教育的方法 作者:王冬梦 来源:《读天下》2018年第08期 摘要:激励教育是根据教育规律通过对人们现实生活中典型思想和行为进行奖励和惩罚引导人们朝着预期目标发展的教育活动。它具有全面性、差异性、能动性等特征,包括目标激励、榜样激励、强化激励、信任激励、行为激励等方法。本文浅谈在激励教育方面自己的一些做法与思考,以促进初中生积极健康地成长。 关键词:激励教育;心理健康;积极 本人从2016年开始加入我校朱红老师组织的“积极心理健康教育——激励教育”课题研究,我将这一课题研究融入教育教学中,通过这一年多的实践,收获颇多。从2016年9月到2017年6月,我担任了九(8)班的班主任,下面我结合班级管理的案例,就如何做好学生的心理转化工作进行分析,谈谈在激励教育方面自己的一些做法与思考,以促进初中生积极健康地成长。 万紫如,一个拥有好听名字的女孩。但命运对她却是不公的,在她三岁的时候,由于一次发烧,导致她的听力出现问题,必须戴上助听器。从此,她成了别人眼里的“另类”,身体的缺陷让她产生了严重的自卑心理。但万紫如需要同伴的接纳和关心,她本人更应该对自己有信心。在平时课堂上,我会有意多走到她身边,拍拍她的肩;有时,认真看看她的作业。我是想让她明白,作为老师我乐意接受她,更让班里学生明白,我们还有一个万紫如的存在,她是我们当中的一员。在临近毕业晚会时,万紫如突然跟我说:“老师,我想报名参加节目。”我说:“那你想参加什么节目?”这时旁边有一个男同学说:“老师,万紫如的拉丁舞跳得很好,跳起来很漂亮。”此时,万紫如露出了一个害羞的表情,她说:“老师,你觉得我可以跳好吗?”我说:“老师相信你可以的,加油!”这时我从她的表情中,看到了一种自信,我由衷地为她感到高兴。 德国教育家第斯多惠告诉我们:教学的艺术不在于传授本领,而在于激励、唤醒和鼓舞。教师发自肺腑的激励对于学生来说,犹如甘霖滋润心田,帮助他们形成乐观向上的性格特征。教师发自肺腑的激励对学生来说终生难忘,比任何教育都有价值,既能增强师生的亲切感与信任感,又能增强学生学习的信心与勇气。教师的激励是最有效的“催化剂”,它可以使学生在微笑中找到自己的不足,在关怀中汲取前进的动力。正如人们所说的那样“好孩子是夸出来的”。 由于学生是富有个性的,他们的生活背景不同,因此,我们要尊重学生差异,采用多种激励方法,促进学生在各自的人生道路上获得发展。那么激励的方法有哪些呢? 一、情感激励法

