文档库 最新最全的文档下载
当前位置:文档库 › 超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解
超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解

作者:王德强李长青乐光新

近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。

许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。

1 UWB的产生与发展

超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。图1给出了带宽计算示意图。可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。

为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。美国NTIA等通信团体对此大约提交了800多份意见书。

2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。图2示出了FCC对室内、室外UWB系统的辐射功率谱密度限制。当前,人们所说的UWB是指FCC给出的新定义。

自2002年至今,新技术和系统方案不断涌现,出现了基于载波的多带脉冲无线电超宽带(IR-UWB)系统、基于直扩码分多址(DS-CDMA)的UWB系统、基于多带正交频分复用(OFDM)的UWB系统等。在产品方面,Time-Domain、XSI、Freescale、Intel等公司纷纷推出UWB芯片组,超宽带天线技术也日趋成熟。当前,UWB技术已成为短距离、高速无线连接最具竞争力的物理层技术。IEEE已经将UWB技术纳入其IEEE802系列无线标准,正在加紧制订基于UWB技术的高速无线个域网(WPAN)标准IEEE802.15.3a和低速无线个域网标准IEEE802.15.4a。以Intel领衔的无线USB促进组织制订的基于UWB的W-USB2.0标准即将出台。无线1394联盟也在抓紧制订基于UWB技术的无线标准。可以预见,在未来的几年中,UWB将成为无线个域网、无线家庭网络、无线传感器网络等短距离无线网络中占据主导地位的物理层技术之一。

2 UWB的技术特点

(1)传输速率高,空间容量大

根据仙农(Shannon)信道容量公式,在加性高斯白噪声(AWGN)信道中,系统无差错传输速率的上限为:

C=B×log2(1+SNR)(1)

其中,B(单位:Hz)为信道带宽,SNR为信噪比。在UWB系统中,信号带宽B高达500MHz~7.5GHz。因此,即使信噪比SNR很低,UWB系统也可以在短距离上实现几百兆至1Gb/s的传输速率。例如,如果使用7 GHz带宽,即使信噪比低至-10 dB,其理论信道容量也可达到1 Gb/s。因此,将UWB技术应用于短距离高速传输场合(如高速WPAN)是非常合适的,可以极大地提高空间容量。理论研究表明,基于UWB的WPAN可达的空间容量比目前WLAN标准IEEE 802.11.a高出1~2个数量级。

(2)适合短距离通信

按照FCC规定,UWB系统的可辐射功率非常有限,3.1GHz~10.6GHz频段总辐射功率仅0.55mW,远低于传统窄带系统。随着传输距离的增加,信号功率将不断衰减。因此,接收信噪比可以表示成传输距离的函数SNRr (d )。根据仙农公式,信道容量可以表示成距离的函数

C(d)=B×log2[1+SNRr(d )](2)

另外,超宽带信号具有极其丰富的频率成分。众所周知,无线信道在不同频段表现出不同的衰落特性。由于随着传输距离的增加高频信号衰落极快,这导致UWB信号产生失真,从而严重影响系统性能。研究表明,当收发信机之间距离小于10m时,UWB系统的信道

容量高于5GHz频段的WLAN系统,收发信机之间距离超过12m时,UWB系统在信道容量上的优势将不复存在。因此,UWB系统特别适合于短距离通信。

(3)具有良好的共存性和保密性

由于UWB系统辐射谱密度极低(小于-41.3dBm/MHz),对传统的窄带系统来讲,UWB 信号谱密度甚至低至背景噪声电平以下,UWB信号对窄带系统的干扰可以视作宽带白噪声。因此,UWB系统与传统的窄带系统有着良好的共存性,这对提高日益紧张的无线频谱资源的利用率是非常有利的。同时,极低的辐射谱密度使UWB信号具有很强的隐蔽性,很难被截获,这对提高通信保密性非常有利。

(4)多径分辨能力强,定位精度高

由于UWB信号采用持续时间极短的窄脉冲,其时间、空间分辨能力都很强。因此,UWB 信号的多径分辨率极高。极高的多径分辨能力赋予UWB信号高精度的测距、定位能力。对于通信系统,必须辩证地分析UWB信号的多径分辨力。无线信道的时间选择性和频率选择性是制约无线通信系统性能的关键因素。在窄带系统中,不可分辨的多径将导致衰落,而UWB信号可以将它们分开并利用分集接收技术进行合并。因此,UWB系统具有很强的抗衰落能力。但UWB信号极高的多径分辨力也导致信号能量产生严重的时间弥散(频率选择性衰落),接收机必须通过牺牲复杂度(增加分集重数)以捕获足够的信号能量。这将对接收机设计提出严峻挑战。在实际的UWB系统设计中,必须折衷考虑信号带宽和接收机复杂度,得到理想的性价比。

(5)体积小、功耗低

传统的UWB技术无需正弦载波,数据被调制在纳秒级或亚纳秒级基带窄脉冲上传输,接收机利用相关器直接完成信号检测。收发信机不需要复杂的载频调制/解调电路和滤波器。因此,可以大大降低系统复杂度,减小收发信机体积和功耗。FCC对UWB的新定义在一定程度上增加了无载波脉冲成形的实现难度,但随着半导体技术的发展和新型脉冲产生技术的不断涌现,UWB系统仍然继承了传统UWB体积小、功耗低的特点。

3 UWB脉冲成形技术

任何数字通信系统,都要利用与信道匹配良好的信号携带信息。对于线性调制系统,已调制信号可以统一表示为:

s(t)=∑Ing(t -T ) (3)

其中,In为承载信息的离散数据符号序列;T为数据符号持续时间;

g(t)为时域成形波形。通信系统的工作频段、信号带宽、辐射谱密度、带外辐射、传输性能、实现复杂度等诸多因素都取决于g(t)的设计。

对于UWB通信系统,成形信号g(t)的带宽必须大于500MHz,且信号能量应集中于3.1 GHz~10.6 GHz频段。早期的UWB系统采用纳秒/亚纳秒级无载波高斯单周脉冲,信号频谱集中于2 GHz以下。FCC对UWB的重新定义和频谱资源分配对信号成形提出了新的要求,信号成形方案必需进行调整。近年来,出现了许多行之有效的方法,如基于载波调制的成形技术、Hermit正交脉冲成形、椭圆球面波(PSWF)正交脉冲成形等。

3.1高斯单周脉冲

高斯单周脉冲即高斯脉冲的各阶导数,是最具代表性的无载波脉冲。各阶脉冲波形均可由高斯一阶导数通过逐次求导得到。

随着脉冲信号阶数的增加,过零点数逐渐增加,信号中心频率向高频移动,但信号的带宽无明显变化,相对带宽逐渐下降。早期UWB系统采用1阶、2阶脉冲,信号频率成分从直流延续到2GHz。按照FCC对UWB的新定义,必须采用4阶以上的亚纳秒脉冲方能满足辐射谱要求。图3为典型的2ns高斯单周脉冲。

