文档库 最新最全的文档下载
当前位置:文档库 › 几何证明举例1习题

几何证明举例1习题

几何证明举例1习题
几何证明举例1习题

学科教师辅导讲义

例2: 如图,AB CD

∥,180

FED D

+=o

∠∠,求证:EF AB

∥.

k

F E

D

B

C

A

例3: 如图,EF BC

⊥,DE AB

⊥,B ADE

=

∠∠,求证:AD EF

∥.

D C

F

E

B

A

三、强化练习:

1、如图所示,已知EC、FD与直线AB交于C、D两点,∠1=∠2。

求证:CE∥DF.

2、如图(1)所示,若要能使得AB∥ED,∠ABC、∠C、∠D应满足什么条件?

四、总结:

证明直线平行常用的方法

1._______________________________________________

2.______________________________________________

3.________________________________________________

2、已知:如图,AB=AC,AD=AE,AB、DC相交于点M。AC、BE相交于点N,∠DAB=∠EAC。

求证:∠D=∠E。

N M E

D

C

B

A

3、已知:如图,E、F是线段BC上的两点, AB∥CD,AB=CD,CE=BF。

求证:AE=DF。

F E

D

C B

A

(三)课后练习

一、选择题:

1、如图,AB∥CD,∠1=110°∠ECD=70°,∠E的大小是()

A.30° B.40° C.50° D.60°

2、如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()

A

B C

D

O

E

A C

D F

E

B (A)4cm (B)6cm

(C)8cm (D)10cm

二、解答题:

1、 已知:如图,点D 、E 、F 分别是AC 、AB 、BC 上的一点,DF ∥AB ,∠DFE =∠A .

求证:EF ∥AC .

2、已知:如图,在△ABC 中,BF 、CE 分别是AC 、AB 上的高,BF 和CE

交于H ,

BH=CH

求证:(1)BF=CE ;(2)AB=AC .

3、已知: 如图3,CE 平分BCD ∠,1270==o ∠

∠,340=o

∠。 求证:AB CD ∥.

H

F E C

B

A

几何证明题集-R5

因此n []122()n E K K K K =-++++ ,故有:2n K =。 2.50 证明有七条棱的多面体不存在。 证明:首先可证,每一面只能是三角形。若有一面是四边形或更多的多边形,则剩下至多三条棱,这剩下的至多三条棱无法与四顶点或更多的顶点相连而得到一多面体。 因此可得,假若存在有七条棱的多面体V ,设V 的面数为F ,棱数为E ,则23E F =。 ∵7E =,∴14 3 F =(非整数),与假设没有矛盾(由假设知F 必为正整数)。 故不存在有七条棱的多面体。 2.51 证明正四面体一双对棱中点的连线垂直于这两棱。 题设:在正四面体ABCD 中,E F 、是AB CD 、中 点。 题断:EF AB ⊥,EF CD ⊥。 证明:连AF BF DE CE 、、、。 ABCD 是正四面体, ∴FA FB =。 又EA EB = ,∴FE AB ⊥。 同理得:EF CD ⊥。 2.52 正四面体以一 顶点所引高的中点到其他三顶点连线,证明它们是一个三直 三面角的三棱。 题设:在正四面体ABCD 中,'AA ⊥平面BCD 于且'A ,O 为'AA 的中点。 题断:O BCD -是三直三面角。 证明:设正四面体ABCD 的棱长为a 。我们不难知道:'A 为正△BCD 的中心,因此 'BA ''CA DA == = 。 'AA ∴=。 ''2AA OA = =, 题图 2-51 题图 2-52

