文档库 最新最全的文档下载
当前位置:文档库 › matlab的freqs函数画幅频、相频特性曲线

matlab的freqs函数画幅频、相频特性曲线

matlab的freqs函数画幅频、相频特性曲线
matlab的freqs函数画幅频、相频特性曲线

>> clear

>> a=[1];

>> b=[1 0.4 0.08];

>> w=linspace(-2*pi,2*pi,512);

>> h=freqs(a,b,w);

>> subplot(2,1,2),plot(w/pi,angle(h)); >>subplot(2,1,1),plot(w/pi,abs(h));

>> clear

>> a=[2 0];

>> b=[1 2,10001];

>> w=linspace(-2*pi,2*pi,512);

>> h=freqs(a,b,w);

>> subplot(211),plot(w/pi,abs(h)); >> subplot(212),plot(w/pi,angle(h));

>> clear

>> syms t;

>> v1=(1+cos(t))*cos(100*t); >> V=laplace(v1);

>> syms s;

>> H=2*s/(s^2+2*s+10001); >> V2=V*H;

>> v2=ilaplace(V2);

>> ezplot(v2,[-0.1*pi,0.1*pi])

利用MATLAB绘制二维函数图形

《MATLAB语言》课程论文 利用MATLAB绘制二维函数图形 姓名:海燕 学号:12010245375 专业:通信工程 班级:通信一班 指导老师:汤全武 学院:物理电气信息学院 成日期:2011年12月5 利用MATLAB绘制二维函数图形 (海燕 12010245375 2010级通信1班) [摘要]大学高等数学中涉及许多复杂的函数求导绘图极值及其应用的问题,例如二维绘图,对其手工

绘图因为根据函数的表达式的难易程度而不易绘制,而MATLAB语言正是处理这类的很好工具,既能简易的写出表达式,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。本文将探讨利用matlab来解决高等数学中的二维图形问题,并对其中的初等函数、极坐标、进行实例分析,对于这些很难用手工绘制的图形,利用matlab则很轻易地解决。[关键词]高等数学一元函数二元函数 MATLAB语言图形绘制 一、问题的提出 MATLAB 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是最有活力的软件。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能。中学数学中常见到的是二维平面图形,由于概念抽象,学生不好理解,致使学生对学习失去信心,导致学习兴趣转移。在传统的教学中,教师在黑板上应用教具做图,不能保证所做图形的准确性,曲线的光滑度不理想,教学过程显得枯燥无味,教学质量难以保证。Matlab是集数值计算、符号计算和图形可视化三大基本功能于一体的大型软件,广泛应用于科学研究、工程计算、动态仿真等领域。Matlab是一种集成了计算功能、符号运算、数据可视化等强大功能的数学工具软件。其代码的编写过程与数学推导过程的格式很接近,所以使编程更为直观和方便,应用于教学就更加容实现Matlab软件尤 其在简单的绘图中有较强的编辑图形界面功能,在中学的数学教学中的抽象函数变得直观 形象、容易实现,同时也激发学生的学习兴趣,学生通过数形结合,更好地理解题意高等数学是一门十分抽象的学科,对于一些抽象的函数,我们可以借助于几何图形来理解,但这类图形的绘制往往很复杂,仅凭手工绘制也难以达到精确的效果,这时如果使用Matlab来解决所遇到的图形问题,则能达到事半功倍的效果。在高等数学领域中有关图形方面的应用,无论是初等函数图形、还是极坐标图形、统计图,对于Matlab而言都是完全可以胜任的。 下面结合实例从几个方面来阐述matlab在高等数学二维图形中的应用。 二、用matlab绘制一元函数图像 1.平面曲线的表示形式 对于平面曲线,常见的有三种表示形式,即以直角坐标方程 ] , [ ), (b a x x f y∈ =,以参数方程 ] , [ ), ( ), (b a t t y y t x x∈ = =,和以极坐标] , [ ), (b a r r∈ =? ?表示等三种形式。 2.曲线绘图的MATLAB命令 MATLAB中主要用plot,fplot二种命令绘制不同的曲线。 可以用help plot, help fplot查阅有关这些命令的详细信息 问题1 作出函数 x y x y cos , sin= =的图形,并观测它们的周期性。先作函数x y sin =在