3.2载波调制的成形技术

原理上讲,只要信号-10dB带宽大于500MHz即可满足UWB要求。因此,传统的用于有载波通信系统的信号成形方案均可移植到UWB系统中。此时,超宽带信号设计转化为低通脉冲设计,通过载波调制可以将信号频谱在频率轴上灵活地搬移。

有载波的成形脉冲可表示为:

w(t)=p(t)cos(2πfct)(0≤t ≤Tp)(4)

其中,p(t)为持续时间为Tp的基带脉冲;fc为载波频率,即信号中心频率。若基带脉冲p(t)的频谱为P(f ),则最终成形脉冲的频谱为:

可见,成形脉冲的频谱取决于基带脉冲p(t),只要使p(t)的-10dB带宽大于250 MHz,即可满足UWB设计要求。通过调整载波频率fc可以使信号频谱在3.1 GHz~10.6 GHz范围内灵活移动。若结合跳频(FH)技术,则可以方便地构成跳频多址(FHMA)系统。在许多IEEE 802.15.3a标准提案中采用了这种脉冲成形技术。图4为典型的有载波修正余弦脉冲,中心频率为3.35 GHz,-10 dB带宽为525 MHz。

3.3Hermite正交脉冲

Hermite脉冲是一类最早被提出用于高速UWB通信系统的正交脉冲成形方法。结合多进制脉冲调制可以有效地提高系统传输速率。这类脉冲波形是由Hermite多项式导出的。这种脉冲成形方法的特点在于:能量集中于低频,各阶波形频谱相差大,需借助载波搬移频谱方可满足FCC要求。

3.4PSWF正交脉冲

PSWF脉冲是一类近似的“时限-带限”信号,在带限信号分析中有非常理想的效果。

与Hermite脉冲相比,PSWF脉冲可以直接根据目标频段和带宽要求进行设计,不需要复杂的载波调制进行频谱般移。因此,PSWF脉冲属于无载波成形技术,有利于简化收发信机复杂度。

4 UWB调制与多址技术

调制方式是指信号以何种方式承载信息,它不但决定着通信系统的有效性和可靠性,同时也影响信号的频谱结构、接收机复杂度。对于多址技术解决多个用户共享信道的问题,合理的多址方案可以在减小用户间干扰的同时极大地提高多用户容量。在UWB系统中采用的调制方式可以分为两大类:基于超宽带脉冲的调制、基于OFDM的正交多载波调制。多址技术包括:跳时多址、跳频多址、直扩码分多址、波分多址等。系统设计中,可以对调制方式与多址方式进行合理的组合。

4.1UWB调制技术

(1)脉位调制

脉位调制(PPM)是一种利用脉冲位置承载数据信息的调制方式。按照采用的离散数据符号状态数可以分为二进制PPM(2PPM)和多进制PPM(MPPM)。在这种调制方式中,一个脉冲重复周期内脉冲可能出现的位置有2个或M个,脉冲位置与符号状态一一对应。根据相邻脉位之间距离与脉冲宽度之间关系,又可分为部分重叠的PPM和正交PPM(OPPM)。在部分重叠的PPM中,为保证系统传输可靠性,通常选择相邻脉位互为脉冲自相关函数的负峰值点,从而使相邻符号的欧氏距离最大化。在OPPM中,通常以脉冲宽度为间隔确定

脉位。接收机利用相关器在相应位置进行相干检测。鉴于UWB系统的复杂度和功率限制,实际应用中,常用的调制方式为2PPM或2OPPM。

PPM的优点在于:它仅需根据数据符号控制脉冲位置,不需要进行脉冲幅度和极性的控制,便于以较低的复杂度实现调制与解调。因此,PPM是早期UWB系统广泛采用的调制方式。但是,由于PPM信号为单极性,其辐射谱中往往存在幅度较高的离散谱线。如果不对这些谱线进行抑制,将很难满足FCC对辐射谱的要求。

(2)脉幅调制

脉幅调制(PAM)是数字通信系统最为常用的调制方式之一。在UWB系统中,考虑到实现复杂度和功率有效性,不宜采用多进制PAM(MPAM)。UWB系统常用的PAM有两种方式:开关键控(OOK)和二进制相移键控(BPSK)。前者可以采用非相干检测降低接收机复杂度,而后者采用相干检测可以更好地保证传输可靠性。

与2PPM相比,在辐射功率相同的前提下,BPSK可以获得更高的传输可靠性,且辐射谱中没有离散谱线。

(3)波形调制

波形调制(PWSK)是结合Hermite脉冲等多正交波形提出的调制方式。在这种调制方式中,采用M个相互正交的等能量脉冲波形携带数据信息,每个脉冲波形与一个M进制数据符号对应。在接收端,利用M个并行的相关器进行信号接收,利用最大似然检测完成数据恢复。由于各种脉冲能量相等,因此可以在不增加辐射功率的情况下提高传输效率。在脉冲宽度相同的情况下,可以达到比MPPM更高的符号传输速率。在符号速率相同的情况下,

其功率效率和可靠性高于MPAM。由于这种调制方式需要较多的成形滤波器和相关器,其实现复杂度较高。因此,在实际系统中较少使用,目前仅限于理论研究。

(4)正交多载波调制

传统意义上的UWB系统均采用窄脉冲携带信息。FCC对UWB的新定义拓广了UWB 的技术手段。原理上讲,-10dB带宽大于500MHz的任何信号形式均可称作UWB。在OFDM 系统中,数据符号被调制在并行的多个正交子载波上传输,数据调制/解调采用快速傅里叶变换/逆快速傅里叶变换(FFT/IFFT)实现。由于具有频谱利用率高、抗多径能力强、便于DSP 实现等优点,OFDM技术已经广泛应用于数字音频广播(DAB)、数字视频广播(DVB)、WLAN 等无线网络中,且被作为B3G/4G蜂窝网的主流技术。

4.2UWB多址技术

(1)跳时多址

跳时多址(THMA)是最早应用于UWB通信系统的多址技术,它可以方便地与PPM调制、BPSK调制相结合形成跳时-脉位调制(TH-PPM)、跳时-二进制相移键控系统方案。这种多址技术利用了UWB信号占空比极小的特点,将脉冲重复周期(Tf,又称帧周期)划分成Nh 个持续时间为Tc的互不重叠的码片时隙,每个用户利用一个独特的随机跳时序列在Nh个码片时隙中随机选择一个作为脉冲发射位置。在每个码片时隙内可以采用PPM调制或BPSK 调制。接收端利用与目标用户相同的跳时序列跟踪接收。

