文档库 最新最全的文档下载
当前位置:文档库 › RS232电平转换芯片数据手册

RS232电平转换芯片数据手册

RS232电平转换芯片数据手册
RS232电平转换芯片数据手册

https://www.wendangku.net/doc/f69232092.html,

FEATURES

APPLICATIONS

D, DB, DW, OR PW PACKAGE

(TOP VIEW)

12345678

161514131211109

C1+V+C1?C2+C2?V?DOUT2RIN2

V CC GND DOUT1RIN1ROUT1DIN1DIN2ROUT2

DESCRIPTION/ORDERING INFORMATION

MAX3232E

3-V TO 5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER

WITH ±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST 2005–REVISED APRIL 2007

?Battery-Powered Systems ?

ESD Protection for RS-232Bus Pins ?PDAs

–±15kV (HBM)

?Notebooks –±8kV (IEC61000-4-2,Contact Discharge)?Laptops

–±15kV (IEC61000-4-2,Air-Gap Discharge)?Palmtop PCs

?Meets or Exceeds the Requirements of ?

Hand-Held Equipment

TIA/EIA-232-F and ITU v.28Standards ?Operates With 3-V to 5.5-V V CC Supply ?Operates up to 250kbit/s

?Two Drivers and Two Receivers ?Low Supply Current ...300μA Typ ?External Capacitors ...4×0.1μF

?Accepts 5-V Logic Input With 3.3-V Supply ?

Pin Compatible to Alternative High-Speed Device (1Mbit/s)–SNx5C3232

ORDERING INFORMATION

T A

PACKAGE (1)(2)

ORDERABLE PART NUMBER TOP-SIDE MARKING Tube of 40MAX3232ECD SOIC –D MAX3232EC Reel of 2500MAX3232ECDR Tube of 40MAX3232ECDW SOIC –DW

MAX3232EC Reel of 2000MAX3232ECDWR –0°C to 70°C

Tube of 80MAX3232ECDB SSOP –DB MP232EC Reel of 2000MAX3232ECDBR Tube of 90MAX3232ECPW TSSOP –PW MP232EC Reel of 2000MAX3232ECPWR Tube of 40MAX3232EID SOIC –D MAX3232EI Reel of 2500MAX3232EIDR Tube of 40MAX3232EIDW SOIC –DW

MAX3232EI Reel of 2000MAX3232EIDWR –40°C to 85°C

Tube of 80MAX3232EIDB SSOP –DB MP232EI Reel of 2000MAX3232EIDBR Tube of 90MAX3232EIPW TSSOP –PW

MP232EI

Reel of 2000

MAX3232EIPWR

(1)Package drawings,standard packing quantities,thermal data,symbolization,and PCB design guidelines are available at https://www.wendangku.net/doc/f69232092.html,/sc/package.

(2)

For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI website at https://www.wendangku.net/doc/f69232092.html, .

Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

DIN1

DOUT1

RIN1

ROUT1

DIN2

DOUT2

RIN2

ROUT2

MAX3232E

3-V TO 5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER WITH ±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST 2005–REVISED APRIL 2007

The MAX3232E device consists of two line drivers,two line receivers,and a dual charge-pump circuit with ±15-kV IEC ESD protection pin to pin (serial-port connection pins,including GND).The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector.The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply.The devices operate at data signaling rates up to 250kbit/s and a maximum of 30-V/μs driver output slew rate.

FUNCTION TABLES EACH DRIVER (1)

INPUT OUTPUT DIN DOUT

L H H

L

(1)

H =high level,L =low level

EACH RECEIVER (1)

INPUT OUTPUT RIN ROUT

L H H L Open

H

(1)

H =high level,L =low level,Open =input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC)

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

Absolute Maximum Ratings(1) Recommended Operating Conditions(1) Electrical Characteristics(1)MAX3232E

3-V TO5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER

WITH±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST2005–REVISED APRIL2007 over operating free-air temperature range(unless otherwise noted)

MIN MAX UNIT

V CC Supply voltage range(2)–0.36V

V+Positive output supply voltage range(2)–0.37V

V–Negative output supply voltage range(2)0.3–7V

V+–Supply voltage difference(2)13V

V–

Drivers–0.36V

V I Input voltage range

Receivers–2525V

Drivers–13.213.2V

V O Output voltage range

Receivers–0.3V CC+0.3V

D package73

DB package82

θJA Package thermal impedance(3)(4)°C/W

DW package57

PW package108

T J Operating virtual junction temperature150°C

T stg Storage temperature range–65150°C (1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratings

only,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)All voltages are with respect to network GND.

(3)Maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any allowable ambient

temperature is P D=(T J(max)–T A)/θJA.Operating at the absolute maximum T J of150°C can affect reliability.

(4)The package thermal impedance is calculated in accordance with JESD51-7.

