文档库 最新最全的文档下载
当前位置:文档库 › 第四章概率统计补充习题

第四章概率统计补充习题

第四章概率统计补充习题
第四章概率统计补充习题

第四章 随机变量的数字特征

一、基本题

1. 设随机变量12,,3X X X 相互独立,且都服从参数为3的泊松分布,X 是12,,3X X X 的算术平均值,则______________.E X =

2. 设随机变量X 服从参数为的泊松分布,则0.51(

_____________.1E X =+ 3. 设随机变量X

的概率密度为21

4(),,x x f x x R ?+?∈2_______.EX =则

=4. 设1~(0,)2

X N ,Y 与X 独立同分布,则||__________.D X Y ?=

5. 设对某一种商品的需求量X (件)是一随机变量,其概率分布为 2{}(1,2,3,4)6!

k

P X k k k === 则期望需求量为 __________.6. 有若干瓶超过保质期的饮料,假设其中变质的期望瓶数为18瓶,标准差为瓶,则变质饮料的瓶数4X 的概率分布是

____________.7. 一根均匀金属轴的横截面是一圆形,以X 表示对其直径的随机测量结果,,则轴的横截面面积的数学期望为方差为

~[1,2]X U S _______._______.8. 以X 表示连接10次独立重复射击命中目标的次数,已知每次射击命中目标的概率为 0.4,则

2___________.EX =9. 假设无线电测距仪无系统误差,其测量的随机误差服从正态分布。已知随机测量的绝对误差以概率不大于20米,则随机测量误差的标准差0.95_________.σ=

10. 次独立重复试验成功次数的标准差的最大值等于

100____________.11. 假设X 与Y 的方差都为1,0.25XY ρ=,则随机变量2U X Y V X Y =+=?和的协方差为

____________.12. 将一枚均匀对称的色子独立地重复掷次,以4X 表示次掷出的点数之和,

则根据车不晓夫不等式,4{1018}_________.P X <<≥

13. 设2,1,2,4,0.5XY EX DX EY DY ρ=?====?,则根据车不晓夫不等式,

{||6}_________.P X Y +≥≤

14. 对于任意随机变量X 和Y ,如果()(D X Y D X Y )+=?,则 ____________. []A X 和Y 独立 []B X 和Y 不独立

[] []C DXY DXDY =D EXY EXEY =

15. 假设随机向量(,)X Y 在以点为顶点的三角形区域上服从均匀分布.求

随机变量(0,1),(1,0),(1,1)Z X Y =+的方差.

16. 假设随机变量X Y 和的数学期望都等于1,方差都等于,其相关系数为0.25,求随机变

量和的相关系数22U X Y =+2V X Y =?ρ.

二、提高题

1. 设~(2)X e ,则

()____________.X E X e ?+=2. 假设随机变量X 服从柯西分布,其概率密度为 21(),(1)f x x x πR =

∈+ , 求:

min{||,1}E X 3. 假设随机变量1210,,...X X X 独立同分布,且方差存在.

求随机变量的相关系数165......U X X V X X =++=++和10ρ

4. 连续掷一硬币次,设每次硬币出现正面的概率为出现反面的概率为,求出现正面的次数为偶次的概率.

n ,p q 5. 设随机变量X 只取自然数为值,试证明:1()k EX P X ∞

=k =≥∑

6. 设一袋子中装有黑球个,现从该袋中任意取出一球,并放入一白球,如此进行次,已知此时袋中白球个数的期望为,求第n n m 1n +次取出的球为白球的概率。

7.设一台机器上有三个部件,在某一时刻需要对部件进行调整,3个部件被调整的概率分别为0.1并且互相独立。任一部件需要调整即为该机器需要调整。

,0.2,0.3 [1求该机器需要调整的概率。

][2]记X 为需要调整的部件数,求,EX DX 。

中北大学概率统计习题册第四章完整答案(详解)资料

中北大学概率统计习题册第四章完整答案 (详解)