幅频特性和相频特性图

速度控制环优化 速度控制环的优化主要是速度调节器的优化。速度调节器主要优化比例增益与积分时间常数两个数据,先确定它的比例增益,再优化积分时间常数。如果把速度调节器的积分时间常数(MD1409)调整到500ms,积分环节实际上处于无效状态,这时PI速度调节器转化为P调节器。为了确定比例增益的初值,可从一个较小的值开始,逐渐增加比例增益,直到机床发生共振,可听到伺服电机发出啸叫声,将这时的比例增益乘以0.5,作为首次测量的初值。 MD1407—速度增益Kp MD1409—积分时间Tn 速度环手动优化的具体步骤: 步骤一、用适配器将驱动器和计算机相连接,启动计算机和系统(电缆连接必须断电) 步骤二、等机床准备好后使机床工作在JOG方式下。 步骤三、在计算机上运行“SIMODRIVE 611D START TOOL”软件,首先会弹出画面如图

【Axis-】出现如下画面 所示

步骤六、点击【Drive MD】,进入如下画面 步骤七、点击【Boot file/Nck res...】,再点击【Measuring parameters】,进入如下画面,Amplitude为输入信号幅值,峰值力矩的百分比;Bandwidth 为测量带宽;Averaging 为平均次数,次数越多,越精确,时间越长,通常20次;Settling time 为建立时间,注入测量信号和偏移,到记录测量数据 间的时间;Offset为斜坡偏移量(避免启停时出现浪涌电流)。

提示画面,机床参数MD1500应设置为0,如下图所示 步骤九、点击【OK】,出现提示画面如下图

步骤十、按机床NC Start按钮,开始优化,在计算机上点击【Display】,出现如下画面(如果在此时伺服电机发生特别大的噪声,这时应紧急按下急停 按扭)。 通过得到的曲线可以看出,改变MD1407和MD1409的值就可以使曲线发生变化。速度环参数的调节是驱动参数调节的重点,有时在电机的标准机床数据的情况下,电机可能会产生噪声。这种情况下,应先减小速度环的增益值。在改变增益时,观察调节器的幅频特性曲线的变化趋势,使曲线的幅值在0dB 位置达到最宽的频率范围,优化调整方法如下: ○1如果速度调节器的幅频特性曲线的幅值不超过0dB,可提高比例增益MD1407,频宽也增加,响应特性得到改善。当比例增益增大到一定数值后,幅 频特性曲线中的幅值会极度变化,频宽变窄,系统的动态特性降低。

关于MATLAB中分段函数的画法

关于MATLAB中分段函数的画法 最近拿到一题关于MATLAB的分段函数画法的题目,我在网上找了挺久,但没发现很多有用的资料.所以感觉很棘手.但是问题还是要解决,所以我就自己整理了些东西,不怕大家见笑. 我把这些分段函数分为两类: 一.对于y=f(x)这个模型来讲,一类是关于其中一个段是y为常量的一个模型,举例说明. 例 1.y={0,(x<0);1,(x>=0)};在x>-10&x<10区间内的图形 代码如下 : x=-10:0.01:10; y=ones(size(x)); y(x<=0)=0; plot(x,y); axis([-10 10 -0.5 1.5]); 这样的处理方法就是对于x是变量而Y为常量的而直接定义常数矩阵,再通过判断进行修改,只适合于Y为常量的基础上. ________________________________________________华丽分割线_______________________________________________ 二.第二种是y=f(x),y是关于x的一个变量.需要将x进行赋值的分段函数.这种处理方法比较多. 这里引用一段经典matlab分段画图的例子给大家(代码为蓝色区域): 例 2: x=-3:0.01:3; y1=zeros(size(x)); y2=zeros(size(x)); y3=zeros(size(x)); N=length(x); for k=1:N if x(k)<-1&x(k)>=-3; y1(k)=(-x(k).^2-4*x(k)-3)/2; elseif x(k)>=-1&x(k)<1 ; y2(k)=-x(k).^2+1; else x(k)<=3&x(k)>=1 ; y3(k)=(-x(k).^2+4*x(k)-3)/2; end end y=y1+y2+y3; plot(x,y) 这里运用的是将Y的值设置成三个与x的数量相等的空变量.然后分别依次讲X 的值通过f(x)转换为Y然后画出图形并将三个图形进行组合.

MATLAB中bode图绘制技巧(精)

Matlab中Bode图的绘制技巧学术收藏2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。我们可以用下面的语句:num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den; bode(H 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions 我们可以看到以下