激励中学生的四个有效方法

让激励与新课改同行——激励中学生的四个有效方法[复制链接] 摘要】在我们的教学实践中,要提高课堂效率,就必须提高学生的学习积极性,怎么调动学生的积极性呢?我想,最能给孩子前进动力的是“形成一个激励机制”新课改背景下,如果学校教师能把激励机制用好,那么就可以有助于新课改的顺利实施。 【关键词】榜样激励情感激励赏识激励荣誉激励 看过这样一个故事:两只青蛙掉到一个坑里,因为坑很深,上面的青蛙们就对它们喊:“别跳了,坑太深了。一只青蛙果然没跳,趴在坑底,太阳出来时被晒死了。另一只青蛙却一直跳个不停。外面的青蛙越喊,它跳得越欢,最后一跃出了坑。青蛙们问它为什么能跳出来?这只青蛙回答:“我误会了。因为我的耳朵有点听不清,以为你们这么多人给我加油呢!” 在我们的教学实践中,要提高课堂效率,就必须提高学生的学习积极性,怎么调动学生的积极性呢?我想,最能给孩子前进动力的是“形成一个激励机制”。 新课改背景下,如果学校教师能把激励机制用好,那么就可以有助于新课改的顺利实施。因此,我们在平时的教育教学中应该正确运用好激励机制。下面介绍几种我认为较为适用的激励方法。 一、榜样典型激励法 人们常说,榜样的力量是无穷的。绝大多数学生都是力求上进而不甘落后的。如果有了榜样,学生就会有努力的方向和赶超的目标,从榜样成功的事业中得到激励。榜样有现实生活中的榜样,也有名著名篇中的榜样。我们看到一种现象:学生在校三年,没有榜样,没有励志名言,只是把娱乐明星作为偶像,只把恶心的发嗲的语言作为交流的语言。那只能说明学生在校三年中,我们没有很好引导学生看书,没有很好地引导学生看影视剧,没有把一些名人的人格魅力展示给学生,因此,教师还是有责任的。因为学生来到学校就是来受到教育的,就是来给学校、教师塑造的。为此,我们将在今后的三年中,逐步引导学生接触名人名著名篇。比如电影:《想飞的钢琴少年》《贝多芬》《面对巨人》《卡特教练》《黑暗中的舞者》《女生向前翻》《光荣之路》《一球成名》《肖申克的救赎》《亚历山大大帝》《刘亦菲的少女世界》《卓别林的新生》等等。 二、情感激励法 情感是影响人们行为最直接的因素之一,任何人都有渴望各种情感的需求。这就要求教师要多关心学生生活,关心群学生的精神生活和心理健康,提高学生的情绪控制力和心理调节力,努力营造一种相互信任、相互关心、相互体谅、相互支持、团结融洽的班级氛围。其次我们还可以用主题班会的方式来完成情感激励。在高一我们将要开展如下主题班会:“不要忘记开出梦想的花”“如何培养意志力”“经受挫折的考验”“享受健康的网络生活”“我对幸福的理解”“我信我可以”“正确看对学习压力”“谈毅力”“培养专注力的方法”等等。 三、赏识激励 人需要赏识,作为课堂主体的学生更不例外。他们常常把教师的赏识看成是对自己的评价,当他们得到赏识时,就觉得自己有进步,能学好,有发展前途,以为自己在教师心目中是好学生,因而产生自身增值感,增强学习的内部动力。诺贝尔化学奖获得者瓦拉赫,在被多数教师判为“不可造就之才”以后,另一位教师从他的“笨拙”之中找到了他的办事认真谨慎的性格特征并予以赞赏,让瓦拉赫学化学,终于使他成了“前程远大的高才生”,获得了诺贝尔化学奖。这就是“瓦拉赫效应”,它启示我们教师要在学生的课堂行为表现中多发现可以肯定的东西,对学生的答案或方法,正确的加以赞赏,这是“锦上添花”;错误的也可以从思维方式、答题方式或态度上加以肯定,这是“雪中送炭”。至于答错的内容,教师可以用多

全面质量管理的基本方法

第二章全面质量管理的基本方法 第一节PDCA循环法 一、计划-执行-检查-总结 制定计划(方针、目标) 执行(组织力量去实施) 检查(对计划执行的情况进行检查) 总结(总结成功的经验,形成标准,或找出失败原因重新制定计划) PDCA循环法的特点: 1. 四个顺序不能颠倒,相互衔接 2. 大环套小环,小环保大环,互相促进 3. 不停地转动,不断地提高 4. 关键在于做好总结这一阶段 二、解决和改进质量问题的八个步骤 1. 找出存在的问题 2. 分析产生问题的原因 3. 找出影响大的原因 4. 制定措施计划 5. 执行措施计划 6. 检查计划执行情况 7. 总结经验进行处理 8. 提出尚未解决的问题 第二节质量管理的数理统计方法 一、质量管理数理统计方法的特点和应用条件 1. 特点 (1)抽样检查 (2)伴随生产过程进行 (3)可靠直观 2. 质量管理数理统计方法的优点 (1)防止废次品产生(防患于未然) (2)积累资料,为挖掘提高产品质量的潜力创造了可能 (3)为制定合理的技术标准和工艺规程提供可靠数据 (4)减少了检验工作量,提高了检验的准确性与效率,节省了开支 3. 质量管理数理统计方法的应用条件 (1)必须具备相对稳定的生产过程(完备的工艺文件、操作规程,严格的工艺纪律、岗位责任制,完好状态的设备等) (2)培训人员,掌握方法,明确意义 (3)领导重视,创造条件给予支持 (4)各职能部门互相配合,齐心协力 二、质量管理数理统计方法的基本原理 随机现象和随机事件 频数、频率和概率 概率的几个性质 产品质量变异和产生变异的原因:

