文档库 最新最全的文档下载
当前位置:文档库 › 全国卷高考数学导数知识点归类总结

全国卷高考数学导数知识点归类总结

全国卷高考数学导数知识点归类总结
全国卷高考数学导数知识点归类总结

导数知识点归类总结

目 录

一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)

(一)作差证明不等式

(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式

四、不等式恒成立求字母范围 (51)

(一)恒成立之最值的直接应用 (二)恒成立之分离常数

(三)恒成立之讨论字母范围

五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)

七、导数结合三角函数 (85)

书中常用结论

⑴sin ,(0,)x x x π<∈,变形即为sin 1x

x

<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用

1. (切线)设函数a x x f -=2)(.

(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;

(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.

解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3

3

±=x .

所以当33=

x 时,)(x g 有最小值9

32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=

曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12

122x a x x +=,∴12

1

112

11222x x a x x a x x x -=-+=-

∵a x >1,∴

021

21

<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a

x x a x x a x x =?>+=+=

1

1111212222222 所以a x x >>21.

2. (2009天津理20,极值比较讨论)

已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;

⑵当2

3

a ≠

时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

⑴.3)1(')2()(')(022e f e x x x f e x x f a x

x =+===,故,时,当

.3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线=

⑵[]

.42)2()('22x

e a a x a x x

f +-++=

.223

2

.220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

以下分两种情况讨论:

①a 若>

3

2

,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表:

)(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数

.)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数

②a 若<3

2

,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表:

所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数 .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极小值在函数

3. 已知函数2

21()2,()3ln .2

f x x ax

g x a x b =

+=+ ⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值;

⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。

4. (最值,按区间端点讨论)

已知函数f (x )=ln x -

a x

. (1)当a>0时,判断f (x )在定义域上的单调性;

(2)若f (x )在[1,e ]上的最小值为3

2

,求a 的值.

解:(1)由题得f (x )的定义域为(0,+∞),且 f ′(x )=

1x +2a x =2

x a

x

+. ∵a >0,∴f ′(x )>0,故f (x )在(0,+∞)上是单调递增函数. (2)由(1)可知:f ′(x )=

2

x a

x

+, ①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e ]上恒成立,此时f (x )在[1,e ]上为增函数, ∴f (x )min =f (1)=-a =

32,∴a =-3

2

(舍去). ②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e ]上恒成立,此时f (x )在[1,e ]上为减函数, ∴f (x )min =f (e )=1-

a e =32,∴a =-2

e

(舍去). ③若-e

当10,∴f (x )在(-a ,e )上为增函数,

∴f (x )min =f (-a )=ln(-a )+1=3

2

?a

综上可知:a .

5. (最值直接应用)已知函数)1ln(2

1)(2

x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值;

(Ⅱ)求)(x f 的单调区间;

(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围. 解:(Ⅰ)(1)

(),(1,)1

x a ax f x x x --'=

∈-+∞+.

依题意,令(2)0f '=,解得 13a =. 经检验,1

3

a =时,符合题意.

(Ⅱ)解:① 当0=a 时,()1

x f x x '=

+. 故)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-.

② 当0a >时,令()0f x '=,得10x =,或21

1x a

=-.

当10<

所以,()f x 的单调增区间是(0,

1)a -;单调减区间是)0,1(-和(1,)a

-+∞. 当1=a 时,)(x f 的单调减区间是),1(+∞-. 当1a >时,210x -<<,()f x 与()f x '的情况如下:

所以,()f x 的单调增区间是(1,0)a

-;单调减区间是(1,1)a

--和(0,)+∞. ③ 当0

当10<

(1,)a

-+∞;

当1=a 时,)(x f 的减区间是),1(+∞-;

当1a >时,()f x 的增区间是1(1,0)a -;减区间是1

(1,1)a

--和(0,)+∞.

(Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意.

当10<

(1)f a

-,

由1

(1)(0)0f f a

->=,知不合题意.

当1≥a 时,)(x f 在(0,)+∞单调递减,

可得)(x f 在[0,)+∞上的最大值是0)0(=f ,符合题意. 所以,)(x f 在[0,)+∞上的最大值是0时,a 的取值范围是[1,)+∞.

6. (2010北京理数18)

已知函数()f x =ln (1+x )-x +2

2

x x (k ≥0). (Ⅰ)当k =2时,求曲线y =()f x 在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间.

解:(I )当2k =时,2()ln(1)f x x x x =+-+,1

'()121f x x x

=-++ 由于(1)ln 2f =,3

'(1)2

f =,

所以曲线()y f x =在点(1,(1))f 处的切线方程为3

ln 2(1)2

y x -=-

即322ln 230x y -+-=

(II )(1)

'()1x kx k f x x

+-=+,(1,)x ∈-+∞.

当0k =时,'()1x f x x

=-+. 所以,在区间(1,0)-上,'()0f x >;在区间(0,)+∞上,'()0f x <. 故()f x 得单调递增区间是(1,0)-,单调递减区间是(0,)+∞.