OB ∴。 同样得OC= ,OD=。 222222 )) OB OC a BC ∴+=+==。 因而知:BOC ∠=90?。 同理可证:COD ∠=90?,DOB ∠=90?。 故O BCD -是三直三面角。 2.53 证明正四面体一双对棱互相垂直。 题设:AB CD 、是正四面体ABCD的一双对棱。 题断:AB CD ⊥。 证明:取AB的中点E,连CE DE 、。 ∵CE AB ⊥,DE AB ⊥, ∴AB⊥平面DCE CD ?。 故AB⊥CD。 2.54 求作一平面使截正四面体的截面成矩形。 题设:正四面体ABCD。 求作:一平面π截此四面体,使截面PQRS 为矩 形。 分析:由已解决的2.28题知,首先π必平行于一双对 棱(这是由于矩形?平行四边形)。在这里,不妨假设 π已作成,π是平行于一双对棱AC、BD的。 P Q R S 、、、在AB、BC、CD、DA上,我们不 难知道PQ∥AC,QR∥BD。 由上题得:AC BD ⊥。 ∴PQ⊥QR,因而PQRS为矩形。 由此可见:平行于一双对棱的任一平面合条件。因而本题有无限多解。 作图:从略。 2.55 求作一平面使截正四面体的截面成正方 形。 题设:正四面体ABCD。 题作:平面α截此体,使得截面PQRS为正方 形。 题图 2-53 题图2-54

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

几何证明举例第6节第5课时

5.6.5几何证明举例 ---HL定理及已知一直角边和斜边作直角三角形的尺规作图学习目标 1、进一步掌握推理证明的方法,发展演绎推理能力; 2、能够证明直角三角形全等的“HL”判定定理及解决实际问题。 教学重点 应用直角三角形全等的“HL”判定定理解决问题。 教学难点 证明“HL”定理的思路的探究和分析。 教学过程 (一)初步探究:HL的证明 有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?写出你的证明过程? (二)HL应用:用三角尺可以作角平线 如图,在已知∠AOB的两边上分别取点M、N,使OM=ON,再过点M作OA的垂线,过点N作OB的垂线,两垂线交于点P,那么射线OP就是∠AOB的平分线,你能说出它的理由吗? (三)再次探究:三角形全等条件的探索 如图,已知∠ACB=BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来。

(四)尺规作图:已知线段l,m(l<m),求作:Rt△ABC,使直角边AC等于l,斜边AB等于m。 (五)课堂练习 1、判断下列命题的真假,并说明理由。 (1)两个锐角对应相等的两个直角三角形全等。 (2)斜边及一锐角对应相等的两个直角三角形全等。 (3)两条直角边对应相等的两个直角三角形全等。 (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等。 2.如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________. (六)当堂检测 1、已知:如图(1),AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△__________≌△__________(HL). (1)(2)(3) 2、已知:如图(2),BE,CF为△ABC的高,且BE=CF,BE,CF交于点H,若BC=10,FC=8,则EC=__________. 3、已知:如图(3),AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=(_______) 反思

2018高考试题一题多解

2018高考题一题多解 1. (2018年天津高考真题理科和文科第13题) 已知R b a ∈,,且063=+-b a ,则b a 8 1 2+的最小值为 . 思路一:基本不等式ab b a 2≥+ 解析一:由于063=+-b a ,可得63-=-b a , 由基本不等式可得,4 1222222222228123 6333= ?===?≥+=+ -----b a b a b a b a , 当且仅当???=+-=-0 63223b a b a ,即???=-=13 b a 时等号成立。 故b a 812+ 的最小值为4 1 。 思路二:轮换对称法(地位等价法) 方法二:轮换对称性:因为b a 3,-的地位是样的,当取最值时,b a 3,-在相等的时候取到: 33-=-=b a ,得1,3=-=b a ,418128121 3 =+=+ -b a 所以最小值为4 1 思路三:换元+等价转化 方法三:令x a =2, y b =81 ,则x a 2log =,y b 2log 3=-, 则已知问题可以转化为:已知06log log 22=++y x ,则y x +的最小值为 . 已知06log log 22=++y x ,可得6 2-=xy , 4 12223= ?=≥+-xy y x , 当且仅当y x =,?????=+-=0 638 1 2b a b a ,即???=-=13 b a 时取得等号, 故b a 812+ 的最小值为4 1 。 2.【2018课标2卷理12】 已知1F ,2F 是椭圆22 221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点, 点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=?,则C 的离心率为( ). A . 23 B .12 C .13 D .1 4