1. 偶然性原因(随机误差) 对质量波动影响小,特点是大小、方向都不一定,不能事先确定它的数值。 2. 系统性原因(条件误差) 对质量波动影响大,特点是有规律、容易识别,可以避免。 随机误差与条件误差是相对的,在一定条件下,前者可变为后者。 观察和研究质量变异,掌握质量变异的规律是质量控制的重要内容。对影响质量波动的因素应严格控制。 三、质量管理中的数据 母体(总体N )–提供数据的原始集团 子样(样品n)–从母体中抽出来的一部分样品(n ≥1) 抽样- 从母体中随机抽取子样的活动 1. 数据的收集过程 (1)工序控制半成品→子样→数据 (2)产品检验产品→子样→数据 (3)子样的抽取方法 ①随机抽样(抽签法、随机表法) 机会均等,子样代表性强,多用于产品验收 ②按工艺过程、时间顺序抽样 等间距抽取若干件样品 2. 数据的种类 (1)计量值数据 连续性数据,可以是小数,如:长度、重量 (2)计数值数据 非连续性数据,不能是小数 ①计件数据(不合格数) (统计分析方法和控制图) 生产过程质量数据信息质量控制 分析整理

MATLAB相关函数

第6章MATLAB数据分析与多项式计算 6.1 数据统计处理 6.1.1 最大值和最小值 MATLAB提供的求数据序列的最大值和最小值的函数分别为max和min,两个函数的调用格式和操作过程类似。 1.求向量的最大值和最小值 求一个向量X的最大值的函数有两种调用格式,分别是: (1) y=max(X):返回向量X的最大值存入y,如果X中包含复数元素,则按模取最大值。 (2) [y,I]=max(X):返回向量X的最大值存入y,最大值的序号存入I,如果X中包含复数元素,则按模取最大值。 求向量X的最小值的函数是min(X),用法和max(X)完全相同。 例6-1 求向量x的最大值。 命令如下: x=[-43,72,9,16,23,47]; y=max(x) %求向量x中的最大值 [y,l]=max(x) %求向量x中的最大值及其该元素的位置 2.求矩阵的最大值和最小值 求矩阵A的最大值的函数有3种调用格式,分别是: (1) max(A):返回一个行向量,向量的第i个元素是矩阵A的第i列上的最大值。

(2) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列的最大值,U向量记录每列最大值的行号。 (3) max(A,[],dim):dim取1或2。dim取1时,该函数和max(A)完全相同;dim取2时,该函数返回一个列向量,其第i个元素是A 矩阵的第i行上的最大值。 求最小值的函数是min,其用法和max完全相同。 例6-2 分别求3×4矩阵x中各列和各行元素中的最大值,并求整个矩阵的最大值和最小值。 3.两个向量或矩阵对应元素的比较 函数max和min还能对两个同型的向量或矩阵进行比较,调用格式为: (1) U=max(A,B):A,B是两个同型的向量或矩阵,结果U是与A,B同型的向量或矩阵,U的每个元素等于A,B对应元素的较大者。(2) U=max(A,n):n是一个标量,结果U是与A同型的向量或矩阵,U的每个元素等于A对应元素和n中的较大者。 min函数的用法和max完全相同。 例6-3 求两个2×3矩阵x, y所有同一位置上的较大元素构成的新矩阵p。 6.1.2 求和与求积