See Figure4

MIN NO MAX UNIT

M

V CC=3.3V3 3.3 3.6 Supply voltage V

V CC=5V 4.55 5.5

V CC=3.3V2 5.5

V IH Driver high-level input voltage DIN V

V CC=5V 2.4 5.5

V IL Driver low-level input voltage DIN00.8V

V I Receiver input voltage–2525V

MAX3232EC070

T A Operating free-air temperature°C

MAX3232EI–4085

(1)Test conditions are C1–C4=0.1μF at V CC=3.3V±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC=5V±0.5V.

over recommended ranges of supply voltage and operating free-air temperature(unless otherwise noted)(see Figure4) PARAMETER TEST CONDITIONS MIN TYP(2)MAX UNIT

I CC Supply current No load,V CC=3.3V or5V0.31mA

(1)Test conditions are C1–C4=0.1μF at V CC=3.3V±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC=5V±0.5V.

(2)All typical values are at V CC=3.3V or V CC=5V,and T A=25°C.

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

DRIVER SECTION

Electrical Characteristics (1)

Switching Characteristics (1)

MAX3232E

3-V TO 5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER WITH ±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST 2005–REVISED APRIL 2007

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(see Figure 4)

PARAMETER

TEST CONDITIONS

MIN TYP (2)

MAX

UNIT V OH High-level output voltage DOUT at R L =3k ?to GND,DIN =GND 5 5.4V V OL Low-level output voltage DOUT at R L =3k ?to GND,DIN =V CC

–5

–5.4V I IH High-level input current V I =V CC ±0.01±1μA I IL Low-level input current V I at GND ±0.01±1μA V CC =3.6V,V O =0V I OS (3)Short-circuit output current ±35±60mA V CC =5.5V,

V O =0V r O Output resistance

V CC ,V+,and V–=0V,

V O =±2V

300

10M

?

(1)Test conditions are C1–C4=0.1μF at V CC =3.3V ±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC =5V ±0.5V.(2)All typical values are at V CC =3.3V or V CC =5V,and T A =25°C.

(3)

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings,and not more than one output should be shorted at a time.

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(see Figure 4)

PARAMETER TEST CONDITIONS

MIN TYP (2)MAX

UNIT C L =1000pF,

R L =3k ?,Maximum data rate

150

250kbit/s One DOUT switching,See Figure 1C L =150pF to 2500pF,R L =3k ?to 7k ?,t sk(p)Pulse skew (3)

300

ns See Figure 2C L =150pF to 1000pF 630Slew rate,transition region R L =3k ?to 7k ?,SR(tr)

V/μs

(see Figure 1)

V CC =3.3V

C L =150pF to 2500pF

430(1)Test conditions are C1–C4=0.1μF at V CC =3.3V ±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC =5V ±0.5V.(2)All typical values are at V CC =3.3V or V CC =5V,and T A =25°C.

(3)

Pulse skew is defined as |t PLH –t PHL |of each channel of the same device.

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

RECEIVER SECTION Electrical Characteristics(1)

Switching Characteristics(1)

MAX3232E 3-V TO5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER

WITH±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST2005–REVISED APRIL2007

over recommended ranges of supply voltage and operating free-air temperature(unless otherwise noted)(see Figure4) PARAMETER TEST CONDITIONS MIN TYP(2)MAX UNIT

V OH High-level output voltage I OH=–1mA V CC–0.6V CC–0.1V V OL Low-level output voltage I OL=1.6mA0.4V

V CC=3.3V 1.5 2.4

V IT+Positive-going input threshold voltage V

V CC=5V 1.8 2.4

V CC=3.3V0.6 1.2

V IT–Negative-going input threshold voltage V

V CC=5V0.8 1.5

V hys Input hysteresis(V IT+–V IT–)0.3V r i Input resistance V I=±3V to±25V357k?

(1)Test conditions are C1–C4=0.1μF at V CC=3.3V±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC=5V±0.5V.

(2)All typical values are at V CC=3.3V or V CC=5V,and T A=25°C.

over recommended ranges of supply voltage and operating free-air temperature(unless otherwise noted)(see Figure3)

PARAMETER TEST CONDITIONS TYP(2)UNIT

t PLH Propagation delay time,low-to high-level output300ns

C L=150pF

t PHL Propagation delay time,high-to low-level output300ns t sk(p)Pulse skew(3)300ns

(1)Test conditions are C1–C4=0.1μF at V CC=3.3V±0.3V;C1=0.047μF,C2–C4=0.33μF at V CC=5V±0.5V.

(2)All typical values are at V CC=3.3V or V CC=5V,and T A=25°C.

(3)Pulse skew is defined as|t PLH–t PHL|of each channel of the same device.

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

VOLTAGE WAVEFORMS

0 V

3 V

Output

Input

V OL

V OH t TLH

RS-232Output

t THL

SR(tr)+

6V t

THL

or t

TLH

NOTES: A.C L includes probe and jig capacitance.