由于用户跳时码之间具有良好的正交性,多用户脉冲之间不会发生冲突,从而避免了多用户干扰。将跳时技术与PPM结合可以有效地抑制PPM信号中的离散谱线,达到平滑信

号频谱的作用。由于每个帧周期内可分的码片时隙数有限,当用户数很大时必然产生多用户干扰。因此,如何选择跳时序列是非常重要的问题。

(2)直扩-码分多址

直扩-码分多址(DS-CDMA)是IS-95和3G移动蜂窝系统中广泛采用的多址方式,这种多址方式同样可以应用于UWB系统。在这种多址方式中,每个用户使用一个专用的伪随机序列对数据信号进行扩频,用户扩频序列之间互相关很小,即使用户信号间发生冲突,解扩后互干扰也会很小。但由于用户扩频序列之间存在互相关,远近效应是限制其性能的重要因素。因此,在DS-CDMA系统中需要进行功率控制。在UWB系统中,DS-CDMA通常与BPSK结合。

(3)跳频多址

跳频多址(FHMA)是结合多个频分子信道使用的一种多址方式,每个用户利用专用的随机跳频码控制射频频率合成器,以一定的跳频图案周期性地在若干个子信道上传输数据,数据调制在基带完成。若用户跳频码之间无冲突或冲突概率极小,则多用户信号之间在频域正交,可以很好地消除用户间干扰。原理上讲,子信道数量越多则容纳的用户数量越大,但这是以牺牲设备复杂度和功耗为代价的。在UWB系统中,将3.1GHz~10.6GHz频段分成若干个带宽大于500MHz的子信道,根据用户数量和设备复杂度要求选择一定数量的子信道和跳频码解决多址问题。FHMA通常与多带脉冲调制或OFDM相结合,调制方式采用BPSK或正交移相键控(QPSK)。

(4)PWDMA

PWDMA是结合Hermite等正交多脉冲提出的一种波分多址方式。每个用户分别使用一种或几种特定的成形脉冲,调制方式可以是BPSK、PPM或PWSK。由于用户使用的脉冲波形之间相互正交,在同步传输的情况下,即使多用户信号间相互冲突也不会产生互干扰。通常正交波形之间的异步互相关不为零,因此在异步通信的情况下用户间将产生互干扰。目前,PWDMA仅限于理论研究,尚未进入实用阶段。(

无线通信技术应用及发展

无线通信技术应用及发展 无线通信技术热点领域 近几年来,全球通信技术的发展日新月异,尤其是近两三年来,无线通信技术的发展速度与应用领域已经超过了固定通信技术,呈现出如火如荼的发展态势。其中最具代表性的有蜂窝移动通信、宽带无线接入,也包括集群通信、卫星通信,以及手机视频业务与技术。 蜂窝移动通信从上世纪80年代出现到现在,已经发展到了第三代移动通信技术,目前业界正在研究面向未来第四代移动通信的技术;宽带无线接入也在全球不断升温,近几年来我国的宽带无线用户数增长势头强劲。宽带无线接入研究重点主要包括无线城域网(WMAN)、无线局域网(WLAN)和无线个域网(WPAN)技术;模拟集群通信的应用开始得比较早,但随着技术的发展,数字集群通信技术越来越赢得大家的关注;卫星通信以其特殊的技术特性,已经成为无线通信技术中不可忽视的一个领域;手机视频广播作为一种新的无线业务与技术,正在成为目前最热门的无线应用之一。 无线通信技术演进路线 2.1 无线技术与业务发展趋势

无线技术与业务有以下几个发展趋势: (1)网络覆盖的无缝化,即用户在任何时间、任何地点都能实现网络的接入。 (2)宽带化是未来通信发展的一个必然趋势,窄带的、低速的网络会逐渐被宽带网络所取代。 (3)融合趋势明显加快,包括:技术融合、网络融合、业务融合。 (4)数据速率越来越高,频谱带宽越来越宽,频段越来越高,覆盖距离越来越短。 (5)终端智能化越来越高,为各种新业务的提供创造了条件和实现手段。 (6)从两个方向相向发展—— ①移动网增加数据业务:1xEV-DO、HSDPA等技术的出现使移动网的数据速率逐渐增加,在原来的移动网上叠加,覆盖可以连续;另外,WiMAX的出现加速了新的3G增强型技术的发展;

超宽带UWB无线通信技术

超宽带(UWB)无线通信技术 摘要本文介绍了UWB的概念、主要技术特点,并把UWB与目前较为广泛使用的IEEE802.11、Bluetooth等短距离无线通信技术进行了比较,最后对UWB的应用前景进行了分析与展望。 UWB(Ultra Wide Band,超宽带)是一种以极低功率在短距离内高速传输数据的无线技术。这种原来专属军方使用的技术随着2002年2月美国联邦通信委员会(FCC)正式批准民用而备受世人的关注。UWB具有一系列优良独特的技术特性,是一种极具竞争力的短距无线传输技术。 1、UWB的概念 超宽带技术UWB(Ultra Wideband)是一种无线载波通信技术,即不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。UWB是利用纳秒级窄脉冲发射无线信号的技术,适用于高速、近距离的无线个人通信。按照FCC的规定,从3.1GHz到10.6GHz之间的7.5GHz的带宽频率为UWB 所使用的频率范围。 从频域来看,超宽带有别于传统的窄带和宽带,它的频带更宽。窄带是指相对带宽(信号带宽与中心频率之比)小于1%,相对带宽在1%到25%之间的被称为宽带,相对带宽大于25%,而且中心频率大于500MHz的被称为超宽带。 从时域上讲,超宽带系统有别于传统的通信系统。一般的通信系统是通过发送射频载波进行信号调制,而UWB是利用起、落点的时域脉冲(几十纳秒)直接实现调制,超宽带的传输把调制信息过程放在一个非常宽的频带上进行,而且以这一过程中所持续的时间,来决定带宽所占据的频率范围。 2、UWB的主要技术特点 UWB是一种“特立独行”的无线通信技术,它将会为无线局域网LAN和个人局域网PAN的接口卡和接入技术带来低功耗、高带宽并且相对简单的无线通信技术。UWB解决了困扰传统无线技术多年的有关传播方面的重大难题,具有对信道衰落不敏感、发射信号功率谱密度低、被截获的可能性低、系统复杂度低、厘米级的定位精度等优点。 UWB具有以下特点: 2.1抗干扰性能强 UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。接收时将信号能量还原出来,在解扩过程中产生扩频增益。因此,与IEEE 802.11a、IEEE 802.11b和蓝牙相比,在同等码速条件下,UWB具有更强的抗干扰性。 2.2传输速率高

超宽带无线通信技术及应用

超宽带无线通信技术及应用毕业设计(论文)专业 ___________ 无线电技术 班次11613 ____________________ 姓名 ___________ 曾麒麟