1. 填空 1)设~(,)X B n p ,则EX =np ,DX = npq 。 2)设~()X P λ,则EX =λ, DX =λ。 3)设~()X E λ,则EX = 1λ ,DX = 2 1 λ。 4)设[]~,X U a b ,则EX = 2 a b +,DX = () 2 12 b a -。 5)设2~(,)X N μσ,则EX =μ, DX =2σ。 6)设(,)~(1,1;2,9;0.5)X Y N ,则 EX =1,DX = 1 ,EY = 2,DY = 9 ,(,)Cov X Y = 1.5 。 7)已知螺钉的重量服从()250, 2.5N ,则100个螺钉总重量服从分布()5000, 625N 。 2. 已知在一定工序下,生产某种产品的次品率0.001。今在同一工序下,独立生产5000件这种产品,求至少有2件次品的概率。 解:设X 表示5000件产品中的次品数,则 ()~5000,0.001X B 。 50000.0015λ=?=,则 ()()()2100P X P X P X ≥=-=-= 5000499910.99950000.0010.999=--?? 0155 5510!1! e e --≈--10.006740.033690.95957=--= 注:实际上 5000499910.99950.9990.95964--?= 3. 设某商店中每月销售某种商品的数量服从参数为7的泊松分布,问在月初进货时应至少进多少件此种商品,才能保证当月不脱销的概率为0.999。 解:设进货数件数为N ,当月销售需求为X ,则由题意知()~7X P ,且 {}7 07e 0.999! k N k P X N k -=≤=≥∑ 查泊松分布的数值表,可得16N ≥. 4 . 地下铁道列车的运行间隔时间为五分钟,一个旅客在任意时刻进入月台,求候车时间的数学期望与方差。 解:设旅客在地铁进站之前的X 时刻到达,即旅客候车时间也为X ;其数学期望和 分别为()~[0,5]X U , 52EX = ;2512 DX =。 5.设(){ }3.02010,,10~2=<

概率论与数理统计练习题第四章答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1 . 设 随 机 变 量 X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为 910()9 00 x e x f x x -?≥?=??

*5.设随机变量(,1,2,,)ij X i j n =L 独立且同分布,()2ij E X =,则行列式 11121212221 2n n n n nn X X X X X X Y X X X = L L M M M L 的数学期望() E Y = 0 (考研题 1999) 三、计算题: 1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X 表示取出的3个球中最大编号,求().E X 2.设随机变量2 ~(,)X N μσ,求(||).E X μ - 3.设随机变量X 的密度函数为0()0 x e x f x x -?≥=?

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论第四章习题解答

第四章 随机变量的数字特征 I 教学基本要求 1、理解随机变量的数学期望与方差的概念,掌握它们的性质与计算,会求随机变量函数的数学期望; 2、掌握两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望与方差; 3、了解切比雪夫不等式及应用; 4、掌握协方差、相关系数的概念与性质,了解矩和协方差矩阵的概念; 5、了解伯努利大数定理、切比雪夫大数定律、辛钦大数定理; 6、了解林德伯格-列维中心极限定理、棣莫弗―拉普拉斯中心极限定理,掌握它们在实际问题中的应用. II 习题解答 A 组 1、离散型随机变量X 的概率分布为 求()E X 、(35)E X +、2 ()E X ? 解:()(2)0.4000.3020.300.2E X =-?+?+?=-; (35)3()5 4.4E X E X +=+=; 2222()(2)0.4000.3020.30 1.8E X =-?+?+?=. 2、某产品表面瑕疵点数服从参数0.8λ=的泊松分布,规定若瑕疵点数不超过1个为一等品,每个价值10元,多于4个为废品,不值钱,其它情况为二等品,每个价值8元.求产品的平均价值? 解:设X 为产品价格,则0X =、8、10.通过查泊松分布表可知其相应概率分布为 则()80.1898100.80889.61E X =?+?≈(元). 3、设随机变量X 的分布函数为0 0()/40414x F x x x x ≤?? =<≤??>? .求()E X ?