B.The pulse generator has the following characteristics: PRR = 250 kbit/s, Z O = 50 ?, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.

1.5 V

1.5 V

3 V ?3 V

3 V ?3 V

TEST CIRCUIT

VOLTAGE WAVEFORMS 0 V 3 V

Output

Input

V OL

V OH

t PLH

t PHL

50%

50%

NOTES: A.C L includes probe and jig capacitance.

B.The pulse generator has the following characteristics: PRR = 250 kbit/s, Z O = 50 ?, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.

1.5 V

1.5 V

RS-232Output

TEST CIRCUIT

VOLTAGE WAVEFORMS

50%

50%

?3 V

3 V

1.5 V

1.5 V

Output

Input

V OL

V OH

t PHL

t PLH

Output

NOTES: A.C L includes probe and jig capacitance.

B.The pulse generator has the following characteristics: Z O = 50 ?, 50% duty cycle, t r ≤ 10 ns, t f ≤ 10 ns.

MAX3232E

3-V TO 5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER WITH ±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST 2005–REVISED APRIL 2007

Figure 1.Driver Slew Rate

Figure 2.Driver Pulse Skew

Figure 3.Receiver Propagation Delay Times

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

https://www.wendangku.net/doc/f69232092.html,

APPLICATION INFORMATION

C1

C BYPASS = 0.1μF

V CC C1C2, C3, C43.3 V ± 0.3 V 5 V ± 0.5 V 3 V to 5.5 V

0.1 μF 0.047 μF 0.1 μF

0.1 μF 0.33 μF 0.47 μF

V CC vs CAPACITOR VALUES ?

C3 can be connected to V CC or GND.

NOTES: A.Resistor values shown are nominal.

B.Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be

connected as shown.

MAX3232E

3-V TO 5.5-V MULTICHANNEL RS-232LINE DRIVER/RECEIVER

WITH ±15-kV IEC ESD PROTECTION

SLLS664A–AUGUST 2005–REVISED APRIL 2007

Figure 4.Typical Operating Circuit and Capacitor Values

ttp://https://www.wendangku.net/doc/f69232092.html, 电子发烧友 https://www.wendangku.net/doc/f69232092.html, 电子技术论坛

PACKAGING INFORMATION

Orderable Device Status(1)Package

Type Package

Drawing

Pins Package

Qty

Eco Plan(2)Lead/Ball Finish MSL Peak Temp(3)

MAX3232ECD ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDB ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDBE4ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDBG4ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDBR ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDBRE4ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDBRG4ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDE4ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDG4ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDR ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDRE4ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDRG4ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDW ACTIVE SOIC DW1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDWG4ACTIVE SOIC DW1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDWR ACTIVE SOIC DW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECDWRG4ACTIVE SOIC DW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPW ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPWE4ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPWG4ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPWR ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPWRE4ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232ECPWRG4ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EID ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDB ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDBE4ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

Orderable Device Status(1)Package

Type Package

Drawing

Pins Package

Qty

Eco Plan(2)Lead/Ball Finish MSL Peak Temp(3)

MAX3232EIDBG4ACTIVE SSOP DB1680Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDBR ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDBRE4ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDBRG4ACTIVE SSOP DB162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDE4ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDG4ACTIVE SOIC D1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDR ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDRE4ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDRG4ACTIVE SOIC D162500Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDW ACTIVE SOIC DW1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDWG4ACTIVE SOIC DW1640Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDWR ACTIVE SOIC DW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIDWRG4ACTIVE SOIC DW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPW ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPWE4ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPWG4ACTIVE TSSOP PW1690Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPWR ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPWRE4ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

MAX3232EIPWRG4ACTIVE TSSOP PW162000Green(RoHS&

no Sb/Br)

CU NIPDAU Level-1-260C-UNLIM

(1)The marketing status values are defined as follows:

ACTIVE:Product device recommended for new designs.

LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.

NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.

PREVIEW:Device has been announced but is not in production.Samples may or may not be available.

OBSOLETE:TI has discontinued the production of the device.

(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS),Pb-Free(RoHS Exempt),or Green(RoHS&no Sb/Br)-please check https://www.wendangku.net/doc/f69232092.html,/productcontent for the latest availability information and additional product content details.

TBD:The Pb-Free/Green conversion plan has not been defined.

Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free(RoHS Exempt):This component has a RoHS exemption for either1)lead-based flip-chip solder bumps used between the die and

package,or2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free(RoHS compatible)as defined above.

Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flame retardants(Br or Sb do not exceed0.1%by weight in homogeneous material)

(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF MAX3232E:

?Automotive:MAX3232E-Q1

NOTE:Qualified Version Definitions:

?Automotive-Q100devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device

Package Type Package Drawing Pins SPQ

Reel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)

P1(mm)W (mm)Pin1Quadrant MAX3232ECDBR SSOP DB 162000330.016.48.2 6.6 2.512.016.0Q1MAX3232ECDR SOIC D 162500330.016.4 6.510.3 2.18.016.0Q1MAX3232ECDWR SOIC DW 162000330.016.410.7510.7 2.712.016.0Q1MAX3232ECPWR TSSOP PW 162000330.012.47.0 5.6 1.68.012.0Q1MAX3232EIDBR SSOP DB 162000330.016.48.2 6.6 2.512.016.0Q1MAX3232EIDR SOIC D 162500330.016.4 6.510.3 2.18.016.0Q1MAX3232EIDWR SOIC DW 162000330.016.410.7510.7 2.712.016.0Q1MAX3232EIPWR

TSSOP

PW

16

2000

330.0

12.4

7.0

5.6

1.6

8.0

12.0

Q1

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm) MAX3232ECDBR SSOP DB162000346.0346.033.0 MAX3232ECDR SOIC D162500346.0346.033.0 MAX3232ECDWR SOIC DW162000346.0346.033.0 MAX3232ECPWR TSSOP PW162000346.0346.029.0 MAX3232EIDBR SSOP DB162000346.0346.033.0 MAX3232EIDR SOIC D162500346.0346.033.0 MAX3232EIDWR SOIC DW162000346.0346.033.0 MAX3232EIPWR TSSOP PW162000346.0346.029.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are https://www.wendangku.net/doc/f69232092.html,rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement https://www.wendangku.net/doc/f69232092.html,e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered https://www.wendangku.net/doc/f69232092.html,rmation of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers Audio

Data Converters Automotive

DSP Broadband

Clocks and Timers Digital Control

Interface Medical

Logic Military

Power Mgmt Optical Networking

Microcontrollers Security

RFID Telephony

RF/IF and ZigBee?Solutions Video&Imaging

Wireless

Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265

Copyright?2008,Texas Instruments Incorporated

MAX232芯片可以完成TTL与EIA双向电平转换

TTL/CMOS INPUTS 端.这个端口是的作用是输入TLL或CMOS信号的...一般为0-5V... 低电平为零,高电平为VCC. TTL/CMOS OUTPUTS端,这个端口的作用是输出TLL或CMOS信号...输出电压一般为0-5V...低电平为零..高电平为VCC. RS232 OUTPUTS 这端口是把TTL或CMOS的信号转为RS232的信号输出...输出为正负12V...到电脑.... RS232 INPUTS 这个端口是接收到电脑发出的正负12伏...由232输出转为TTL或CMOS信号...这个信号也为正负12V... MAX232内部有二组232转换电路... 使用的时候...一般是11------ 14 13----12为一组. 10-----7 8----9为一组... 51单片机要与PC机进行串口通信,通常使用MAX232芯片来作电平转换。下面把MAX232与51单片机的接口电路贴出来供大家参考。(此电路图已经过实际验证) MAX232芯片可以完成TTL与EIA双向电平转换,MAX232提供两路串口电平转换,现在只用一路串口,所以另一路悬空不使用,MAX232与51单片机接口电路如下图所示。(单击图片可放大)

图中DB9为串口的插头(母接头),插座共有9个引线. MAX232的12脚接单片机的P3.0(RXD) MAX232的12脚接单片机的P3.1(TXD) MAX232还带有4个电容,都是容量都是104,为了减少电路板体积,可以用无极电容代替极性电容。 VCC 是5V DC 提示:串口插座有公母两种类型其中 公的串口插座是带有插针的(有针) 母的串口插座是不带有插针的(有洞) 如下图所示 由以上分析可知,DB9为母接头,而电脑PC的串口接头一般是分接头。 所以此电路与PC相连时,所用的串口线应该是一公一母的串口线。TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑"1",0V等价于逻辑"0",这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 TTL电平信号对于计算机处理器控制的设备内部的数据传输是很理想的,首先计算机处理器控制的设备内部的数据传输对于电源的要求不高以及热损耗也较低,另外TTL 电平信号直接与集成电路连接而不需要价格昂贵的线路驱动器以及接收器电路;再者,计算机处理器控制的设备内部的数据传输是在高速下进行的,而TTL接口的操作恰能满足这个要求。TTL型通信大多数情况下,是采用并行数据传输方式,而并行数据传输对于超过10英尺的距离就不适合了。这是由于可靠性和成本两面的原因。因为在并行接口中存在着偏相和不对称的问题,这些问题对可靠性均有影响;另外对于并行数据传输,电缆以及连接器的费用比起串行通信方式来也要高一些。

详解电平种类与电平转换

详解电平种类与电平转换 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作3.3V→5V电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现5V→3.3V电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