指导老师 ________ 杨新明 成都工业学院 二0 一四年

超宽带无线通信技术及主要应用 摘要:相对有线通信,无线通信最大的优点在于其可移动性。但是,却要面对恶劣的无线通信环境和有限的频谱资源的挑战。与此同时,人们对无线通信系统的要求在不断地提高,希望其能提供更高的数据传输速率。在这样的背景下, 超宽带技术引起了人们的重视,已逐渐成为无线通信领域研究开发的一个热点。超宽带的核心是冲激无线电技术,其带宽大于目前所有通信技术的带宽,且抗干扰性能强、传输速率髙、系统容量大、功耗低等优点,满足10m之内的无线个人局域网。本文介绍了超宽带无线通信技术(UWB)的发展背景,并对脉冲信号波形的产生、调制技术进行了分析讨论,以及对UWB接收机技术、多址技术等方面进行了论述。本文仅对UWB技术在无线个人局域网和军用中的应用进行了论述,以及提出了UWB技术的不足之处和解决方案,最后对UWB技术的开发和发展前景作了展望。 [关键词]超宽带无线通信技术;无线个人局域网;多址技术;脉冲调制

成都工业学院 通信工程系毕业设计论文

目录 前言 0 第1章绪论 (1) 第2章UWB技术简介 (3) 2.1超宽带无线技术的背景 (3) 2.2超宽带无线技术的概念 (4) 2.3超宽带无线技术的主要特点 (5) 2.4超宽带与其他近距离无线通信技术的比较 (6) 2.5超宽带系统对其它系统的干扰 (8) 第3章超宽带技术的关键技术 (9) 3.1超快带系统的基本模型 (9) 3.2脉冲成形技术 (9) 3.2.1超宽带系统对脉冲波形的要求 (10) 3.2.2 高斯脉冲的时域波形 (10) 3.2.3高斯脉冲的频谱特性 (12) 3.2.4形成因子〉对高斯脉冲的影响 (14) 3.3超宽带脉冲调制技术 (15) 3.3.1脉冲位置调制(PPM (16) 3.3.2脉冲幅度调制(PAM (16) 3.3.3多频带脉冲调制 (17) 3.4超宽带系统多址技术 (17) 3.4.1............................................................................................ TH-PPM 多址方 式18 3.4.2D S-CDMA 多址方式 (19) 3.4.3P CTH超宽带多址技术 (20) 3.4.4几种多址技术的比较 (20) 第4章超宽带接收机关键技术 (22) 4.1RAKE 接收机 (22) 4.2多径分集接收策略和多径合并策略 (23) 4.2.1多径分集接收策略 (23) 4.2.2多径合并策略 (24) 4.3 定时同步技术 (24) 4.4信道估计技术 (25) 第5章UWB技术的标准化进程及其应用 (26) 5.1UWB信号的频谱管理 (26) 5.1.1规范UWB言号频谱的必要性 (26) 5.1.2F CC关于UWB言号频谱的规范 (26) 5.2超宽带技术的应用 (27) 5.2.1超宽带技术在高速无线网络中的应用 (28)

常用无线网络通信技术解析

常用无线网络通信技术解析 发表时间:2017-10-19T10:33:32.157Z 来源:《基层建设》2017年第17期作者:陶庆东 [导读] 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 广东省电信工程有限公司广东东莞 523000 摘要:随着我国信息技术不断发展,促进了无线网络通信技术的不断进步,出现了GPS检测、挖掘机器人设计等相关技术,在实际应用过程中,发挥了至关重要的作用,因此本文主要探讨了常用无线网络通信技术,旨在为相关工作者提供借鉴。 关键词:无线网络;通信技术;分析 无线网络随着局域网的发展而不断发展,无线网络不需要进行布线,就可以实现信息传输,为人们的通信提供了较大的便利。无线网络不仅具有质量高的优点,同时还可以降低通信成本,所以在许多的领域中,都可以应用无线网络通信,以此提高各领域的工作效率,充分发挥无限网络的的应用优势。目前我国无线网络通信技术有很多种,与人们的生活也息息相关,所以应常用网线网络技术的深入的分析,以此不断提高无线网络通信技术水平。 1 无线广域网 无线广域网不仅可以实现与私人网络进行无线连接,同时还可以与遥远的观众进行无限连接。在无限广域网中,常使用的通信技术,主要有以下几种,GPS、GSM、以及3G,下面就针对这三种技术进行探讨。 1.1 GPS GPS是一项重要的定位技术,其主要基础为子午仪卫星导航系统,它可以在海陆空进行三维导航,同时还具有较强的定位能力,美国在1994年全面建成。GPS系统主要由GPS卫星星座、地面监控系统以及GPS信号接收机三部分组成,GPS系统的卫星共有24颗,它们在轨道平面上均匀分布,其主要负责两方面工作,其一是对卫星进行监控,其二计算卫星星历;对于GPS用户设备主要由两部分组成,一部分为GPS信号接收机硬件,另一部分为GPS信号接收机处理软件。GPS在工作过程中,通常利用GPS信号接收机,对GPS卫星信号进行接收,并对信号进行相应的处理,进行确定相关的信息,包括用户位置以及速度等等,以此实现GPS定位以及导航的目的。GPS系统具有一定的特点,包括操作简便、高效率以及多功能等,最初,在军事领域中应用GPS,随着GPS系统的不断发展,GPS应用范围越来越广,在民用领域中应用力度逐渐加大,特别是在工程测量中,可以实现全天候的准确监测,大大提高了工程测量的精度,促进工程测量的行业的不断发展。 1.2 GSM GSM是全球移动通信系统的简称,是蜂窝系统之一。GSM发展的较为迅速,在欧洲和亚洲,已经将GSM作为标准,目前在世界上许多的国家,都建立的GSM系统,这主要是因为GSM系统具有一定的优势,如稳定性强、通话质量高、以及网络容量等等,这主要是因为GSM系统在工作中,可以实现多组通话在同一射频进行,GSM系统一般主要有包括三个频段,即1800MHZ、900MHz以及1900MHz。 1.3 GPRS GPRS是指通用分组无线业务,它是一种新的分组传输技术,在应用过程中,GPRS具有较多的优点,包括广域的无线IP连接、接口传输速率块等等。在GPRS系统运行过程中,通过分组交换技术,一方面可以实现多个无线信号共一个移动用户使用,另一方面可以实现一个无线信道共多个移动用户使用。信道资源会在移动用户进行无数据传输过程中让出来,这样可以实现无线频带资源利用率的提升。 2 无线局域网 无线局域网主要指的网络传输主要通过无线媒介,包括无线电波以及红外线等。对于无线局域网通信技术覆盖范围,一般情况下,在半径100m左右,目前IEEE制订的无线局域网标准,主要采用的是IEEE802.11系列标准,对于网络的物理层,作出的主要规定,同时还规定了媒质访问控制层。该系列的标准有很多种,包括IEEE802.11、IEEE802.11a、IEEE802.11b等等,对此进行简单的介绍。 2.1 IEEE802.11 对于无线局域网络,最早的网络规定为IEEE802.11,2.4GHZ的ISM工作频段是其工作的主要频段,物理层主要采用技术主要有两项,即红外线技术、跳频扩频技术等等,主要能够解决两项问题,一种为办公室局域网问题,另一种为校园网络用户终端无线接入问题。IEEE802.11数据传输速率可以达到2Mbps,随着我国网络技术的发展,IEEE802.11也得到了研究和发展,陆续推出了IEEE802.11b和IEEE802.11a,其中陆续推出了IEEE802.11b的数据传输速率可以达到11Mbps,IEEE802.11a的数据传输速率可以达到54Mbps,以此满足不断发展的高带宽带网络应用的需要、 2.2 IEEE802.11b 在现实生活使用中,我们可以将IEEE802.11b称作为Wi-Fi,2.4GHz频带是IEEE802.11b工作主要的频带之一,物理层主要由支持两个速率,即5.5Mbps和11Mbps,IEEE802.11b传输速率会受许多因素的影响,包括环境干扰和传输距离等,传输速率可以进行相应的切换。直接序列扩频DSSS技术是IEEE802.11b主要采用的技术。对于IEEE802.11b,可以将其工作模式可以分为两种,一种为点对点模式,另一种为基本模式,其中点对点模式是指两个无线网卡计算机之间的相互通信;基本模式还包括两种通信方式,一种为无线网络的扩充的时的通信方式,另一种指的是有线网络并存时的通信方式。 2.3IEEE802.11a 在美国,IEEE802.11a主要有三个频段范围,即5.15-5.25GHz、5.725-5.825GHz,物理层和传输层的速率可以达到54Mbps和 25Mbps,正交频分复用的独特扩频技术是IEEE802.11a主要采用的技术,通过该技术,可以实现传输范围的扩大,同时对于数据加密,可以达到152位的WEP。 3 无线个域网 在网络架构的底层,设置无线个域网WPAN,一般点对点的短距离连接使用无线个域网。对于无线个域网,使用的通信技术包括红外、蓝牙以及UWB等等,对此下面进行详细的介绍和分析。 3.1 蓝牙 蓝牙作为一种短距离无线通信技术,主要应用小范围的无线连接。蓝牙技术的传输速率为1Mbps,有效的通信范围在10m-100m范围,2.4GHz频段是蓝牙运行的频段,传输速率可以通过GFSK调制技术来实现,同时通过FHSS扩频技术还可以将信道分成若个的时隙,