浅析教师教学过程中激励教育的几种运用方式

浅析教师教学过程中激励教育的几种运用方式 摘要:在教育提倡人性化的今天,激励教育在广大教师教学过程中被广泛运用,并且效果很好。本文分析了激励教育的基本概念,并且阐述了激励教育的几种方式,如榜样激励、成功激励、前景激励和情感激励。最后得出:激励教育重在立志。激励不只是一种教育手段,更是一种教育理念。通过激励教育可以让学生树立正确的理想与抱负,明确自己的人生目标和规划,并积极主动地参与到教学 活动中来。 关键词:教师教学激励教育方式 众所周知,在学校教育中,激励和惩戒是其中两个最重要的教育 方法。目前,教育大都倡导人性化,提倡“赏识、激励”,这是对传统的“严师出高徒”教育方式的矫正。赏识与激励可以让学生学会尊重、感激;惩戒、惩罚则会让学生有更多的责任感和使命感。在教学中,以宽容的心态审视学生,有助于发觉他们的闪光点,诱发他们的情感,培养他们的自信心。因此,基于这种理念,“赏识、激励”被教师们广泛采用。 1 激励教育的概念 激励教育是一种有效的心理教育方式、是一种教育自觉的理念,它可以使我们有目的、有计划地对学生心理施加直接或间接的影响,提高学生心理健康水平,激发学生的求知欲,发展每个学生个性。它可以成功地培养学生良好的心理素质提高学生学习的自觉性和效 率性。激励教育也是创造一种积极的教育的时空环境和情感体验,

激发学生的主体动力和内在潜能,培养形成学生自主学习、自我教育的学习内部动力机制,促使他们的思想道德品质、文化科学知识和个性特长等获得全面发展,成为现代社会生活的主人。德国教育学家第斯多惠曾说过:“教学的艺术不仅在于传授本领,而更重要的是善于激励、唤醒和鼓舞。”作为从教16年的老师和班主任,我深有同感。在实际教学过程中发现,激励教育对学生起着越来越重要的作用。 2 激励教育的几种运用方式 在教学过程中,激励教育可以激发学生的学习兴趣,提高学生学习的效率,增强学生自主学习的能力,因此,激励教育是一种必要的教育方式。通过自身16年的教学,将激励教育的几种运用方式总结如下。 2.1 榜样激励 我们每个人的心理其实都有自己的榜样,尤其是小时候,对榜样会非常崇拜,在我教的很多学生中都有崇拜伟大人物的心理倾向,他们崇敬的对象有生活在自己周围的人物如父母、老师;也有历史的和生活环境以外的人物。他们对心目中所崇敬的人物会毫不怀疑地接受和仿效,并且作为学习的榜样。人们常说,榜样的力量是无穷的。我每教一个班,就会从总体上确定几类榜样,然后从多方面细致观察每一个学生。比如到校守时的,劳动积极的,学习习惯良好的,一经看准,我就把这些榜样树立起来,让同学们学习身边的这些榜样,向榜样们看齐。因此,全班同学也就有了多方面的比、学、赶、

质量控制的主要手段和措施

质量控制的主要手段和措施 靠质量树信誉,靠信誉拓市场,靠市场增效益,靠效益求发展,是一个企业生存和发展的生命链条。就建筑服务业而言,高质量的把项目服务好,共同与建筑企业把质量做好,是企业管理的价值所在,也是重点要做的事情。 现在的市场是一个以质量为核心的竞争市场,因此,严格执行质量控制手段与措施是确保各相关方实现共赢的保证。 一、工程质量控制的目标 围绕着业主单位制定的工程质量等级目标要求,我公司监理人员将首先组织施工单位做好图纸会审及现场勘察工作,充分熟悉了解工程图纸及外部施工环境的特点和要点,根据实际情况制定切实可行的施工控制方案;督导施工单位按照要求组建施工项目管理机构及质量保证体系并确保其正常有效工作;通过监理单位人员的工作,对施工投入、施工过程、产品结果进行全过程控制,并对参与施工的人员资质、材料和设备质量、施工机械和机具状态、施工方案和方法、施工环境实施全面监控。 工程质量控制目标为:工程质量达到国家验收合格标准要求。 二、工程质量控制原则 第一,以国家施工及验收规范、工程质量验评标准及《工程建设规范强制性条文》、设计图纸等为依据,督促承包单位全面实现工程项目合同约定的质量目标。 第二,对工程项目施工全过程实施质量控制中,以质量预控为重点。 第三,对工程项目的人员、物料、技术、方法、环境等因素进行全面质量监控,监督承包单位的质量保证体系落实到位。 第四,严格落实承包单位执行有关材料试验制度和设备检验制度,做到不合格的建筑材料、构配机件及设备不会在工程上使用。