解:由分布函数知X 的密度函数为 1/404 ()0 x f x <≤?=? ?其它 则4 ()()24 x E X xf x dx dx +∞ -∞ = ==? ? . 4、设随机变量X 服从几何分布,即1 ()(1)k p X k p p -==-(1,2,)k =L ,其中 01p <<是常数.求()E X ? 解:1 11 1 ()(1) (1)k k k k E X kp p p k p +∞ +∞ --=== -=-∑∑ 由级数 21 2 1123(1) k x x kx x -=+++++-L L (||1)x <,知 211 ()[1(1)]E X p p p =? =--. 5、若随机变量X 服从参数为λ的泊松分布,即 ()! k p X k e k λλ-== (0,1,2,)k =L 求()E X 、2 ()E X ? 解:1 00 ()!(1)!k k k k E X k e e e e k k λ λ λλλλλλλ-+∞ +∞ --- === ===-∑∑; 12 2 010 (1)()[]! (1)!!k k k k k k k k E X k e e e k k k λ λ λ λλλλλ-+∞ +∞ +∞ ---===+===-∑∑∑ 1 21 []()(1)! ! k k k k e e e e k k λ λλλλλλλλλλλ-+∞ +∞ --===+=+=+-∑ ∑ . 6、某工程队完成某项工程的时间X (单位:月)服从下述分布 (1) 求该工程队完成此项工程的平均时间; (2) 设该工程队获利50(13)Y X =-(万元).求平均利润? 解:(1) ()100.4110.3120.2130.111E X =?+?+?+?=(月);

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

概率论典型例题第4章

第四章 大数定律与中心极限定理 例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。 分析:切比雪夫不等式:2{}DX P X EX εε?≥≤或2{}1DX P X EX εε?<≥?, 显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。 解:由于 0)(=+Y X E , ()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××?=, 故由切比雪夫不等式 1216 )(}6{2=+≤≥+Y X D Y X P 。 注:还是用到第三章数字特征的一些性质。 除了切比雪夫不等式本身,这也是另外的知识点。 例2.设()0(0)g x x ><<+∞,且为非降函数。 设X 为连续型随机变量且[()]E g X EX ?存在。 试证对任意0ε>,有 [()] {}()E g X EX P X EX g εε??≥≤。 分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。 证明:设随机变量X 的概率密度为()f x ,则有 {}()x EX P X EX f x dx εε?≥?≥= ∫ 由于()0g x >,且非降,故当X EX ε?≥时,有 ()()g X EX g ε?≥,() 1()g X EX g ε?≥, 所以

(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε?≥?≥??≥= ≤∫∫ 1()()()g X EX f x dx g ε+∞?∞ ≤?∫ [()] ()E g X EX g ε?=。 注:这是切比雪夫不等式的推广。 当2()g x x =时,即为切比雪夫不等式。 例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分 布,则当n →∞时,21 1n n i i Y X n ==∑依概率收敛于 。 (A ) 0 (B ) 12 (C ) 14 (D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。 解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为 2 22111()422i i i EX DX EX ??=+=+=????。 根据辛钦大数定律,当n →∞时,21 1n n i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。 注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。 切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。 但是只有辛钦大数定律不要求方差存在。 同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不

概率论与数理统计(经管类)第四章课后习题答案word档

习题4.1 1. 设随机变量X 的概率密度为 (1)f(x)={2x,0≤x ≤1,0,其他; (2) f(x)=1 2e ?|x |, ?∞0,0,x ≤0. 求E(X). 解: E (X )= ∫xf (x )dx =+∞ ?∞1 σ ∫x ? e ? x 2 2σ2dx =+∞ 01 4. 设X 1, X 2,….. X n 独立同分布,均值为μ,且设Y = 1n ∑X i n i=1,求E(Y). 解: E (Y )=E (1 n ∑X i n i=1)=1 n E (∑X i n i=1)=1n ?n μ=μ 5. 设(X,Y)的概率密度为 f(x,y)={ e ?y , 0≤x ≤1,y >0,0, 其他. 求E(X+Y).