超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解 作者:王德强李长青乐光新 近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。 许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。 1 UWB的产生与发展 超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。此后,超宽带这个术语才被沿用下来。

其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。图1给出了带宽计算示意图。可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。 为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。美国NTIA等通信团体对此大约提交了800多份意见书。 2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。图2示出了FCC对室内、室外UWB系统的辐射功率谱密度限制。当前,人们所说的UWB是指FCC给出的新定义。

无线局域网是无线通信专业技术与网络专业技术相结合产物

无线局域网是无线通信技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。 无线局域网概述 无线网络的历史起源可以追溯到50年前第二次世界大战期间。当时,美国陆军研发出了一套无线电传输技术,采用无线电信号进行资料的传输。这项技术令许多学者产生了灵感。1971年,夏威夷大学的研究员创建了第一个无线电通讯网络,称作ALOHNET。这个网络包含7台计算机,采用双向星型拓扑连接,横跨夏威夷的四座岛屿,中心计算机放置在瓦胡岛上。从此,无线网络正式诞生。 1.无线局域网的优点 (1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。 (2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。 (3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。 (4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。

(5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间"漫游"等有线网络无法实现的特性。 由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。 2.无线局域网的理论基础 目前,无线局域网采用的传输媒体主要有两种,即红外线和无线电波。按照不同的调制方式,采用无线电波作为传输媒体的无线局域网又可分为扩频方式与窄带调制方式。 (1)红外线(Infrared Rays,IR)局域网 采用红外线通信方式与无线电波方式相比,可以提供极高的数据速率,有较高的安全性,且设备相对便宜而且简单。但由于红外线对障碍物的透射和绕射能力很差,使得传输距离和覆盖范围都受到很大限制,通常IR局域网的覆盖范围只限制在一间房屋内。 (2)扩频(Spread Spectrum,SS)局域网 如果使用扩频技术,网络可以在ISM(工业、科学和医疗)频段内运行。其理论依据是,通过扩频方式以宽带传输信息来换取信噪比的提高。扩频通信具有抗干扰能力和隐蔽性强、保密性好、多址通信能力强的特点。扩频技术主要分为跳频技术(FHSS)和直接序列扩频(DSSS)两种方式。

uwb超宽带无线通信技术(高精度定位)

UWB(定位技术)超宽带无线通信技术 一、UWB调制技术 超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。它源于20世纪60年代兴起的脉冲通信技术。 传统通信方式使用的是连续波信号,即本地振荡器产生连续的高频载波,需要传送信息通过例如调幅,调频等方式加载于载波之上,通过天线进行发送。现在的无线广播,4G通信,WIFI等都是采用该方式进行无线通信。下图是一个使用调幅方式传递语音信号的的连续波信号产生示意图。 图1 连续波调幅信号 而脉冲超宽带IR-UWB(Impluse Radio Ultra Wideband)信号,不需要产生连续的高频载波,仅仅需要产生一个时间短至nS级以下的脉冲,便可通过天线进行发送。需要传送信息可以通过改变脉冲的幅度,时间,相位进行加载,进

而实现信息传输。下图是使用相位调制方式传输二进制归零码的IR-UWB信号产生示意图。 图2 IR-UWB调相信号 从频域上看,连续波信号将能量集中于一个窄频率内,而UWB信号带宽很大,同时在每个频点上功率很低,如图3所示。

图3 IR-UWB信号频谱 在无线定位中,使用IR-UWB信号相对于窄带信号的主要优势为,IR-UWB信号能准确分立无线传输中的首达信号和多径反射信号,而窄带信号不具备该能力。 主要有三种应用:成像、通信与测量和车载雷达系统,再宏观一点,可以分为定位、通信和成像三种场景。 ·通信:因为大带宽,所以UWB一度被认为是USB数据传输的无线替代方案,蓝牙的问题是传输速度太慢。UWB还常用于军用保密通信,这主要也是因为UWB脉冲的能量很低,很容易低于噪声门限,不容易被其它无线电系统监听到。UWB通过在较宽的频谱上传送极低功率的信号,能实现数百Mbit/s至2Gbit/s 的数据传输速率。而且具有穿透力强、功耗低、抗干扰效果好、安全性高、空间容量大、能精确定位等诸多优点,可以说是个超级“潜力股”,很有可能在将来成为家庭主用的无线传输技术。