内容:ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct]TickLabel: [1x1 struct]Grid: 'off' XLim: {[1 10]}XLimMode: {'auto'}YLim: {[1 10]} YLimMode: {'auto'}IOGrouping: 'none'InputLabels: [1x1 struct]OutputLabels: [1x1 struct]InputVisible: {'on'} OutputVisible: {'on'}FreqUnits: 'rad/sec'FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear'MagVisible: 'on' MagLowerLimMode: 'auto'MagLowerLim: 0PhaseUnits: 'deg'PhaseVisible: 'on'PhaseWrapping: 'off' PhaseMatching: 'off'PhaseMatchingFreq: 0 PhaseMatchingValue: 0我们可以通过修改上面的每一 项修改伯德图的风格,比如我们使用下面的语句画我 们的伯德图:P=bodeoptions;P.Grid='on'; P.XLim={[10 40000]};P.XLimMode={'manual'};P.FreqUnits='HZ'; num=[1.576e010 0 0];den=[1 1.775e005 1.579e010 2.804e012 2.494e014];H=tf(num,den; bode(H,P 这时,我们将会看到以下的伯德图: 上面这张图相对就比较好了,它的横坐标单位 是HZ,范围是[10 40K]HZ,而且打开了网格,便于我 们观察-3DB处的频率值。当然,你也可以改变bodeoptions中的其它参数,做出符合你的风格的伯

实验十二 幅频特性和相频特性

实验十二 幅频特性和相频特性 一、实验目的:研究RC串、并联电路的频率特性。 二、实验原理及电路图 1、实验原理 电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。即: ()2 1U H j U ω= 1)低通电路 R C 1 U 2 U 10.707 () H j ω0 ωω 图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。当输入为1U ,输出为2U 时,构 成的是低通滤波电路。因为: 1 1 2 111U U U j C j RC R j C ωωω=?=++ 所以: ()()()211 1U H j H j U j RC ωω?ωω===∠+

()() 2 11H j RC ωω= + ()H j ω是幅频特性,低通电路的幅频特性如图 4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的 角频率称为截止频率,记为0ω。 2)高通电路 C R 1 U 2 U ω ω0 0.707 1() H j ω 图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性 12 1 11U j RC U R U j RC R j C ωωω=?= ?+?? + ??? 所以: ()()()211U j RC H j H j U jRC ωωω?ω===∠+ 其中()H j ω传输特性的幅频特性。电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0 ωω<<时,即低频时 ()1 H j RC ωω=<< 当0ωω>>时,即高频时, ()1 H j ω=。 3)研究RC 串、并联电路的频率特性:

实验2matlab绘图操作

实验2 Matlab 绘图操作 实验目的: 掌握绘制二维图形的常用函数; 掌握绘制三维图形的常用函数; 掌握绘制图形的辅助操作。 实验内容: 设sin .cos x y x x ?? =+??+? ?23051,在x=0~2π区间取101点,绘制函数的曲线。 已知: y x =2 1,cos()y x =22,y y y =?312,完成下列操作: 在同一坐标系下用不同的颜色和线性绘制三条曲线; 以子图形式绘制三条曲线; 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。 3. 已知:ln(x x e y x x ?+≤??=??+>??2 0102 ,在x -≤≤55区间绘制函数曲线。 4. 绘制极坐标曲线sin()a b n ρθ=+,并分析参数a 、b 、n 对曲线形状的影响。 5.在xy 平面内选择区域[][],,-?-8888 ,绘制函数z = 6. 用plot 函数绘制下面分段函数的曲线。 ,(),,x x f x x x x ?++>? ==??+-> x=(0:2*pi/100:2*pi);

>> y=+3*sin(x)/(1+x.^2))*cos(x); >> plot(x,y) 2.已知: y x =2 1,cos()y x =22,y y y =?312,完成下列操作: (1)在同一坐标系下用不同的颜色和线性绘制三条曲线; >> x= linspace(0, 2*pi, 101); >> y1=x.*x; >> y2=cos(2x); >> y3=y1.*y2; plot(x,y1,'r:',x,y2,'b',x,y3, 'ko') (2)以子图形式绘制三条曲线; >> subplot(2,2,1),plot(x,y1) subplot(2,2,2),plot(x,y2) subplot(2,2,3),plot(x,y3)

Matlab实验

MATLAB实验报告 学校:湖北文理学院 学院:物理与电子工程学院 专业:电子信息工程 学号: 2013128182 姓名:张冲 指导教师:宋立新

实验一 MATLAB环境的熟悉与基本运算 一、实验目的: 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验内容 1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明, 学习使用指令eye(其它不会用的指令,依照此方法类推) 2、学习使用clc、clear,观察command window、command history和workspace 等窗口的变化结果。 3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、 exerc2、exerc3……),学习使用MATLAB的基本运算符。 三、练习 1)help rand,然后随机生成一个2×6的数组,观察command window、 command history和workspace等窗口的变化结果。 2)学习使用clc、clear,了解其功能和作用。 3)用逻辑表达式求下列分段函数的值 4)求[100,999]之间能被21整除的数的个数。(提示:rem,sum的用法) 四、实验结果 1)