串口电平转换芯片数据手册SP3222_3232E

DESCRIPTION s Meets true EIA/TIA-232-F Standards from a +3.0V to +5.5V power supply s 235KBps Transmission Rate Under Load s 1μA Low-Power Shutdown with Receivers Active (SP3222E ) s Interoperable with RS-232 down to +2.7V power source s Enhanced ESD Specifications: ±15kV Human Body Model ±15kV IEC1000-4-2 Air Discharge ±8kV IEC1000-4-2 Contact Discharge The SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-held applications such as notebook or palmtop computers. The SP3222E/3232E series has a high-efficiency, charge-pump power supply that requires only 0.1μF capacitors in 3.3V operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E are 2-driver/2-receiver devices. This series is ideal for portable or hand-held applications such as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The SP3222E device has a low-power shutdown mode where the devices' driver outputs and charge pumps are disabled. During shutdown, the supply current falls to less than 1μA. SELECTION TABLE L E D O M s e i l p p u S r e w o P 232-S R s r D e v i r 232-S R s r e v i e c e R l a n r e t x E s t n e n o p m o C n w o d t u h S L T T a S -3e t t f o .o N s n i P 2223P S V 5.5+o t V 0.3+224s e Y s e Y 02,812 323P S V 5.5+o t V 0.3+2 2 4 o N o N 6 1

电平转换方法

5V-3.3V电平转换方法 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换 首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图: CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。缺点:对输入信号的频率有一定的限制。 方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图: 其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。 优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。 缺点:输出波形不是很良好。 方案三:电阻分压 这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平的区别。 TTL电平:输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。 CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

在各个领域中常用芯片汇总(2)(精)

在各个领域中常用芯片汇总 1. 音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334,4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2. 音频放大芯片4558,833,此二芯片都是双运放。为什么不用324等运放个人觉得应该是对音频的频率响应比较好。 3. 74HC244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4. 373和374,地址锁存器,一个电平触发,一个沿触发。373用在单片机p0地址锁存,当然是扩展外部ram的时候用到62256。374有时候也用在锁数码管内容显示。 5. max232和max202,有些为了节约成本就用max202,主要是驱动能力的限制。 6. 网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7. amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8. 164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9. sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。 10. 网卡控制芯片ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。 11. 24位AD:CS5532,LPC2413效果还可以 12. 仪表运放:ITL114,不过据说功耗有点大 13. 音频功放:一般用LM368 14. 音量控制IC. PT2257/9. 15. PCM双向解/编码ADC/DAC CW6691.

RS232接口芯片双电荷泵电平转换器原理

RS232接口芯片双电荷泵电平转换器 原理 电子工业协会Electronic Industries Association Electronic Industries Association(EIA)电子工业协会(EIA) 1924年成立的EIA是美国的一个电子制造商组织。 EIA-232,就是众所周知的RS-232,它定义了数据终端设备(DTE)和数据通信设备(DCE)之间的串行连结。这个标准被广泛采用。 EIA-RS-232C电气特性: 在TxD和RxD上:逻辑1=-3V~-15V 逻辑0=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V RS-232-C电平采用负逻辑,即逻辑1:-3~-15V,逻辑0:+3~+15V。 注意,单片机使用的CMOS电平中,高电平(3.5~5V)为逻辑1,低电平(0~0.8V)为逻辑0。 单片机的SCI口要外接电平转换电路芯片把与TTL兼容的CMOS高电平表示的1转换成RS-232的负电压信号,把低电平转换成RS-232的正电压信号。典型的转换电路给出-9V和+9V。

典型的电平转换电路MAXx2xx系列芯片因单电源+5V供电,均有电荷泵电平转换器产生±10V电源,以供RS232电平所需。 一般是接4个泵电容,采用双电荷泵进行电平转换。标准接法如下图。 图1 芯片内带振荡器驱动双电荷泵,分双相四步工作,如下图。 图2电荷泵框图

第一步:S1、S3闭合,电源+5V向C1充电(图3)。C1电压最高可至5V。 图3 第二步:S2、S4闭合,C1所储电荷经S2、S4转移至C3,C3电压最高也可至5V。 C1电荷转移充电途径如红色虚线所示。 C3电压和电源+5V迭加起来提供10V的V+电源。 这时C1负端电位应等于电源+5V,所以C1负端电压波形应是0-+5V 的方波。 第三步:S5、S7闭合,C3所储电荷和电源+5V迭加经S5、S7向C2充电。 C2电压最高可至10V。充电途径如棕色虚线所示。 第二、三步实际同时进行(图4)。

常用的电平转换方案

常用的电平转换方案 TTL、CMOS、ECL等电路的高低电平阀值不同,他们之间逻辑连接需要电平转换;还有,就是接口与接口之间的,如RS232与485之间,USB与串口之间等等,由于这些接口协议里面定义的电平不同,所以也需要电平转换。 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 图1. 电阻-二极管拓扑,是在同一根信号线上实现双向转换的可选技术之一