青岛版初中数学八年级上册5.6几何证明举例

§5.6 几何证明举例(2) 教学目标: 1. 学生能够证明等腰三角形的性质定理和判定定理。 2. 会运用等腰三角形的性质和判定进行有关的证明和计算。 3. 应用等腰三角形的性质和判定进一步认识等边三角形。 4. 培养学生分析问题和逻辑推理的能力。 教学重、难点: 重点:会证明等腰三角形的性质定理和判定定理。 难点:等腰三角形的性质定理和判定定理的应用。 教学准备: 电子白板、直尺、圆规、直角三角板 教学过程 一、情境导入、复习回顾 1、等腰三角形的性质是什么,这个命题的逆命题是什么? 二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步) (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。 证明:等腰三角形的两个底角相等。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C 法1 证明:过点A作∠BAC的角平分线交BC于点D ∴∠BAD = ∠CAD (角平分线定义) 在△BAD与△CAD中 ∵AB = AC (已知) ∠BAD = ∠CAD (已证) AD = AD (公共边) ∴△BAD≌△CAD(SAS) ∴∠ B = ∠ C (全等三角形对应角相等) 法2 证明:作BC边上的中线 AD ∴ BD = CD (中线定义) 在△BAD与△CAD中 ∵AB = AC (已知) BD = CD (已证) AD = AD (公共边) ∴△BAD≌△CAD( SSS )

∴∠B = ∠ C (全等三角形对应角相等) (2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性? 证明:有两个角相等的三角形是等腰三角形。 已知:如图,在如图,在△ABC中,∠B=∠C 求证:AB=AC 证明:作AD⊥BC,垂足为D 则∠ADB=∠ADC=90°(垂直的定义), 在△ABD和△ACD中, ∵∠B=∠C (已知), ∠ADB=∠ADC=90°(已证) AD=AD (公共边) ∴△ABD≌△ACD (AAS) ∴AB=AC(全等三角形的对应边相等) (3) 利用等腰三角形的性质定理和判定定理证明: (鼓励学生当老师讲给其他同学听) ①等边三角形的每个内角都是60° ②三个角都相等的三角形是等边三角形。 三、精讲点拨: 1、等腰三角形的性质: 性质1: 性质2: 2、数学语言表达: 性质1:性质2: 在△ABC ∵ AB=AC ∵ AB=AC ∴∠B= ∠C ① AD平分∠BAC (等边对等角) ②AD⊥BC ③ BD=DC ( ①,② ,③均可作为一个条件,推出其他两项 ) (三线合一) 四、典例精析 例1 已知,D是△ABC内的一点,且DE=DC,BD平分∠ABC,CD平分∠ACB 求证:AB=AC

高中数学《第三章概率3.3几何概型3.3.2均匀随机数的产生》126教案教学设计讲

1 《均匀随机数的产生》教学设计 1.教学内容解析 (1)本课是必修3第三章《概率》的最后一节内容,是在学习了古典概型、(整数值)随机数的产生和几何概型的前提下,学习用计算器(机)产生均匀随机数的方法,通过例2的探究理解用频率估计概率的随机模拟思想,并将此随机模拟方法推广应用,如估计未知量等。 (2)均匀随机数的产生是对前面(整数值)随机数产生结果有限性的补充,实现有关几何概型问题的模拟。 教学重点:学习用计算器(机)产生均匀随机数,设计模型用随机模拟方法估计未知量。 2.教学目标设置 (1)知识目标:了解产生均匀随机数的意义,熟练掌握产生均匀随机数的方法,准备判断问题模型并用随机模拟方法预测未知量。 (2)能力目标:通过例题的探究,提高数据分析处理和问题解决的能力。 (3)思想目标:强化用频率估计概率及化归的思想。(4)情感目标:感受数学魅力,提高学习数学的热情,养成积极主动思考、勇于探索和不断创新进取的良好学习习惯