2)clc:清除命令窗口所有内容,数值不变;clear:初始化变量的值。3) 4)

实验二 MATLAB数值运算 一、实验目的 1、掌握矩阵的基本运算 2、掌握矩阵的数组运算 二、实验内容 1)输入C=1:2:20,则C(i)表示什么?其中i=1,2,3, (10) 2)输入A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2; 3 3 3],在命令窗 口中执行下列表达式,掌握其含义: A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2) A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A 3)二维数组的创建和寻访,创建一个二维数组(4×8)A,查询数组A第2 行、第3列的元素,查询数组A第2行的所有元素,查询数组A第6列的所有 元素。 4)两种运算指令形式和实质内涵的比较。设有3个二维数组A 2×4,B 2×4 ,C 2×2 , 写出所有由2个数组参与的合法的数组运算和矩阵指令。 5)学习使用表4列的常用函数(通过help方法) 6)学习使用表5数组操作函数。 7)生成一个3行3列的随机矩阵,并逆时针旋转90°,左右翻转,上下翻转。 8)已知a=[1 2 3],b=[4 5 6],求a.\b和a./ b 9)用reshape指令生成下列矩阵,并取出方框内的数组元素。 三、实验结果 1)C(i)表示C中的第i个的数值;

函数幅频特性曲线

1:已知x(t)=1,试用MATLAB 分析其幅频特性曲线。 解:因为x(t)=1是连续非周期信号,其对应的频谱是非周期连续的,对于连续的信号计算机不能直接加以处理,因而,需要将其先离散化,再利用离散傅里叶变换(DFT )对其进行分析实现其近似计算。对连续时间信号x(t)可以分解成x(t)=u(t)+u(-t-1),通过采取不同的采样间隔来分析其频谱。 (a)对x(t)离散化的采样间隔取R=0.005,对F(W)取N=7000,图像如图a ; (b)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=30,图像如图b ; (c)对x(t)离散化的采样间隔取R=0.01,对F(W)取N=7000,图像如图c 。 针对(a)情况的程序如下:R=0.005;t=-5:R:5; f=Heaviside(t)+Heaviside(-t); W1=2*pi*2; N=7000;k=0:N;W=k*W1/N; F=f*exp(-j*t'*W)*R; F=real(F); W=[-fliplr(W),W(2:7001)]; F=[fliplr(F),F(2:7001)]; subplot(2,1,1);plot(t,f); xlabel('t');ylabel('x(t)'); title('x(t)函数的图像'); subplot(2,1,2);plot(W,F); xlabel('w');ylabel('F(w)'); title('x(t)函数的傅里叶变换F(w)'); 图a R=0.005, N=7000

图b R=0.01,N=30 图c R=0.01,N=7000

用matlab绘制各种数字信号中的函数还有分段函数及翻褶平移

《数字信号处理》 (一)实验目的 使用stem绘图函数分别画出离散时间信号在指定范围内的图形。画图时使用xlabel,ylabel,title,legend等函数进行注释。复习MATLAB的基本应用,如:函数的定义、画图……并巩固理论知识中的多种离散时间信号及其图形,以及延迟与翻褶的函数变换等。 (二)程序的运行与截图 1)用stem绘制单位阶跃序列u(n) clear all;close all;clc;%清除所有变量 n=0:50;%取值范围 y=(n>=0);%n>=0,y=1;n<0,y=0 stem(n,y);%显示出当0<=n<=50 时,函数u(n)的取值范围 xlabel('n');%对横轴进行注释 ylabel('y=u(n)');%对纵轴进行注释 title('y=u(n)的图形');%对图像的标题进行注释 legend('y=u(n)',2);%对图中曲线进行注释,标注在第二象限 2)用stem绘制单位抽样(冲激)序列δ(n) clear all;close all;clc; %清除所有变量

n=0:50; %取值范围 y=(n==0);%n=0,y=1;n!=0,y=1 stem(n,y);%显示出当0<=n<=50 时,函数δ(n)的取值范围xlabel('n');%对横轴进行注释 ylabel('y=δ(n)');%对纵轴进行注释 title('y=δ(n)的图形');%对图像的标题进行注释 legend('y=δ(n)',2);%对图中曲线进行注释,标注在第二象限

3)用stem绘制矩形序列Rn(n)clear all;close all;clc; %清除所有变量 n=0:50; %取值范围 R10=((n>=0)&(n-9)<=0);%0<=n<=10,y=1;n>10,y=0 stem(n,R10);%显示出当0<=n<=50 时,函数Rn(n)的取值范围xlabel('n');%对横轴进行注释 ylabel(' y=R10(n)');%对纵轴进行注释 title('y=R10(n)的图形');%对图像的标题进行注释 legend('y=R10(n)',2);%对图中曲线进行注释,标注在第二象限