当01k <<时,由(1)'()01x kx k f x x +-=

=+,得10x =,210k

x k -=> 所以,在区间(1,0)-和1(,)k k -+∞上,'()0f x >;在区间1(0,)k

k

-上,'()0f x < 故()f x 得单调递增区间是(1,0)-和1(,)k k -+∞,单调递减区间是1(0,)k

k

-. 当1k =时,2

'()1x f x x

=

+ 故()f x 得单调递增区间是(1,)-+∞. 当1k >时,(1)'()01x kx k f x x +-=

=+,得11(1,0)k

x k -=∈-,20x =. 所以没在区间1(1,)k k --和(0,)+∞上,'()0f x >;在区间1(,0)k

k

-上,'()0f x < 故()f x 得单调递增区间是1(1,)k k --和(0,)+∞,单调递减区间是1(,0)k

k

-

7. (2010山东文21,单调性)

已知函数1()ln 1()a

f x x ax a R x

-=-+

-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;

⑵当1

2

a ≤时,讨论()f x 的单调性.

解:⑴ln 20x y -+=

⑵因为 11ln )(--+

-=x

a

ax x x f , 所以 211)('x a a x x f -+-=2

21x a

x ax -+--=,),0(+∞∈x , 令 ,1)(2

a x ax x g -+-=),,0(+∞∈x

8. (是一道设计巧妙的好题,同时用到e 底指、对数,需要构造函数,证存在且唯一时结合零

点存在性定理不好想,⑴⑵联系紧密) 已知函数()ln ,().x

f x x

g x e == ⑴若函数φ (x ) = f (x )-

1

1

x x +-,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.

解:(Ⅰ) ()1

()1x x f x x ?+=--11ln -+-=x x x ,()()()2

2

211121-?+=-+='x x x x x x ?. ∵0x >且1x ≠,∴()0x ?'>∴函数()x ?的单调递增区间为()()∞+,和1

1,0. (Ⅱ)∵1

()f x x

'=

,∴001()f x x '=,

∴ 切线l 的方程为0001ln ()y x x x x -=

-, 即00

1

ln 1y x x x =+-, ① 设直线l 与曲线()y g x =相切于点11(,)x

x e ,

∵()x g x e '=,∴101x

e x =

,∴10ln x x =-,∴0ln 10

1()x

g x e x -==. ∴直线l 也为()00011ln y x x x x -

=+, 即0000

ln 1

1x y x x x x =++, ② 由①②得 00

ln 1ln 1x x x x -=

+,∴0001

ln 1x x x +=-. 由(Ⅰ)可知,()x ?1

ln --

=x x 在区间1,+∞()上递增.

又12()ln 011

e e e e e ?+-=-=<--,2222

2

213()ln 01e e e e e ?+-=-=>-,

结合零点存在性定理,说明方程()0x ?=唯一0x ,故结论成立.

9. (最值应用,转换变量)

设函数221

()(2)ln (0)ax f x a x a x

+=-+<.

(1)讨论函数()f x 在定义域内的单调性;

(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.

解:⑴221()2a f x a x x -'=+-222(2)1ax a x x +--=2(1)(21)

ax x x +-=. 当2a <-时,112a -<,增区间为11(,)2a -,减区间为1(0,)a -,1

(,)2+∞.

当2a =-时,11

2a -=,减区间为(0,)+∞.

当20a -<<时,112a ->,增区间为11(,)2a -,减区间为1(0,)2,1

(,)a

-+∞.

⑵由⑴知,当(3,2)a ∈--时,()f x 在[1,3]上单调递减,

∴12,[1,3]x x ∈,12|()()|f x f x -≤(1)(3)f f -1

(12)[(2)ln 36]3

a a a =+--++,

即12|()()|f x f x -≤2

4(2)ln 33

a a -+-.

∵12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,

∴(ln 3)2ln 3m a +->24(2)ln 33a a -+-,即2

43ma a >-,

又0a <,∴2

43m a

<-. ∵(3,2)a ∈--,∴132384339a -

<-<-,∴m ≤133

-. 10. (最值应用)

已知二次函数()g x 对x R ?∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数

19

()()ln 28

f x

g x m x =+++(m R ∈,0x >).

(Ⅰ)求()g x 的表达式;

(Ⅱ)若x R +?∈,使()0f x ≤成立,求实数m 的取值范围;

(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ?∈,,恒有12|()()|1H x H x -<.

解:(Ⅰ)设()2

g x ax bx c =++,于是

()()()()2

2

11212212g x g x a x c x -+-=-+=--,所以121.

a c ?=?

??=-?, 又()11g =-,则12b =-.所以()211

122g x x x =--. …………3分

(Ⅱ)()

2

191()ln ln (0).

282

f x

g x m x x m x m x =+++=+∈>R ,

当m >0时,由对数函数性质,f (x )的值域为R ;…………4分

当m =0时,2

()02

x f x =>对0x ?>,()0f x >恒成立; …………5分 当m <0

时,由()0m

f x x x x

'=+=?=

,列表:

[]min ()2

m

f x f m ==-+这时, []min 0()0e<0.2

m

m f x m m ?-+>?>??-

所以若0x ?>,()0f x >恒成立,则实数m 的取值范围是(e 0]-,.