图2. 分立/数字晶体管是实现双向转换的另外一种选择 (数据入和数据出也被称为主入从出(MISO)和主出从入(MOSI)。SPI能够使用超过20Mbp的时钟信号,使用CMOS推挽逻辑。由于SPI是单向的,没有必要在同一根信号线上实现双向转换。这使电平转换变得简单一些,因为 可以采用电阻与二极管(图1)或分立/数字晶体管(图2)等简单方案。I2C、SMBusTM和1-Wire 接口为双向、漏极开路拓?扑。I2C有3个速度范围:≤ 100kbps的标准模式,≤ 400kbps的快速模式,≤ 3.4Mbps的高速模式。双向总线的电平转换更加困难,因为必须在同一根数据线上进行双向转换。基于电阻-二极管或集电极/漏极开路的单级晶体管转换器的简单拓扑由于固有的单向性,无法满足要求。 ) (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作 3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。

电平转换资料

74AVC1T145 1、概述 74AVC1T145是一款具有双向电压转换和3态输出的单位双电源收发器。它的功能端口有1位输入输出端口(A和B),一个方向控制输入(DIR)和双电源引脚(V CC(A)和V CC(B))。同时V CC(A)和V CC(B)可以输入介于0.8 V 到3.6 V的电压实现器件在任意低电压节点之间的转换(0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V 和3.3 V)。引脚A和DIR由V CC(A)供电,引脚B由V CC(B)供电。在DIR上的高电平允许从A传输到B,也允许在DIR上的低电平从B传输到A。 该器件明确规定在局部省电模式时使用I OFF。I OFF将使输出失能,防止在电源关闭时破坏性的回路电流通过器件。当VCC(A)或VCC(B)处于地电平电压时处于挂起模式,同时A和B 将处于高阻态。 2、功能与优点 ?电源电压范围宽: ◆ ◆ ?噪声抑制能力强 ?符合JEDEC标准: ◆-12 (0.8 V to 1.3 V) ◆-11 (0.9 V to 1.65 V) ◆-7 (1.2 V to 1.95 V) ◆-5 (1.8 V to 2.7 V) ◆-B (2.7 V to 3.6 V) ?静电保护: ◆HBM JESD22-A114E类3 b超过8000 V ◆MM JESD22-A115-A超过200 V ◆CDM JESD22-C101C超过1000 V ?最大数据速率: ◆500 Mbit / s(1.8 V至3.3 V的转换) ◆320 Mbit / s(< 1.8 V至3.3 V转换) ◆320 Mbit / s(转换为2.5 V和2.5 V) ◆280 Mbit / s(转换到1.5 V) ◆240 Mbit / s(转换到1.2 V) 挂起模式或睡眠模式; ?锁存性能超过100 mA / JESD 100 II级 ?输入接受电压最高达3.6 V ?低噪声时过冲和欠冲小于VCC的10% ?I OFF电流提供部分省电模式操作 ?多种封装选择 ?指定使用温度范围从-40°C到+ 85°C和?40°C到+ 125°C 3、订购信息(略) 4、标记(略) 5、逻辑图

各种电平总结

TTL和CMOS电平总结 TTL和CMOS电平总结 TTL——Transistor-Transistor Logic HTTL——High-speed TTL LTTL——Low-power TTL STTL——Schottky TTL LSTTL——Low-power Schottky TTL ASTTL——Advanced Schottky TTL ALSTTL——Advanced Low-power Schottky TTL FAST(F)——Fairchild Advanced schottky TTL CMOS——Complementary metal-oxide-semiconductor HC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容) AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL) AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容) FCT——FACT扩展系列,与TTL电平兼容 FACT——Fairchild Advanced CMOS Technology 1,TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平 是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。 2,CMOS电平: 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。 3,电平转换电路: 因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需 要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。哈哈 4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱 动门电路。 5,TTL和COMS电路比较: 1)TTL电路是电流控制器件,而coms电路是电压控制器件。 2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。 COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。 COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常

3.3V转5V的双向电平转换电路

3.3V转5V的双向电平转换电路 说说所有的电平转换方法,你自己参考~ (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母 T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种5V 逻辑器件,其输入是3.3V 电平,只要在选择器件时选择输入为TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法 算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。 那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~ 3.3V转5V 电平转换方法参考 电平转换

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信 一、电平转换电路 下面来分析一下电路的设计思路: https://www.wendangku.net/doc/f69232092.html,/BLOG_ARTICLE_244240.HTM 首先声明一下:这个电路是从3V3的角度考虑的! 1、接收通道 我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。 我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。同理,高电平分析是一样的。 逻辑转换完成了,那么就是电平的问题了。这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK! 2、发送通道 分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。 3、结论 其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。 二、电平问题: 单片机手册————电气特性 常用逻辑电平:12V,5V,3.3V; 1.TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