幅频特性和相频特性

HUNAN UNIVERSITY 电路实验综合训练 报告 学生姓名蔡德宏 学生学号 2 专业班级计科1401班 指导老师汪原 起止时间2015年12月16日——2015年12月19日 一、实验题目 实验十二幅频特性与相频特性 二、实验摘要(关键信息) 实验十二 1、测量RC串联电路组成低通滤波器的幅频特性与相频特性(元件参数:R=1K ,C=0、1uF,输入信号:Vpp=3V、f=100Hz~15KHz正弦波。测量10组不同频率下的Vpp,作幅频特性曲线与相频特性曲线)。 2、测量RC串联电路组成高通滤波器的幅频特性与相频特性(电路参数与要求同上)。 3、测量RC串并联(文氏电桥)电路频率特性曲线与相频特性曲线。 实验十三 1、测量R、C、L阻抗频率特性(电路中用100Ω作保护电阻,分别测量R、C、L在不同频率下的Vpp,输入信号Vpp=3V、f=100Hz~100KHz的正弦波,元件参数:R=1K、C=0、1uF、L=20mH),取10组数据,作幅频特性曲线。 2、搭接R、L、C串联电路,通过观测Ui(t)与UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q值的谐振频率。 三、实验环境(仪器用品) 函数信号发生器(DG1022U),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1KΩ),电容器(0、1μF),电感(20mH),面包板,Multisim 10、0(画电路图),导线若干。

四、 实验原理与电路 1、当在RC 与RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 与电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性 有以上公式可知,随频率的增加,I,增加,减小。当ω很小时2πψ→,电 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。 2)文氏电桥: 如图电路,若R1=R2,C1=C2,则振荡频率为RC π21f 0=,正反馈的电压与输出电压同相位(此为电路振荡的相位平衡条件),实验电路图如下: 五、 实验步骤与数据记录 仪器测量值:电容C1=102、5nF C2=101、7nF 电阻R1=1、007Ωk R2=1、016Ωk 1)高通滤波器:

幅频特性和相频特性

HUNAN UNIVERSITY 电路实验综合训练 报告 学生姓名蔡德宏 学生学号201408010128 专业班级计科1401班 指导老师汪原 起止时间 2015年12月16日—— 2015年12月19日

一、 实验题目 实验十二 幅频特性和相频特性 二、 实验摘要(关键信息) 实验十二 1、测量RC 串联电路组成低通滤波器的幅频特性和相频特性(元件参数:R=1K Ω,C=0.1uF ,输入信号:Vpp=3V 、f=100Hz~15KHz 正弦波。测量10组不同频率下的Vpp ,作幅频特性曲线和相频特性曲线)。 2、测量RC 串联电路组成高通滤波器的幅频特性和相频特性(电路参数和要求同上)。 3、测量RC 串并联(文氏电桥)电路频率特性曲线和相频特性曲线。 实验十三 1、测量R 、C 、L 阻抗频率特性(电路中用100Ω作保护电阻,分别测量R 、C 、L 在不同频率下的Vpp ,输入信号Vpp=3V 、f=100Hz~100KHz 的正弦波,元件参数:R=1K 、C=0.1uF 、L=20mH ),取10组数据,作幅频特性曲线。 2、搭接R 、L 、C 串联电路,通过观测Ui (t )和UR(t)波形,找出谐振频率。将电阻换成电位器,测量不同Q 值的谐振频率。 三、 实验环境(仪器用品) 函数信号发生器(DG1022U ),示波器(DSO-X 2012A),电位器(BOHENG3296-w104),3只电阻(保护100Ω,实验1K Ω),电容器(0.1μF ),电感(20mH ),面包板,Multisim 10.0(画电路图),导线若干。 四、 实验原理和电路 1、当在RC 和RL 及RLC 串联电路中加上交变电源,并不断改变电源频率时,电路的端口电压U 和电阻U 两端电压也随之发生规律性改变。 1)RC 串联电路的稳态特性 有以上公式可知,随频率的增加,I, 增加, 减小。当ω很小时2 π ψ→ ,电 源电压主要降落在电容上,此时电容作为响应为低通滤波器;反之,0→ψ,电压主要将在电阻上,电阻作为响应称为高通滤波器。利用幅频特性可构成不同的滤波电路,把不同频率分开。