超宽带无线通信技术解析

超宽带无线通信技术 摘要:超宽带(UWB)具有传输速率高、通信距离短、平均发射功率低等特点,非常适合于短距离高速无线通信。文章对UWB的发送接收技术和信道建模方式进行了讨论,指出UWB将定位于各种消费类电子设备和终端间的高速无线连接。对于IEEE的UWB标准,文章认为由于目前形成了脉冲无线电和多频带正交频分复用(OFDM)两大方案,因此最终采用哪种方案还需等待。 关键词:超宽带;脉冲无线电;无线个域网 无线技术在通信发展进程中一直扮演着重要角色。伴随着移动通信十几年来的蓬勃发展以及3G、B3G等概念的日益普及,无线家族中的另一成员——短距离宽带无线接入技术近年来异军突起。从蓝牙、HomeRF到IEEE 802.11(即Wi-Fi)系列,越来越多的人开始感受到了短距离无线通信技术所带来的诸多便捷,甚至有人认为短距离无线通信技术具有与3G抗衡之势。 超宽带(UWB)技术是目前备受关注的一种新型短距离高速无线通信技术。多年来,这项技术一直在军事领域中使用。UWB在民用领域开放后,有望凭借其超高的传输速度和低功率、低成本等优势给短距离无线接入市场注入新的活力。 1 UWB的特点 应用于无线通信领域的UWB是一种低功率的无线电技术。按照2002年美国联邦通信委员会(FCC)在向民用领域开放UWB时的定义,超宽带技术指的是信号相对带宽(即信号带宽与中心频率之比)不小于0.2或绝对带宽不小于500 MHz,并使用指定的3.1 GHz~10.6 GHz频段的通信方式。与其他传统的无线通信技术相比较,UWB的技术特点主要有: (1)传输速率高 UWB系统使用上千兆赫兹的超宽频带,所以即使把发送信号功率谱密度控制得很低,也可以实现高达100 Mb/s~500 Mb/s的信息速率。根据仙农信道容量公式,如使用7 GHz带宽,那么即使信噪比低至-10 dB,理论信道容量也能达到1 Gb/s[1],因此实际中实现100 Mb/s以上的速率是完全可能的。 (2)通信距离短 由于随着传播距离的增加高频信号强度衰减太快,因此使用超宽频带的系统更适合于进行短距离通信。理论分析表明,当收发机之间的距离大于12 m时,UWB的信道容量低于传统的窄带系统。 (3)平均发射功率低 在短距离应用中,UWB发射机的发射功率通常可做到低于1 mW,这是通过牺牲带宽换取的。

几种无线通信技术的比较.

几种无线通信技术的比较 摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。 关键词:Zigbee Bluetooth UWB Wi-Fi NFC Several Wireless Communications Technology Comparison Abstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development. 一.几种无线通讯技术 (一)ZigBee 1.简介: Zigbee是基于IEEE802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。 ZigBee是一种高可靠的无线数传网络,类似于CDMA和GSM网络。ZigBee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。ZigBee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,在整个网络范围内,每一个ZigBee网络数传模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。与移动通信的CDMA网或GSM网不同的是,ZigBee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个ZigBee―基站‖却不到1000元人民币。每个ZigBee网络节点不仅本身可以作为监控对象,例如其所连接的传感器直接进行数据采集和监控,还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

无线通信技术各自的特点和相互比较

无线通信技术各自的特点和相互比较 目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrDA)。同时还有一些具有发展潜力的近距无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信(NFC)、WiMedia、GPS、DECT、无线1394和专用无线系统等。它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。但是没有一种技术可以完美到足以满足所有的需求。 1、蓝牙技术 bluetooth技术是近几年出现的,广受业界关注的近距无线连接技术。它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。 蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。其传输频段为全球公众通用的2.4GHz ISM 频段,提供1Mbps的传输速率和10m的传输距离。 蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。该技术还陆续获得PC行业业界巨头的支持。1998年,蓝牙技术协议由Ericsson、IBM、Intel、NOKIA、Toshiba等5家公司达成一致。 蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。新版802.15.1a 基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。 但蓝牙技术遭遇了最大的障碍是过于昂贵。突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。这就使得许多用户不愿意花大价钱来购买这种无线设备。因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。 2、Wi-Fi技术 Wi-Fi(Wireless Fidelity,无线高保真)也是一种无线通信协议,正式名称是IEEE802.11b,与蓝牙一样,同属于短距离无线通信技术。Wi-Fi速率最高可达11Mb/s。虽然在数据安全性方面比蓝牙技术要差一些,但在电波的覆盖范围方面却略胜一筹,可达100 m左右。 Wi-Fi是以太网的一种无线扩展,理论上只要用户位于一个接入点四周的一定区域内,就能以最高约11Mb/s的速度接入Web。但实际上,如果有多个用户同时通过一个点接入,带宽被多个用户分享,Wi-Fi的连接速度一般将只有几百kb/s的信号不受墙壁阻隔,但在建筑物内的有效传输距离小于户外。 WLAN未来最具潜力的应用将主要在SOHO、家庭无线网络以及不便安装电缆的建筑物或场所。目前这一技术的用户主要来自机场、酒店、商场等公共热点场所。Wi-Fi技术可将Wi-Fi与基于XML或Java的Web服务融合起来,可

常见无线通信技术

常见无线通信技术蓝牙超宽带技术ZigBe Wi 一F zigBee 的产生 ZigBee 的优势 zigBee 的应用 1.典型的短距离无线数据网络技术 典型的短距离无线系统由一个无线发射器(包括 数据源、调制器、RF源、RF功率放大器、天线、电源组成)和一个无线接收器(包括数据接收电路、RF 解调器、译码器、RF 低噪声放大器、天线、电源)组成。 随着无线的发展,网络化、标准化、要求逐渐出现在人们的面前。因此各种无线网络技术标准纷纷被制订出来。下面我们来看看目前比较热门的几种无线网络技术标准、 5种短程无线连接技术正在成为业界谈论的焦点,它们分别是ZigBee、无线局域网(Wi-Fi )、蓝牙(Bluetooth)、超宽频(Ultra Wide Band)和近距离无线传输(NFC)。 1.ZigBee ZigBee 是一种新兴的短距离、低速率无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。它此前被称作HomeRFLite或FireFly无线技术,主要用于近距离无线连接。它有自己的无线电标准,在数

千个微小的传感器之间相互协调实现通信。这些传感器 只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。最后,这些数据可以进入计算机,用于分析或者被另一种无线技术如WiMaX攵集。 ZigBee的基础是IEEE 802.15.4,这是IEEE无线个人区域网(PAN,Personal AreaNetwork)工作组的一项标准,被称作IEEE 802.15.4 (ZigBee)技术标准。 ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,所以ZigBee联盟对其网络层协议和API 进行了标准化。完全协议用于一次可直接连接到一个设备的基本点的4KB或者作为Hub路 由器的协调器的32KB。每个协调器可连接多达255 个节点,而几个协调器则可形成一个网络,对路由传输的数目则没有限制。ZigBee 联盟还开发了安全层,以保证这种便携设备不会意外泄漏其标识,而且这种利用网络 的远距离传输不会被其他节点获得。、 2.Wi-Fi Wi-Fi是IEEE定义的一个无线网络通信的工业标准(IEEE802.11 )。Wi-Fi的第1个版本发表于1997 年,其中定义了介质访问接入控制层( MAC!)和物 理层。物理层定义了工作在2.4GHz的ISM频段懂行的两