常用数字芯片大全

产品 型号规格性能说明型号规格性能说明 名称 74LS SN74LSOO四2输入与非门SN74LSO1四2输入与非门 SN74LSO2四2输入与非门SN74LS03四2输入与非门 SN74LS04六反相器SN74LS05六反相器 SN74LS06六反相缓冲器/驱动器SN74LS07六缓冲器/驱动器 SN74LS08四2输入与非门SN74LS09四2输入与非门 SN74LS10三3输入与非门SN74LS11三3输入与非门 SN74LS12三3输入与非门SN74LS13三3输入与非门 SN74LS14六反相器.斯密特触发SN74LS15三3输入与非门 SN74LS16六反相缓冲器/驱动器SN74LS17六反相缓冲器/驱动器 SN74LS20双4输入与门SN74LS21双4输入与门 SN74LS22双4输入与门SN74LS25双4输入与门 SN74LS26四2输入与非门SN74LS27三3输入与非门 SN74LS28四输入端或非缓冲器SN74LS30八输入端与非门 SN74LS32四2输入或门SN74LS33四2输入或门 SN74LS37四输入端与非缓冲器SN74LS38双2输入与非缓冲器 SN74LS40四输入端与非缓冲器SN74LS42BCD-十进制译码器 SN74LS47BCD-七段译码驱动器SN74LS48BCD-七段译码驱动器SN74LS49BCD-七段译码驱动器SN74LS51三3输入双与或非门 SN74LS54四输入与或非门SN74LS55四4输入与或非门 SN74LS63六电流读出接口门SN74LS73双J-K触发器 SN74LS74双D触发器SN74LS754位双稳锁存器 SN74LS76双J-K触发器SN74LS78双J-K触发器 SN74LS83双J-K触发器SN74LS854位幅度比较器 SN74LS86四2输入异或门SN74LS884位全加器 SN74LS904位十进制波动计数器SN74LS918位移位寄存器 SN74LS9212分频计数器SN74LS93二进制计数器 SN74LS965位移位寄存器SN74LS954位并入并出寄存器 SN74LS109正沿触发双J-K触发器SN74LS107双J-K触发器 SN74LS113双J-K负沿触发器SN74LS112双J-K负沿触发器 SN74LS121单稳态多谐振荡器SN74LS114双J-K负沿触发器 SN74LS123双稳态多谐振荡器SN74LS122单稳态多谐振荡器 SN74LS125三态缓冲器SN74LS124双压控振荡器 SN74LS1313-8线译码器SN74LS126四3态总线缓冲器 SN74LS13313输入与非门SN74LS132二输入与非触发器 SN74LS137地址锁存3-8线译码器SN74LS136四异或门 SN74LS139双2-4线译码-转换器SN74LS1383-8线译码/转换器 SN74LS14710-4线优先编码器SN74LS145BCD十进制译码/驱动器SN74LS153双4选1数据选择器SN74LS1488-3线优先编码器 SN74LS155双2-4线多路分配器SN74LS1518选1数据选择器 SN74LS157四2选1数据选择器SN74LS1544-16线多路分配器 SN74LS160同步BDC十进制计数器SN74LS156双2-4线多路分配器

3.3v和5v双向电平转换芯片

3.3v和5v双向电平转换芯片 74LVC4245,8位电平转换 74LVC4245A,8位双向 NLSX4373,2位电平转换 NLSX4014,4位电平转换 NLSX4378,4位电平转换 NLSX3018,8位电平转换 max3002,8路双向 TXB0104?(她好像有一个系列?0102?0104?0106?0108), ADG3308 74HCT245:三态输出的八路总线收发器 SN74AVCH2T45 SN74AVC16T245:具有可配置电压转换和3 态输出的16 位双电源总线收发器 SN74LVC2T45DCT:双位双电源总线收发器可配置电压转换和三态输出 SN74LVC4245A:8位 德州仪器宣布推出SN74LVC1T45、SN74LVC2T45、SN74AVC8T245及SN74AVC20T245四款新型双电源电平转换收发器。该新品能够在 1.5V、1.8V、2.5V、3.3V 与5V 电压节点之间进行灵活的双向电平转换,而且可提供全面的可配置性。如果采用AVC 技术,则每条轨可从 1.4V 配置为 3.6V;而采用LVC 技术时则可从1.65V 配置为5.5V。适用于便携式消费类电子产品、网络、数据通信以及计算应用领域。 日前,德州仪器(TI)宣布推出四款新型的双电源电平转换器--AVC1T45、AVC2T45、AVC16T245及AVC32T245,从而进一步扩展其电平转换产品系列。这些转换器能够在互不兼容的I/O之间进行通信。这四款器件均支持1.2V、1.5V、1.8V、2.5V与3.3V节点之间的双向电平转换。在混合信号环境中,可以使用这些电压电平的任意组合,从而提高这些器件的灵活性。 1位AVC1T45与2位AVC2T45可根据需要在电路板上集成单或双转换器功能,而不是通过较高位宽的器件进行路由,这有助于简化电路板布线作业(board routing),可适用于便携式手持应用的转换要求。AVC16T245与AVC32T245是TI当前16位与32位双电源转换功能的改进版本。这些器件能够提供较低的功耗(AVC16T245的功耗为25μA,而AVCA164245的功耗则为40μA)。该类器件的总线控制选件无需外部上拉/下拉电阻器。TI还提供全面的IBIS模型支持。 SN74AVC1T45与SN74AVC2T45以及总线控制版本SN74AVCH1T45与SN74AVCH2T45均采用NanoStar 与NanoFree芯片级封装。这些器件现已推出,并可提供样片。批量为千套时,预计1T45器件的最低零售单价为0.24美元,而2T45器件的最低零售单价为0.35美元。 SN74AVC16T245和总线控制版本SN74AVCH16T245采用56球栅VFBGA封装。该器件现已推出,并可提