用matlab绘制各种数字信号中的函数-还有分段函数及翻褶-平移

用matlab绘制各种数字信号中的函数-还有分段函数及翻褶-平移

《数字信号处理》 (一)实验目的 使用stem绘图函数分别画出离散时间信号在指定范围内的图形。画图时使用xlabel,ylabel,title,legend等函数进行注释。复习MATLAB的基本应用,如:函数的定义、画图……并巩固理论知识中的多种离散时间信号及其图形,以及延迟与翻褶的函数变换等。 (二)程序的运行与截图 1)用stem绘制单位阶跃序列u(n) clear all;close all;clc;%清除所有变量 n=0:50;%取值范围 y=(n>=0);%n>=0,y=1;n<0,y=0 stem(n,y);%显示出当0<=n<=50 时,函数u(n)的取值范围 xlabel('n');%对横轴进行注释 ylabel('y=u(n)');%对纵轴进行注释 title('y=u(n)的图形');%对图像的标题进行注释legend('y=u(n)',2);%对图中曲线进行注释,标注在第二象限

2)用stem绘制单位抽样(冲激)序列δ(n)clear all;close all;clc; %清除所有变量 n=0:50; %取值范围 y=(n==0);%n=0,y=1;n!=0,y=1 stem(n,y);%显示出当0<=n<=50 时,函数δ(n)的取值范围 xlabel('n');%对横轴进行注释 ylabel('y=δ(n)');%对纵轴进行注释 title('y=δ(n)的图形');%对图像的标题进行注释 legend('y=δ(n)',2);%对图中曲线进行注释,标

matlab 分段函数

f(x)的定义如下: 2226,04()56,010,23 1,x x x x f x x x x x x x x ?+-<≠-?=-+≤<≠≠??--?且且其它 1、写一个函数文件f(x)实现该函数,要求参数x 可以是向量; 2、作出该函数的图形; 3、求出f(x)的零点与最值。 解: (1)、编写M 函数文件 function y=f(x) n=length(x); if x<0 & x~=-4 y=x.^2+x-6; elseif x>=0 & x<10 & x~=2 & x~=3 y=x.^2+5*x+6; else y=x.^2-x-1; end (2)、把文件f.m 放置在搜索路径上 (3)、运行指令 令x=5,则在命令窗口输入指令 y=f(5) 得到答案: y = 56 (2)图形 x1=(-5):0.01:0; y1=x1.^2+x1-6; plot(x1,y1,'m-'); hold on x2=0:0.01:10; y2=x2.^2-5*x2+6; plot(x2,y2,'r:'); hold on x3=10:0.01:15; y3=x3.^2-x3-1; plot(x3,y3); x4=-4; y4=x4.^2-x4-1; plot(x4,y4,'p');

hold on x5=2; y5=x5.^2-x5-1; plot(x5,y5,'b*'); hold on x6=3; y6=x6.^2-x6-1; plot(x6,y6,'g*'); title('函数f(x)的图形'); text(-4,-20,'曲线f1(x)=x^2+x-6'); text(2,40,'曲线f2(x)=x^2-5x+6'); text(10,146,'曲线f3(x)=x^2-x-1'); legend('f1(x)','f2(x)','f3(x)','x=-4','x=2','x=3'); 结果如图: (2)f(x)的零点 ①当x<0 & x~=-4时; f1(x)=x.^2+x-6; 由函数的系数矩阵可得函数的根,即: >> p1=[1,1,-6]; >> x1=roots(p1); x1 =

幅频特性和相频特性实验报告

HUNAN UNIVERSITY 课程实验报告 题目:幅频特性和相频特性 学生: 学生学号: 专业班级: 完成日期:2014年1月6号

一.实验容 1、测量RC串联电路频率特性曲线 元件参数:R=1K,C=0.1uF,输入信号:Vpp=5V、f=100Hz~15K 正弦波。测量10组不同频率下的Vpp,作幅频特性曲线。 2、测量RC串联电路的相频特性曲线 电路参数同上,测量10组不用频率下的相位,作相频特性曲 线。用莎育图像测相位差。 3、测量RC串并联(文氏电桥)电路频率特性曲线和相频特性曲 线 二.实验器材 1k?电阻一个,0.1uf电容一个,函数信号发生器一台,示波 器一台,导线和探头线若干 三.实验目的 (1)研究RC串并联电路对正弦交流信号的稳态响应; (2)熟练掌握示波器萨如图形的测量方法,掌握相位差的测量方法; (3)掌握RC串并联电路以及文氏电桥幅频相频特性特征。四.实验电路图