超宽带无线通信技术的特点与发展方向

超宽带无线通信技术的特点与发展方向 近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。UWB(Ultra-Wideband)超宽带,一开始是使用脉冲无线电技术,此技术可追溯至19世纪。后来由Intel等大公司提出了应用了UWB的MB-OFDM技术方案,由于两种方案的截然不同,而且各自都有强大的阵营支持,制定UWB标准的802.15.3a工作组没能在两者中决出最终的标准方案,于是将其交由市场解决。至今UWB还在争论之中。UWB调制采用脉冲宽度在ns级的快速上升和下降脉冲,脉冲覆盖的频谱从直流至GHz,不需常规窄带调制所需的RF频率变换,脉冲成型后可直接送至天线发射。脉冲峰峰时间间隔在10 - 100 ps级。频谱形状可通过甚窄持续单脉冲形状和天线负载特征来调整。UWB 信号在时间轴上是稀疏分布的,其功率谱密度相当低,RF可同时发射多个UWB信号。UWB信号类似于基带信号,可采用OOK,对映脉冲键控,脉冲振幅调制或脉位调制。UWB 不同于把基带信号变换为无线射频(RF)的常规无线系统,可视为在RF上基带传播方案,在建筑物内能以极低频谱密度达到100 Mb/s数据速率。 1 UWB的产生与发展 超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。 其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。图1给出了带宽计算示意图。可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。 UWB(UltraWideband)是一种无载波通信技术,利用纳秒至微微秒级的非正弦波窄脉冲传输数据。通过在较宽的频谱上传送极低功率的信号,UWB能在10米左右的范围内实现数百Mbit/s至数Gbit/s的数据传输速率。UWB具有抗干扰性能强、传输速率高、带宽极宽、消耗电能小、发送功率小等诸多优势,主要应用于室内通信、高速无线LAN、家庭

无线通信技术及5G关键技术介绍

姓名:张健康学号:02121222 姓名:王晨阳学号:02121202 姓名:王李宁学号:02121209

[摘要] (2) 1.引言 (3) 2.无线通信技术概念 (3) 2.1 3G即将成为过去 (3) 2.2 4G 是现在 (4) 2.3 5G是未来 (5) 2.4各国研究进展 (6) 3.5G性能指标 (7) 4.5G关键技术 (8) 4.1 新型多天线技术 (8) 4.2 高频段的使用 (9) 4.3 同时同频全双工 (9) 4.4终端直通技术(D2D) (9) 4.5 密集网络 (9) 4.6新型网络架构 (10) 5.结束语 (10) 中国--机遇与竞争并存 (11) 参考文献: (11) [摘要] 第五代通信系统是面向2020年以后人类信息社会需求的无线移动通信系

统,它是一个多业务技术融合的网络,通过技术的演进和创新,满足未来广泛的数据、连接的各种业务不断发展的需要,提升用户体验。本文首先介绍5G的概念,然后阐述了5G的性能指标,重点对5G的关键技术进行论述,这些关键技术包括新型多天线技术、微波段的使用、同时同频全双工、设备间直接通信技术、自组织网络。 [关键词] 5G;无线通信;关键技术;移动通信技术 1.引言 4G网络部署正在如火如荼地进行时,关于5G的研究也拉开了序幕。2012年,由欧盟出资2700亿欧元支持的5G研究项目METIS(Mobile and Wireless Communications Enablers for the2020Information Society)[1]正式启动,项目分为八个组分别对场景需求、空口技术、多天线技术、网络架构、频谱分析、仿真及测试平台等方面进行深入研究;英国政府联合多家企业,创立5G创新中心,致力于未来用户需求、5G网络关键性能指标、核心技术的研究与评估验证;韩国由韩国科技部、ICT和未来计划部共同推动成立了韩国“5G Forum”,专门推动其国内5G进展;中国,工业和信息化部、发改委和科技部共同成立IMT-2020推进组,作为5G工作的平台,旨在推动国内自主研发的5G技术成为国际标准。可见,对于5G的研究,许多国家或组织都在积极地进行中,未来5G技术将使人们的通信生活发展到一个全新的阶段。 2.无线通信技术概念 GSM是第一代的无线通信技术 为模拟技术,采用的是频分多址方 式,频谱的利用效率非常低下。GSM 诞生之初的目的为使用数字技术取 代模拟技术,提高语音通话的质量, 提高频谱利用效率,降低组网成本。 GSM可以说是迄今为止最为成功的 无线通信技术,可以实现全球漫游。 GSM主要解决的是语音通话问题,而 随着对移动数据的要求提高,提出了 第三代移动通信技术(3G)。 2.1 3G即将成为过去