第五,坚持本工序质量不合格或未进行验收的,不签字确认,下一道工序不得施工。 三、质量控制的方法 (一)施工准备阶段质量控制 在依照批准的《监理规划(细则)》完善项目监理机构自身组织机构及人员配备的前提下展开工作。 1.监理项目部在施工前的准备工作 (1)建立或完善监理项目部的质量监控体系,做好监控准备工作,使之能适应准备开工的施工项目质量监控的需要。 (2)在施工前由监理项目部组织业主、设计单位及施工单位等有关人员进行设计交底和图纸会审。 (3)开工前熟悉和掌握质量控制的技术依据,如设计图纸、有关资料、规范、标准、编制质量控制方案等。 (4)编制质量控制方案,明确质量控制方法、要点。 2.核查施工单位在施工前的准备工作 项目监理部必须做好施工单位人员资质审查与控制工作,重点是施工的组织者、管理者的资质与管理水平,以及重点岗位、特殊专业工种和关键的施工工艺或新技术、新工艺、新材料等应用方面操作者的素质和能力。 1)检查工程施工单位主要技术负责、管理人员资格、到位情况。 2)审查施工单位承担任务的施工队伍及人员的技术资质与条件是否符合要求。经过专业监理工程师审查认可方可上岗施工,对于不合格人员,专业监理工程师有权要求施工单位予以撤换。

课堂激励方法

课堂激励方法 课堂激励二十二法 1、团队竞赛法 将本班学生划为若干学习,学习之间的课堂学习竞赛活动来合作学习的激励方法。 2、对手竞赛法 为班级的每位同学安排一名知识基础和学习能力的竞赛对手。对手赛活动来学生学习热情的激励方法。 3、物质激励法 对某项成绩或某项规定动作的学生奖给食物、学习用品或纪念品以对学生的的激励方法。 4、语言激励法 对成绩或某种努力的学生用恰当的语言赞赏以让学生快感的激励方法。 5、握手法 在课前以握手的欢迎学生教室或在课中以此对学生的性鼓励来融洽师生情感,学生情感期待的激励方法。 6、亲抚法 在课堂上以亲切和欣赏的抚拍学生脑袋和肩背以学生的课堂快乐指数和对教师的信任度的激励方法。 7、手语法 以竖大拇指等姿体语言来赞赏学生的某种和学习的激励方法。 8、鼓掌法 全班同学对学生的精彩以鼓掌方法激励的方法。 9、标识法 以某种物品或图标搁置在优胜者课桌上或悬挂在优胜者身体上以对优胜者激励的方法。

10、记分法 对学生的某些学习环节评分或每天的评分,累进,以持续对学生的课堂激励的方法。 11、示范法 让学生将的解题思路或操作技巧向同学演示,其它同学他的作法模仿,以者的自豪感的激励方法。 12、展示法 将学生的优秀作业、试卷、资料、笔记、用品、作品在全班展示,以让学生快感的激励方法。 13、赠言法 教师在学生的书本上签字或赠言,以对学生的品德、习惯、方法、肯定的激励方法。 14、命名法 教师学生的特长或特点以激励意义的头衔,如“未来作家”、“数学天才”等命名的激励方法。 15、游戏法 做游戏来活跃课堂,学生课堂意识的激励方法。 16、静默法 让全体学生闭目、身体放松、将想象在圆圈等简单图形上,并(如5分钟)以清除学生杂念,课堂常规程式从而降低学生疲劳、学生注意力的激励方法。 17、故事法 以师生讲故事来课堂变式,激活学生课堂热情的激励方法。 18、呼喊法 全班大声、整齐呼喊誓言、班训或其它可以调动高昂情绪的短语以课堂沉闷气氛和低落士气的激励方法。