CMOS电平转换电路详解

CMOS电平转换电路详解 COMS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。 COMS电路的供电电压VDD范围比较广在+5~+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0。CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc.当输入电压高于VDD-1.5V时为逻辑1,输入电压低于VSS+1.5V(VSS为数字地)为逻辑0。 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑1,0V 等价于逻辑0,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H》2V,输入L《0.8V;输出H 》2.4V(3.4V),输出L《0.4V(0.2V)。 CMOS电平是数字信号还是模拟信号?CMOS电平是数字信号,COMS电路的供电电压VDD范围比较广在+5--+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V 时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,一般数字信号才是0和1 。 cmos电平转换电路1、TTL电路和CMOS电路的逻辑电平 VOH:逻辑电平1 的输出电压 VOL:逻辑电平0 的输出电压 VIH :逻辑电平1 的输入电压 VIH :逻辑电平0 的输入电压 TTL电路临界值:

txs0102 电平转换芯片

FEATURES DCT OR DCU PACKAGE (TOP VIEW)1B1827V CCB 36OE 45B2GND V CCA A2A1YZP PACKAGE (BOTTOM VIEW)A254A136OE V CCA 27V CCB GND 8B1 1B2A1B1C1D1A2B2C2D2DESCRIPTION/ORDERING INFORMATION https://www.wendangku.net/doc/f69232092.html, .......................................................................................................................................................SCES640A–JANUARY 2007–REVISED MAY 2008 2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATIONS ?No Direction-Control Signal Needed ?ESD Protection Exceeds JESD 22 ?Max Data Rates –A Port –24Mbps (Push Pull)–2500-V Human-Body Model (A114-B) –2Mbps (Open Drain)–250-V Machine Model (A115-A) ?Available in the Texas Instruments NanoFree?–1500-V Charged-Device Model (C101) Package –B Port ? 1.65V to 3.6V on A port and 2.3V to 5.5V on –8-kV Human-Body Model (A114-B) B port (V CCA ≤V CCB )–250-V Machine Model (A115-A) ?V CC Isolation Feature –If Either V CC Input Is at –1500-V Charged-Device Model (C101) GND,Both Ports Are in the High-Impedance State ?No Power-Supply Sequencing Required – Either V CCA or V CCB Can Be Ramped First ?I off Supports Partial-Power-Down Mode Operation ?Latch-Up Performance Exceeds 100mA Per JESD 78,Class II This two-bit noninverting translator uses two separate configurable power-supply rails.The A port is designed to track V CCA .V CCA accepts any supply voltage from 1.65V to 3.6V.The B port is designed to track V CCB .V CCA must be less than or equal to V CCB .V CCB accepts any supply voltage from 2.3V to 5.5V.This allows for low-voltage bidirectional translation between any of the 1.8-V,2.5-V,3.3-V,and 5-V voltage nodes. When the output-enable (OE)input is low,all outputs are placed in the high-impedance state. To ensure the high-impedance state during power up or power down,OE should be tied to GND through a pulldown resistor;the minimum value of the resistor is determined by the current-sourcing capability of the driver. ORDERING INFORMATION T A PACKAGE (1)(2) ORDERABLE PART NUMBER TOP-SIDE MARKING (3)NanoStar?–WCSP (DSBGA) Reel of 3000TXS0102YZPR 2H_0.23-mm Large Bump –YZP Reel of 3000TXS0102DCTR NFEZ___–40°C to 85°C SSOP –DCT Tube of 250TXS0102DCTT NFEZ ___VSSOP –DCU Reel of 3000TXS0102DCUR NFE_(1) Package drawings,thermal data,and symbolization are available at https://www.wendangku.net/doc/f69232092.html,/packaging .(2) For the most current package and ordering information,see the at the end of this document,or see the TI website at https://www.wendangku.net/doc/f69232092.html, .(3)DCT:The marking has three additional characters that designate the year,month,and assembly/test site. DCU:The actual top-side marking has one additional character that designates the assembly/test site. YZP:The actual top-side marking has three preceding characters to denote year,month,and sequence code,and one following character to designate the assembly/test site.Pin 1identifier indicates solder-bump composition (1=SnPb,?=Pb-free). Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

相关文档
相关文档 最新文档