常用无线通信技术简介

Computer Knowledge and Technology电脑知识与技术 本栏目责任编辑:冯蕾 第8卷第5期(2012年2月) 常用无线通信技术简介 陈高锋 (杨凌职业技术学院,陕西杨凌712100) 摘要:随着社会的不断进步和发展,通信与交流已经成为人们工作和生活中非常重要的部分,无线通信技术以其成本低、扩展性好、使用方便等优势,近些年而得到了长足的发展和广泛的应用。该文从远距离和近距离两个方面分别介绍了常用的无线通信技术。关键词:无线通信;远距离;短距离 中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)05-1062-03 Introduction to Wireless Communication Technology Used CHEN Gao-feng (Yangling Vocational&Technical College,Yangling712100,China) Abstract:With the continuous progress and development,communication and exchange of work and life has become a very important,wireless communications technology with its low cost,scalable,easy to use and other advantages,and in recent years has been considerable development and a wide range of applications.In this paper,both distance and close-introduced the popular wireless communication tech?nology. Key words:wireless communication;long distance;short distance 无线通信(Wireless communication)是利用电磁波信号在自由空间中传播的特性进行信息交换的一种通信方式,近些年,在信息通信领域中,发展最快、应用最广的就是无线通信技术。无线通信技术自身有很多优点,成本较低,无线通信技术不必建立物理线路,更不用大量的人力去铺设电缆,而且无线通信技术不受工业环境的限制,对抗环境的变化能力较强,故障诊断也较为容易,相对于传统的有线通信的设置与维修,无线网络的维修可以通过远程诊断完成,更加便捷;扩展性强,当网络需要扩展时,无线通信不需要扩展布线;灵活性强,无线网络不受环境、地形等限制,而且在使用环境发生变化时,无线网络只需要做很少的调整,就能适应新环境的要求。 1常用的远距离无线通信技术 目前偏远地区广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。它主要使用在较为偏远或不宜铺设线路的地区,如:煤矿、海上、有污染或环境较为恶劣地区等。 1.1GPRS/CDMA无线通信技术 GPRS(通用无线分组业务)是由中国移动开发运营的一种基于GSM通信系统的无线分组交换技术,是介于第二代和第三代之间的技术,通常称为2.5G。它是利用“包交换”概念发展的一种无线传输方式。包交换就将数据封装成许多独立的包,再将这些包一个一个传送出去,形式上有点类似寄包裹,其优势在于有资料需要传送时才会占用频宽,而且是以资料量计价,有效的提高网络的利用率。GPRS网络同时支持电路型数据和分组交换数据,从而GPRS网络能够方便的和因特网互相连接,相比原来的GSM网络的电路交换数据传送方式,GPRS的分组交换技术具有实时在线、按量计费、高速传输等优点[1]。 CDMA是码分多址的英文缩写(Code Division Multiple Access),是由中国电信运行的一种基于码分技术和多址技术的新的无线通信系统,其原理基于扩频技术。其最早是由于军事上对高质量无线通讯技术的需要而开发设计。CDMA在数据传送过程中,将数据用一个带宽远大于信号带宽的高速伪随机码进行调制,使数据信号的带宽被扩展,然后经载波调制将数据发送出去。接收端使用完全相同的伪随机码,进行相反过程的处理,把宽带信号换成原信息数据的窄带信号从而进行解扩,以实现数据传输。其特点是抗干扰能力强、抗衰落能力强、信号隐蔽性强、抗截获的能力强、可以多用户同时接收发送。 1.2数传电台通信 数传电台是数字式无线数据传输电台的简称。它是采用数字信号处理、数字调制解调、具有前向纠错、均衡软判决等功能的一种无线数据传输电台。数传电台的工作频率大多使用220~240MHz或400~470MHz频段,具有数话兼容、数据传输实时性好、专用数据传输通道、一次投资、没有运行使用费、适用于恶劣环境、稳定性好等优点。数传电台的有效覆盖半径约有几十公里,可以覆盖一个城市或一定的区域[2]。数传电台通常提供标准的RS-232数据接口,可直接与计算机、数据采集器、RTU、PLC、数据终端、GPS接收机、数码相机等连接。传输速率从9600到19200bps,误码低于10-6(-110dBm时),可工作于单工、半双工、时分双工TDD、全 收稿日期:2012-01-15 作者简介:陈高锋(1976-),男,陕西杨凌人,讲师,硕士研究生,主要从事程序设计,嵌入式系统等方面的教学研究工作。 E-mail:info@https://www.wendangku.net/doc/f711627341.html, https://www.wendangku.net/doc/f711627341.html, Tel:+86-551-56909635690964 ISSN1009-3044 Computer Knowledge and Technology电脑知识与技术 Vol.8,No.5,February2012 1062

超宽带无线通信技术的研究

超宽带无线通信技术的研究 1超宽带技术概述 UWB技术,也称为超宽带无线通信技术,顾名思义其带宽很宽,并且远大于现在所采用的窄带信号,是一种通过极短的脉冲信号进行通信的技术,由于其时域持续时间一般在纳秒级别,故其带宽可以达到数Hz甚至数GHz,所以在现代高速率传输的环境中,超宽带技术因其通信速率高,通信容量大等优点从军用技术转为了民用技术,成为了现代短距离无线通信的关键技术之一。FCC(美国联邦通信委员会)将带宽大于500MHz或相对带宽大于20%的信号定义为超宽带信号,其中,相对带宽定义为带宽与中心频率之比,亦即:其中fH指单个用户发射的信号的上限频率,而fL则指的是该信号的下限频率。 2两种技术方案比较 到目前为止,超宽带无线技术主要有两种技术方案:传统UWB和基于传统OFDM技术的多带UWB(MB-OFDM-UWB)。传统UWB方案采用的是发射传输脉冲信号来传输信息,亦即用户利用多个窄带脉冲信号来传送其发射的同一个原始比特信息。由于脉冲持续时间较短,所以在频域上来看,其信号带宽很宽,进而可以实现无载波的调制,使发射端无需射频等环节,减少了实际设备的复杂度,但是脉冲的可控性较差,因此会对其他一些通信设备造成干扰。目前,在超宽带系统中,脉冲的调制方式有:PAM(也称作脉冲振幅调制)、PPM(即脉冲位置调制)、OOK(二进制开关键控)以及BPSK(二进制相移键控),而由于PPM调制的功率效率较高以及PAM调制的性能优势,在UWB系统中一般采用PPM和PAM两种调制方式。而由

WiMedia提出的MB-OFDM-UWB技术方案则是采用多频带调制方式,采用单个子带的OFDM信号作为发射信号,利用OFDM的高频带利用率,同时将多个频率子带并行发送,可以避开某些频带,实现方式更加灵活。但是该方案利用了正交频分复用技术而放弃了超宽带系统中典型的脉冲形式,导致其消耗功率要高于传统的UWB方案,也缺少了传统UWB的高保密性和穿透能力强的特点。所以在现在的研究中仍是传统的UWB系统占主导地位。传统UWB方案中很多技术方案和CDMA等3G技术方案具有一致性,比如信号扩频码的使用、调制方式以及检测方法等,这里扩频序列的使用主要时用于多址识别,这是较方案不同的一点,传统的CDMA中扩频码除了多址识别更多的是要用来扩展频谱,所以在UWB方案中扩频码的设计也是研究的方向和热点。传统超宽带无线技术方案一般分为TH-UWB和DS-UWB两种。所谓TH-UWB(跳时超宽带)是指利用伪随机噪声序列原始数据重复编码后的信息进行编码,而编码后的数据符号引起脉冲在时间轴上的偏移,也就是通过跳时码来选择要发送信号的码片区间;而DS-UWB(直序超宽带)则是编码后的数据符号对基本脉冲的幅度进行正负极性的调制。由于现在的通信环境需要的是大容量,亦即实现多用户传输,而在多用户的环境下,若采用多用户检测方法,TH-UWB可以获得更大的处理增益,所以重点介绍TH-UWB技术。 3跳时超宽带技术 在跳时超宽带系统中,由于脉冲调制方式的不同,又主要可以分为2种,即PPM-TH-UWB(基于脉冲位置调制的跳时超宽带)和PAM-TH-UWB(基于脉冲振幅调制的跳时超宽带)。其中PPM-TH-UWB是指在跳时超宽带系统的基础上利用PPM实现信号在时间轴上的移动,具体实现为:当发送信号为1时,会产生PPM移位,反之,当发送信号为0时则没有PPM移位,这直接导致发送的数据信息是通过PPM位移来区分的。而PAM-TH-UWB则是在

相关文档
相关文档 最新文档