改后第四章概率论习题-奇数答案

第四章概率论习题__奇数.doc 1 某批产品共有M 件,其中正品N 件(0N M ≤≤)。从整批产品中随机的进行有放回抽样,每次抽取一件,记录产品是正品还是次品后放回,抽取了n 次(1n ≥)。试求这n 次中抽到正品的平均次数。 解 每次抽到正品的概率为: N M ,放回抽取,抽取n 次,抽到正品的平均次数为:N n M 3设随机变量X 的概率密度为()() 21,1f x x R x π=∈+ ,这时称X 服从标准柯西分布。试证X 的数学期望不存在。 解 由于: 202 1()2ln(1)|(1)x x f x dx dx x x ππ +∞ +∞ +∞ -∞ ==+=+∞+? ? 所以X 的数学期望不存在。 5 直线上一质点在时刻0从原点出发每经过一个单位时间向左或者向右移动一个单位,若每次移动是相互独立的,并且向右移动的概率为p (01p <<)。n η表示到时刻n 为止质点向右移动的次数,n S 表示在时刻n 时质点的位置,1n ≥。求n η与n S 的期望。 解 每次向右移动的概率为p ,到时刻n 为止质点向右移动的平均次数,即n η的期望为: ()n E np η= 时刻n 质点的位置n S 的期望为:()(1)(21)n E S np n p n p =--=- 7 某信号时间长短T (以秒计)满足:{}()112 t t P T t e e -->= +,0t ≥。用两种方法求出()E T 。 解 方法 1:由于(0)1P T ≥=,所以T 为非负随机变量。于是有: 13()(1())()(1)24 t t E T F t dt P T t dt e e dt +∞+∞ +∞ --=-=>=+=?? ? 方法二:由于(0)1P T ≥=,所以,可以求出T 的概率函数: 0,0 ()1(12),02 t t t f t e e t --

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率 不大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这 20件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论与数理统计课后答案北邮版(第四章)

习题四 求 E (X ), E (X ), E (2X+3). 1 1 1 1 1 【解】(1) E(X)=(-1) 1 2 ; 8 2 8 4 2 2 2 1 2 1 2 1 2〔5 (2) E(X 2) =(-1) 2 - 02 — 12 - 22 ; 8 2 8 4 4 1 (3) E(2X 3) =2E(X) 3 = 2 — 3 = 4 2 2?已知100个产品中有10个次品,求任意取出的 5个产品中的次品数的数学期望、方差 【解】设任取出的5个产品中的次品数为 X ,则X 的分布律为 故 E(X)= 0.583 0 0. 34 0 1 0.070 2 0. 007 3 -0.501, 5 2 D(X)八[X i -E(X)] P i=Q =(0 -0.501)2 0.583 (1-0.501)2 0.340 ::;■…川(5 - 0.501)2 0 = 0.432. 3?设随机变量X 的分布律为 且已知 E (X )=0.1,E(X )=0.9,求 P 1, P 2, P 3. 【解】因R +P 2+F 3=1……①, 又 E(X)=(—1)R +0畀十1^ = P 3 —P =0.1 ……②, E(X 2) =(—1)2 勒 +02电+12匪=只+巳=0.9…… 由①②③联立解得 P =O.4,P 2 =0.1,P 3=0.5. 4.袋中有N 只球,其中的白球数 X 为一随机变量,已知 E (X ) =n ,问从袋中任取1球为白 球的概率是多少? 【解】记A={从袋中任取1球为白球},则

N P(A)全概率公式' P{A|X 二 k}_P{X =k} 7 N k 1 N P{X =k} kP{X = k} 7 N N k 」 1 n = N £(X ^N 5?设随机变量X 的概率密度为 x, 0 乞 x :: 1, f (x )=」2 —x,1 兰x 兰2, 0,其他. 求 E (X ), D (X ). -be 1 2 2 xf (x)dx = ° x dx 亠 I x(2「x)dx 2 - - 2 1 3 2 2 E(X ) x f (x)dx x dx 亠 I x (2-x)dx = 0 1 D (X)=E(X 2) — [E(X)]2 T X ,Y , Z 相互独立,且 E (X )=5,E ( Y ) =11,E (Z )=8,求下列随机变量 (1) U=2X+3Y+1 ; (2) V=YZ -4X. 【解】(1) E[U ] = E(2X +3Y+1) = 2E(X)+3E(Y)+1 =2 5 3 11 1 = 44. (2) E[V] =E[YZ _4X] =E[YZ] _4E(X) 因Y,Z 独立E(Y) _E(Z) -4E(X) =11 8-4 5 = 68. 7?设随机变量 X ,Y 相互独立,且 E( X )=E ( Y )=3 ,D ( X )=12,D ( Y )=16,求 E ( 3X - 2Y ), D (2X -3Y ). 【解】(1) E(3X -2Y) =3E(X)-2E(Y) =3 3-2 3 =3. 2 2 (2) D(2X -3Y) =2 D(X) (-3) DY = 4 12 9 16=192. 8?设随机变量(X ,Y )的概率密度为 【解】E(X) 故 6?设随机变量 的数学期望?