和品质。 3.学生学情分析 (1)学会用计算器(机)产生整数值随机数,掌握一定的技术基础,因此本节课在教师引导下学生可较快掌握任意区间内均匀随机数的产生; (2)学生已学习了两种概率模型及其计算公式,因此在例题探究学习中学生能在教师引导下较好地识别概率模型并计算其理论数值; (3)前面的抛硬币随机模拟试验中学生初步认识到离散型变量用频率估计概率的统计思想,但对连续型随机变量的概率估算准确转化随机模拟这是学生思维的一个难点。需在在教师案例探究和应用的引导中,通过小组合作探讨和个人实际操作对比试验中进一步体会概率统计思想。 教学难点:如何把未知量估计问题转化为随机模拟问题并设计合理的试验过程。 4.教学策略分析 本节课的重难点是设计模型用随机模拟方法估计未知量,体会频率估计概率的思想。为达到此教学效果,通过例2的展开探究,以教师引导、小组合作探究模式,类比学习方法,让学生横向与纵向对比试验结果发现规律,最后通过理论验证规律的可靠性和客观存在性,让学生具体经历完整试验过程。其中,教师设计“问题串”的形式,引导学生分析问题,

几何概型教学设计

3.3.1 几何概型济宁市实验中学陈秀伟

【课题】 3.3.1 几何概型 【教材】普通高中课程标准实验教科书数学3 必修 人民教育出版社A版 【授课教师】陈秀伟 【教材分析】 本节课是高中数学人教A版必修三第三章第三节第一课时几何概型,是新课程改革后新增的内容,是在学习了随机事件的概率及古典概型之后,引入的另一类等可能模型,在概率论中占有相当重要的地位. 学好几何概型有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些现象. 【学情分析】 学生通过古典概型的学习初步形成了解决概率问题的思维模式,但还不是很成熟.学生在学习本节课时特别容易和古典概型相混淆,究其原因是思维不严谨,对几何概型的概念理解不清.另外,在解决几何概型的问题时,几何度量的选择也需要特别重视,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题. 【教学目标】 知识与技能:初步体会几何概型的意义,会用公式求解简单的几何概型的概率. 过程与方法:通过试验,与已学过计算概率的方法进行比较,提出新问题,师生共同探究,提出可行性解决问题的建议或想法. 情感态度与价值观:感知生活中的数学,培养学生用随机的观点来理解世界,加强与现实生活的联系,以科学的态度评价身边的随机现象,学会用科学的方法去观察世界和认识世界. 【重点难点】 教学重点: 几何概型的基本特征及如何求几何概型的概率. 教学难点: 如何判断一个试验是否是几何概型,如何将实际背景转化为几何度量. 【教法学法】 本节课教师采用层层设疑、启发引导学生自主探究的教学模式;使用多媒体来辅助教学,为学生提供直观感性的材料,有助于学生对问题的理解和认识. 【教学基本流程】 创设情境 ↓ 探究生成 ↓ 形成概念 ↓ 巩固深化 ↓ 课堂梳理 ↓ 布置作业

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

几何证明举例教学设计

几何证明举例——等腰三角形教学设计 教学目标 1、初步掌握等腰三角形的性质及简单应用。 2、理解等腰三角形和等边三角形的性质定理之间的关系。 3、培养分类讨论、方程的思想和添加辅助线解决问题的能力。 教学重点和难点 重点是等腰三角形性质的应用; 难点是等腰三角形的“三线合一”性质的灵活运用。 教学过程设计 一、探索并证明等腰三角形的三条性质复习引入新课: 动手操作 你还记得八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程吗?(学生事先准备好纸剪的等腰三角形操作)。展示等腰三角形折叠动画。 二、新课探索新课探索一:等腰三角形的性质定理和判定定理 1、回答下面的问题,并与同学交流: (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明? (2)说出命题“等腰三角形的两个底角相等”的逆命题; (3)这个逆命题是真命题吗?怎样证明它的正确性? 2、知识点1:等腰三角形的性质定理1 等腰三角形的两个底角相等。(等边对等角) (1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”) (2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C 温馨提示一: 回顾八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程。由当时的操作,如何添加辅助线,然后给出证明。注意作辅助线的方法可有多种,如作底边上的高、底边上的中线、顶角的平分线,相应地,在判定两个三角形全等时的依据也不同。 例4如果一个三角形有两个角相等,那么这个三角形是等腰三角形。 3、方法点拨 (3)证明一:取BC的中点D,连接AD 在△ABD和△ACD中 ∴△ABD≌△ACD(SSS) ∴∠B=∠C(全等三角形的对应角相等)