100nF

100nF 五.实验数据及波形图 电阻的幅度与峰峰值与频率: 电容的幅度与峰峰值与频率:

f/khz 3.1 5.0 9.1 13 15 Vpp/v 2.21 1.47 0.90 0.71 0.58 相位差/度-61.80 -72.21 -78.22 -80.02 -80.12 串并联电路频率峰峰值与相位差: f/khz 0.1 0.3 0.8 1.5 3 Vpp/v 0.348 0.92 1.54 1.70 1.54 相位差/度-81.88 -59.88 -26.24 -0.527 23.87 f/khz 5 7 10 12 15 Vpp/v 1.22 1.02 0.780 0.7 0.58 相位差/度44.60 54.46 64.32 64.68 69.66 当输入电压比输出电压=0.707(/2)时,其波形图如下: 1.电阻:

MATLAB在分段函数的应用要点

《MATLAB语言》课程论文 MATLAB在分段函数的应用 姓名:万治邦 学号:12010245309 专业:通信工程 班级:2010级 指导老师:汤全武 学物理院:电气信息学院 完成日期:2011年11月28日

MATLAB 在分段函数中的应用 ( 万治邦 12010245309 2010级通信工程1班) [摘要]在数学中有很多关于分段函数的知识,我们通常所学的,也只是一些简单分段函数。当遇上一 些多元多次线性方程组时,想要求解,是非常困难的。利用MATLAB编程语言就可以实现对一些复杂的分段喊数进行求解。将MATLAB 语言运用到我们的学习中,就可以使我们对这方面的知识进行获取时简便起来。 [关键词]数学 分段函数 MATLAB 语言 图形绘制 一、问题的提出 MATLAB 语言作为一种简便实用的程序语言,将它的简便易操作运用到学习和教学中,会极大地简化学习中的复杂问题,这样就可以将我们从复杂的公式计算中解脱出来。MATLAB 提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、便捷的与其他程序和语言接口的功能.将MATLAB 语言与数学结合起来,这无疑会弥补数学的复杂计算所带来的问题。 二、数学分段函数中的应用 1、 分析一元二次函数分段函数的特性 利用MATLAB 解决一些数学中常见的分段函数性质问题,这样将MATLAB 和数学结合起来可以提高学习效率,加深对函数的理解。下面我们就讨论利用MATLAB 程序求解分段函数性质问题。 问题一、定义分段函数下面 分段函数 ? ? ?<+--≥-=0)ln(0 )sin(32)(2x x x x x x x f MATLAB 程序如下: function y=f(x) %定义函数 y=zeros(size(x)); %产生与矩阵X 同样大小的零矩阵 [m n]=size(x); %定义矩阵 for a=1:m %矩阵宽度 for b=1:n %矩阵长度 if x(a,b)<0 %选择结构 y(a,b)=log(-x(a,b))+x(a,b); else y(a,b)=2*x(a,b)^2-3*sin(x(a,b)); %选择结构 end %结束if 语句 end %结束for 语句 end %结束for 语句 问题二:简单的绘图 MATLAB 程序如下: x1=0:0.01:1;%设置x1的变换范围 x2=1:0.01:2;%设置x1的变换范围 y1=x1;%定义y1

教你如何用matlab绘图(全面)

强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。 本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。 一.二维绘图 二维图形是将平面坐标上的数据点连接起来的平面图形。可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。二维图形的绘制是其他绘图操作的基础。 一.绘制二维曲线的基本函数 在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。 1.plot函数的基本用法 plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。plot函数的应用格式 plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。 例51 在[0 , 2pi]区间,绘制曲线 程序如下:在命令窗口中输入以下命令 >> x=0:pi/100:2*pi; >> y=2*exp(-0.5*x).*sin(2*pi*x); >> plot(x,y) 程序执行后,打开一个图形窗口,在其中绘制出如下曲线 注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。 例52 绘制曲线 这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:

RL 、RC幅频相频特性要点

扬州大学物理科学与技术学院 大学物理综合实验训练论文 实验名称:RL、RC串联电路幅频特性和相频特性研究 班级:物教1101班 姓名:刘玉桃 学号:110801114 指导老师:徐秀莲