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案 第 四 章 1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为 其中(1,1)(1)(1|1)0P X Y P X P Y X ======= 余者类推。 2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。解一枚硬币连掷三次相当于三重贝努里试验,故 1~(3, ).2X B 331 ()(),0,1,2,32 k P X k C k ===,于是(,)X Y 的分布列和边缘分布为 01013818i p ? 其中(0,1)(0)(1|0)0P X Y P X P Y X =======, 13 313(1,1)(1)(1|1)()128 P X Y P X P Y X C =======?=,

余者类推。 3.设(,)X Y 的概率密度为 又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。求{(,)}P X Y D ∈ 解(1)1 3 21 {(,)}(6)8P x y D x y dxdxy ∈ = --? =32 1 (6)8 x x y dxdy --- = )落在圆222 ()x y r r R +≤<内的概率. 解(1)222 23 20 1(R x y R C R dxdy C R C r drd ππθ+≤==-??? ? 33 3233R R C R C πππ??=-=??? ?, ∴3 3 C R π=. (2)设2 2 2 {(,)|}D x y x y r =+≤,所求概率为 322 3 23232133r r r Rr R R R πππ???? =-=-?????? ?? . 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数. 解1设(,)X Y 的分布函数为(,)F x y ,则 解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则 6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。 解(,)X Y 的概率密度为 关于X 和Y 的密度为

概率论与数理统计第四章测试题

第4章 随机变量的数字特征 一、选择题 1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 44 2.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( ) (A) X 与Y 相互独立 (B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X 和Y 相互独立,且()()22 1122,,,X N Y N μσμσ, 则2Z X Y =+( ) (A) ()221212,2N μμσσ++ (B) () 22 1212,N μμσσ++ (C) () 2212122,4N μμσσ++ (D) ()2212122,4N μμσσ-- 4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为 (A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2 (C) E(X 2)= E(Y 2) (D) E(X 2)+(EX)2= E(Y 2)+ (EY)2 5.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学 期望()E Z =( ) (A) (B) 0 (C) (D) 6.设X 、Y 是相互独立且在()0,θ上服从于均匀分布的随机变量,则()min ,E X Y =????( ) (A) 2θ (B) θ (C) 3θ (D) 4 θ 7.设随机变量X 和Y 的方差存在且不等于0,则D(X+Y)=DX+DY 是X 和Y ( ) (A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件 (C) 不相关的充分必要条件 (D) 独立的充分必要条件 8.若离散型随机变量X 的分布列为(){ }()112 1,2, 2n n n P X n =-?==, 则()E X =( ) (A) 2 (B) 0 (C) ln2 (D) 不存在 9.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于 (A )-1 (B )0 (C )2 1 (D )1

概率论第四章第五章习题

第四章 数字特征 一.主要内容 随机变量的数学期望 方差 协方差和相关系数 二.课堂练习 1.一台设备由三大部件构成, 在设备运转中各部件需要调整的概率分别 为0.10.2和,假设各部件的状态相互独立, 以X 表示同时需要调整的部件数, 试求X 的数学期望和方差. ()()2 22:X :P(X 0)0.504,P(X 1)0.398 P(X 2)0.092,P(X 3)0.006 E(X)00.50410.39820.09230.0060.6E(X )0.820,D X E(X )E(X)0.46=========?+?+?+?===-=解法一先求出的分布律则 i 1231231231231,i , :X i 1,2,3, 0,i ,X X X X ,X ,X ,X , E(X)E(X )E(X )E(X )0.10.20.30.6,D(X)D(X )D(X )D(X )0.46 ?==?? =++==++=++===++=第个部件需要调整解法二设第个部件不需要调整且相互独立 2X 2.X ~U(0,1),(1)Y e ;(2)Cov(X,Y)=设求的概率密度求 2 Y X X 1,1y e , 11112y f (y)f (ln y)(ln y)f (ln y)2222y 0,. ?<

相关文档
相关文档 最新文档