说课教案几何概型

说课教案几何概型 一.教材分析 1.教材地位与作用 本节课是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸,使概率的公理化定义更加完备。尽管本节内容在课程标准中的要求仅为了解和会简单的应用,但蕴含的数形结合和数学建模的思想凸显了其重要性。 2.教学目标 知识与技能: 了解几何概型的两个特征,会识别几何概型,并能正确求解概率。 过程与方法: 通过问题探究,动手实验,辨析异同,发现概念,学生体验“做数学”的乐趣和概念生成的过程。学生对照古典概型,类比推理,能提出解决几何概型问题的可行性想法。 情感、态度与价值观: 通过设置的故事情境,调动学生的兴趣,积极的进行自主探究,并进行合作交流。让学生认识到数学与我们的生活息息相关,数学是有用的、是自然的、是清楚的,也是丰富多彩的。 3.重点难点 重点:几何概型的两个特征,几何概型的识别和计算公式; 难点:建立合理的几何模型求解概率。 二.学情分析 学生的认知水平有了一定的基础,前面学习了随机事件的概率和古典概型,并且掌握了二元一次不等式表示的平面区域问题。 但学生的抽象思维能力还有待于进一步提高,因此在从古典概型向几何概型的过渡时,如何将问题的实际背景转化为“几何度量”,学生会有一些困难和疑惑,这就需要恰当的引导、合理的解释和明确的辨析。 三.学法指导(附导学案) 本节课采用发现法教学和学案导学相结合的方法。通过精心设计的导学案,以故事的形式展现问题,激发学生的求知欲。学生不仅在课前自主的探究和预习,而且在课堂中通过动手实验,合作交流,发现问题,提倡学生扮演“老师”进行讲评,把课堂变成教师导演学生主演的数学学习活动场所。我将学生的导学案附在后面,恳请各位专家给予指导。 四.教学过程 数学教学是数学活动的教学,我将整个导与学的过程分为以下四个环节:1.创设情境,温故知新,2.探究实验,构建概念,3.例题分析,推广应用,4.巩固升华,总结概括。 1.创设情境温故知新(3分钟) 青青草原上“喜洋洋”超市举行购物抽奖的大型促销活动,红太狼购物后

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=43 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 43= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=43 :α在第一、三象限 在第一象限时: cos2α = αα cos sin cos 2 2 2 5+=αtan 2 11+= 2516 cosα=54 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于 tana=43 ,在直角△ ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =54 ∴sinα= 53 ,cosα=54

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

中南大学高等数学下册试题全解

中南大学2002级高等数学下册 一、填空题(4*6) 1、已知=-=+),(,),(2 2y x f y x x y y x f 则()。 2、设=???=y x z x y arctg z 2,则()。 3、设D 是圆形闭区域:)0(2222b a b y x a <<≤+≤,则=+??σd y x D 22()。 4、设L 为圆周122=+y x 上从点),(到经01-)1,0()0,1(B E A 的曲线段,则=?dy e L y 2 ()。 5、幂级数∑∞ =-1)5(n n n x 的收敛区间为()。 6、微分方程06'''=-+y y y 的通解为()。 二、解下列各题(7*6) 1、求)()()cos(1lim 2222220 0y x tg y x y x y x +++-→→。 2、设y x e z 23+=,而dt dz t y t x 求,,cos 2==。 3、设),(2 2 y x xy f z =,f 具有二阶连续偏导数,求dt dz 。 4、计算}10,10|),{(,||2≤≤≤≤=-??y x y x D d x y D 其中σ。 5、计算?++-L y x xdy ydx 22,L 为1||||=+y x 所围成的边界,L 的方向为逆时针方向。 6、求微分方程2''')(12y yy +=满足1)0()0('==y y 的特解。 三、(10分) 求内接于半径为a 的球且有最大体积的长方体。 四、(10分) 计算??∑ ++zdxdy dydz z x )2(,其中∑为曲面)10(22≤≤+=z y x z ,其法向量与z 、z 轴正向的夹角为锐角。 五、(10分)

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

2014高中数学 一题多变一题多解特训(一)