RL、RC串联电路幅频特性和相频特性研究(扬州大学物理1101 刘玉桃学号110801114 指导老师:徐秀莲) 摘要 在交流电路中,电阻值与频率无关,电容具有“通高频,阻低频”的特性,电感具有“通低频,阻高频”的特性。将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随着变化,这称作电路的稳态特性。当把正弦交流电压Vi输入到RC(或RL)串联电路中时,电容或电阻两端的输出电压V0的幅度及相位将随输入电压Vi的频率而变化。这种回路中的电流或电压与输入信号频率间的关系,称为幅频特性;回路电流和电压间的相位差与频率的关系,称为相频特性。将电容、电阻、电感串联起来,可以得到特殊的幅频特性和相频特性。本实验主要研究了交流电路中RL、RC串联电路的幅频特性和相频特性,不难得出,在RL、RC串联电路中,各元件上的电压幅度及相位随信号频率的改变而改变。 关键字:稳态特性;幅频特性;相频特性。 1.实验目的 (1)研究RL、RC串联电路对正弦交流信号的稳态响应 (2)学习使用双踪示波器,掌握相位差的测量方法; 2.实验仪器 名称数量型号 1、双踪示波器一台自备 2、低频功率信号源一台自备 3、九孔插件方板一块 SJ-010 4、万用表一只自备 5、电阻 2只 40Ω、1kΩ 6、电容 1只 0.5pF 7、电感 1只 1mH 8、短接桥和连接导线若干 SJ-009、SJ-301、SJ-302 9、开关 1只 SJ-001-1-纽子开关

matlab完成分段函数的灰度变换

图像反转程序: I=imread('pout.tif'); JJ=imadjust(I,[0 1],[1 0]); imshow(JJ,[]); figure; imshow(I,[]); 对数变换程序: I=imread('pout.tif'); imshow(I); Image=log(1+double(I)); figure(2),imshow(I,[]) 伽马变换程序: A=imread('pout.tif'); x=0:255; a=90,b=1.5,c=0.008;

B=b.^(c.*(double(A)-a))-1; y=b.^(c.*(x-a))-1; subplot(2,2,1) imshow(A) subplot(2,2,2) imhist(A) subplot(2,2,3) imshow(B) subplot(2,2,4) imhist(B) figure,plot(x,y) 分段线性变换程序: b=imread('pout.tif');

f0=0;g0=0; f1=10;g1=30; f2=220;g2=180; f3=255;g3=255; figure,plot([f0,f1,f2,f3],[g0,g1,g2,g3]); r1=(g1-g0)/(f1-f0); b1=-r1*f0+g0; r2=(g2-g1)/(f2-f1); b2=-r2*f1+g1; r3=(g3-g2)/(f3-f2); b3=-r3*f2+g2; axis([0 255 0 255]); [m,n]=size(b); h=double(b); figure,imshow(mat2gray(h)); for i=1:m for j=1:n t=h(i,j); g(i,j)=0; if((t>=f0)&&(t<=f1)) g(i,j)=r1*t+b1; else if((t>=f1)&&(t<=f2)) g(i,j)=r2*t+b2; else if((t>=f2)&&(t<=f3)) g(i,j)=r3*t+b3; end end end figure,imshow(mat2gray(g));

MATLAB中bode图绘制技巧

Matlab中Bode图的绘制技巧 学术收藏 2010-06-04 21:21:48 阅读54 评论0 字号:大中小订阅 我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。 譬如我们要画出下面这个传递函数的伯德图: 1.576e010 s^2 H(s)= ------------------------------------------------------------------------------------------ s^4 + 1.775e005 s^3 + 1.579e010 s^2 + 2.804e012 s + 2.494e014 (这是一个用butter函数产生的2阶的,频率范围为[20 20K]HZ的带通滤波器。) 我们可以用下面的语句: num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H) 这样,我们就可以得到以下的伯德图: 可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。

下面,我们来看看如何定制我们自己的伯德图风格: 在命令窗口中输入:bodeoptions 我们可以看到以下内容: ans = Title: [1x1 struct] XLabel: [1x1 struct] YLabel: [1x1 struct] TickLabel: [1x1 struct] Grid: 'off' XLim: {[1 10]} XLimMode: {'auto'} YLim: {[1 10]} YLimMode: {'auto'} IOGrouping: 'none' InputLabels: [1x1 struct] OutputLabels: [1x1 struct] InputVisible: {'on'} OutputVisible: {'on'} FreqUnits: 'rad/sec' FreqScale: 'log' MagUnits: 'dB' MagScale: 'linear' MagVisible: 'on' MagLowerLimMode: 'auto' MagLowerLim: 0 PhaseUnits: 'deg' PhaseVisible: 'on' PhaseWrapping: 'off' PhaseMatching: 'off' PhaseMatchingFreq: 0 PhaseMatchingValue: 0 我们可以通过修改上面的每一项修改伯德图的风格,比如我们使用下面的语句画我们的伯德图: P=bodeoptions; P.Grid='on'; P.XLim={[10 40000]}; P.XLimMode={'manual'}; P.FreqUnits='HZ'; num=[1.576e010 0 0]; den=[1 1.775e005 1.579e010 2.804e012 2.494e014]; H=tf(num,den); bode(H,P) 这时,我们将会看到以下的伯德图:

相关文档