matlab__function非常全的_matlab_函数

一、常用对象操作:除了一般windows窗口的常用功能键外。 1、!dir 可以查看当前工作目录的文件。!dir& 可以在dos状态下查看。 2、who 可以查看当前工作空间变量名,whos 可以查看变量名细节。 3、功能键: 功能键快捷键说明 方向上键Ctrl+P 返回前一行输入 方向下键Ctrl+N 返回下一行输入 方向左键Ctrl+B 光标向后移一个字符 方向右键Ctrl+F 光标向前移一个字符 Ctrl+方向右键Ctrl+R 光标向右移一个字符 Ctrl+方向左键Ctrl+L 光标向左移一个字符 home Ctrl+A 光标移到行首 End Ctrl+E 光标移到行尾 Esc Ctrl+U 清除一行 Del Ctrl+D 清除光标所在的字符 Backspace Ctrl+H 删除光标前一个字符 Ctrl+K 删除到行尾 Ctrl+C 中断正在执行的命令 4、clc可以命令窗口显示的内容,但并不清除工作空间。 二、函数及运算 1、运算符: +:加,-:减,*:乘,/:除,\:左除^:幂,‘:复数的共轭转置,():制定运算顺序。 2、常用函数表: sin( ) 正弦(变量为弧度) Cot( ) 余切(变量为弧度) sind( ) 正弦(变量为度数) Cotd( ) 余切(变量为度数) asin( ) 反正弦(返回弧度) acot( ) 反余切(返回弧度) Asind( ) 反正弦(返回度数) acotd( ) 反余切(返回度数) cos( ) 余弦(变量为弧度) exp( ) 指数 cosd( ) 余弦(变量为度数) log( ) 对数 acos( ) 余正弦(返回弧度) log10( ) 以10为底对数 acosd( ) 余正弦(返回度数) sqrt( ) 开方 tan( ) 正切(变量为弧度) realsqrt( ) 返回非负根 tand( ) 正切(变量为度数)

质量管理常用的七种统计方法1

质量管理常用的七种统计方法 日本质量管理专家石川馨博士将全面质量管理中应用的统计方法分为初级、中级、高级三类,本节将要介绍的七种统计分析方法是他的这种分类中的初级统计分析方法。 日本规格协会10年一度对日本企业推行全面质量管理的基本情况作抽样统计调查,根据1979年的统计资料,在企业制造现场应用的各种统计方法中,应用初级统计分析方法的占98%。 由此可见,掌握好这七种方法,在质量管理中非常之必要;同时,在我国企业的制造现场,如何继续广泛地推行这七种质量管理工具(即初级的统计分析方法),仍然是开展全面质量管理的重要工作。 一、排列图 排列图法又叫帕累特图法,也有的称之为ABC分析图法或主项目图法。它是寻找影响产品质量主要因素,以便对症下药,有的放矢进行质量改善,从而提高质量,以达到取得较好的经济效益的目的。故称排列法。由于这种方法最初是由意大利经济学家帕累特(Pareto)用来分析社会财富分布状况的,他发现少数人占有社会的大量财富,而多数人却仅有少量财富,即发现了“关键的少数和次要的多数”的关系。因此这一方法称为帕累特图法。后来美国质量管理专家朱兰(J.M.Juran)博士将此原理应用于质量管理,作为在改善质量活动中寻找影响产品质量主要因素的一种方法.在应用这种方法寻找影响产品质量的主要因素时,通常是将影响质量的因素分为A、B、C三类,A类为主要因素,B类为次要因素,C 类为一般因素。根据所作出的排列图进行分析得到哪些因素属于A类,哪些属于B类,哪些属于C类,因而这种方法又把它叫做ABC分析图法。由于根据排列图我们可以一目了然地看出哪些是影响产品质量的关键项目,故有的亦把它叫主项目图法。 所谓排列图,它是由一个横坐标、两个纵坐标、几个直方形和一条曲线所构成的图。其一般形式如图1所示,其横坐标表示影响质量的各个因素(即项目),按影响程度的大小从左到右排列;两个纵坐标中,左边的那个表示频数(件数、金额等),右边的那个表示频率(以百分比表示);直方形表示影响因素,有直方形的高度表示该因素影响的大小;曲线表示各影响因素大小的累计百分数,这条曲线称为帕累特曲线。 二、因果分析图法 因果分析图法是一种系统地分析和寻找影响质量问题原因的简便而有效的图示方法。因其最初是由日本质量管理专家石川馨于1953年在日本川琦制铁公司提出使用的,故又称为石川图法。由于因果图形似树枝或鱼刺,故也有称之为树枝图法或鱼刺图法。另外,还有的

相关文档
相关文档 最新文档