高中数学一题多解和一题多变 根据高考数学“源于课本,高于课本”的命题原则,教师在教学或复习过程中可以利用书本上的例题和习题,进行对比、联想,采取一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 一题多解和一题多变(一) 类型一:一题多解 例题: 已知tan α=43 ,求sin α,cos α的值 分析:因为题中有sin α、cos α、tan α,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tan α= 43= αα cos sin ,且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cos α= 54 或者cos α= -54 ;而s in α=53或者sin α=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tan α=43 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=25 16 cos α=54 sin α=αcos 2 1-=5 3 而在第三象限时: cosa=- 54 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙:

法三 tan α= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α = ± 3 4cos sin 2 2 2 2 ++α α ∴sin α=53,cos α= 54 或sin α=-53,cos α=-54 分析: 上面从代数法角度解此题,如果单独考虑sin α、cos α、tan α,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=43 ,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得, c=5x sinA=AB BC = 53 ,cosA=AB AC =54 ∴sin α= 53 ,cos α=54 或sin α= -53 ,cos α= -54 分析 :用初中三角函数定义解此题,更应该尝试用三角函数高中的定义解此题,因为适用范围更广: 法五 当α为锐角时,如下图所示,在单位圆中,设α=∠AOT , 因为tan α= 43 ,则T 点坐 标是T(1, 43 ),由勾股定理得:OT= ?? ? ??+432 1= 45

几何概型教学设计 高二数学教案 人教版

几何概型教学设计 教学内容: 人教版《数学必修3》第三章第3.3.1节几何概型。 学情分析: 这部分是新增加的内容,介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的,随机模拟部分是本节的重点内容。几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个。 本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等,教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性。几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个;它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关。 教材的地位与作用: 概率的初步知识在初中已经介绍,在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用。 本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成用科学的态度、辩证的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识和科学方法;这对全面系统地掌握概率知识,对于学生辩证思想的进一步形成具有促进的作用。 教学目标: 知识与技能 了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。 过程与方法 通过游戏、案例分析,学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。 情感、态度与价值观 通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。 教学重点: 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点: 将现实问题转化为几何概型问题,从实际背景中找几何度量。 教学过程: 一、复习引入 1、古典概型的两个基本特征是什么? 2、如何计算古典概型的概率?

高等数学数试题(含解答)

共 5 页 第 1 页 08-09-3 高数A (期中)试卷参考答案 09.4.17 一.填空题(本题共5小题,每小题4分,满分20分) 1.交换积分次序 20242 42 2 d (,)d d (,)d d (,)d y x x y f x y x y f x y x x f x y y +---+=? ? ??? ; 2. 设e 10z -=,则Re ln 2z =,Im 2,0,1,2,3 z k k π π=- +=±± ; 3.设(,)z z x y =是由方程22()y z xf y z +=-所确定的隐函数,其中f 可微,则全微分 21 d d d 1212f xyf z x y xzf xzf '-= +'' ++; 4.设C 为由x y π+=与x 轴,y 轴围成的三角形的边界,e d x y C s +=? e 2)2π+- 5.设(,)f x y 连续,{ }2 (,)01,0D x y x y x =≤≤≤≤,且(,)(,)d d D f x y x y f x y x y =+?? 则 1 (,)d d 8 D f x y x y = ?? . 二.单项选择题(本题共4小题,每小题4分,满分16分) 6.函数22 ,(,)(0,0)(,)0,(,)(0,0)xy x y x y f x y x y ?≠?+=??=? 在点(0,0)处 [ C ] (A)连续且偏导数存在 (B) 连续但偏导数不存在 (C)不连续但偏导数存在 (D) 不连续且偏导数不存在 7设{ } 22 (,)1D x y x y =+≤,1D 为D 在第一象限部分,则下列各式中不成立的是[ B ] (A ) 1 d 4d D D x y x y = (B )1 d d 4d d D D xy x y xy x y =???? (C ) 32()d d 0D x x y x y +=?? (D )2332 d d d d D D x y x y x y x y =???? 8设()[0,)f t C ∈+∞,2222 222()()d x y z R I R f x y z v ++≤= ++??? ,则当0R +→时,()I R [ D ] (A )是R 的一阶无穷小 (B )是R 的二阶无穷小

相关文档
相关文档 最新文档