故0x ?>使()0f x ≤成立,实数m 的取值范围()(,e]0-∞-+∞,.…………9分

(Ⅲ)因为对[1]x m ?∈,,(1)()

()0x x m H x x --'=

≤,所以()H x 在[1,]m 内单调递减.

于是21211

|()()|(1)()ln .

22H x H x H H m m m m -≤-=--

2121113

|()()|1ln 1ln 0.2222H x H x m m m m m m

-

记13()ln (1e)22h m m m m m

=--<≤,则()

2

2

1133111()022332h'm m m m =-+=-+>, 所以函数13

()ln 22h m m m m =--在(1e],是单调增函数,

所以()()e 3e 1e 3()(e)1022e 2e

h m h -+≤=--=<,故命题成立. …………12分

11. 设3x =是函数()()

()23,x

f x x ax b e x R -=++∈的一个极值点.

(1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;

(2)设()2250,4x

a g x a e ??>=+

???

,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.

解:(1)∵()()

2

3x

f x x ax b e

-=++

∴()()()()'

'

32321x x f

x x a e x ax b e --=++++-()232x

x a x b a e -??=-+-+-??

由题意得:()'30f =,即()23320a b a +-+-=,23b a =--

∴()()2323x

f x x ax a e -=+--且()()()'331x f x x x a e -=--++

令()'

0f x =得13x =,21x a =--

∵3x =是函数()()()23,x

f x x ax b e x R -=++∈的一个极值点

∴12x x ≠,即4a ≠-

故a 与b 的关系式为()23,4b a a =--≠-.

当4a <-时,213x a =-->,由()'

0f

x >得单增区间为:()3,1a --;

由()'

0f x <得单减区间为:(),3-∞和()1,a --+∞;

当4a >-时,213x a =--<,由()'

0f x >得单增区间为:()1,3a --;

由()'

0f x <得单减区间为:(),1a -∞--和()3,+∞;

(2)由(1)知:当0a >时,210x a =--<,()f x 在[]0,3上单调递增,在[]3,4上单调递减,{},)32()4(),0(min )(3min e a f f x f +-==()()max 36f x f a ==+, ∴()f x 在[]0,4上的值域为]6,)32([3++-a e a .

易知()2

254x

g x a e ??=+

???

在[]0,4上是增函数, ∴()g x 在[]0,4上的值域为2

242525,44a a e ????+

+ ???????

. 由于()2

22516042a a a ????+-+=-≥ ? ????

?,

又∵要存在[]12,0,4ξξ∈,使得()()121f g ξξ-<成立,

∴必须且只须()202561

4a a a >?

?

???+-+< ???

??解得:302a <<.

所以,a 的取值范围为30,2??

???

.

12. 2()()()x

f x x ax b e x R =++∈. (1)若2,2a b ==-,求函数()f x 的极值;

(2)若1x =是函数()f x 的一个极值点,试求出a 关于b 的关系式(用a 表示b ),并确

定()f x 的单调区间;

(3)在(2)的条件下,设0a >,函数2

4

()(14)x g x a e

+=+.若存在]4,0[,21∈λλ使得

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

高考数学高考必备知识点总结精华版

高考前重点知识 第一章?集合 (一)、集合:集合元素的特征:确定性、互异性.无序性. 工集合的性质:①任何一个集合是它本身的子集,记为A胃A ; ②空集是任何集合的子集,记为。包A ; ③空集是任何非空集合的真子集; ①〃个元素的子集有2〃个.〃个元素的真子集有2〃 -1个.〃个元素的非空真子集有2〃-2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题。逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题。逆否命题. 交:A,且x e B} 2、集合运算:交、并、补产AU6Q{xlxeA或xe* 未卜:或A o {% £ (/, 且x任A} (三)简易逻辑 构成复合命题的形式:p或q (记作〃pvq〃); p且q (记作〃p 八q〃);mEp(i己作、q〃) o 工〃或〃‘〃且"、"非"的真假判断 种命题的形式及相互关系: 原命题:若P则q;逆命题:若q则p; 否命题:若1 P则1 q ;逆否命题:若1 q则]Po ④、原命题为真,它的逆命题不一定为真。 i命题为真它的否命题不一定为真。

@、原命题为真,它的逆否命题一定为真。 6、如果已知p=q那么我们说,P是q的充分条件,q是P的必要条 件。 若p=q且q = p,则称p是q的充要条件,记为p<=>q. 一.函数的性质 (工)定义域:(2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:/(—x) = /(x),②奇函数:/(—x) = -/(X) ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点 对称;c.求/(-X);&比较/(T)与/(X)或/(T)与—/(X)的关系。 (4 )函数的单调性 定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1f X2, 。语当X1VX2时,都有f(XT)Vf(X2),则说f(X)在这个区间上是增函数; (2语当X1f(X)则说f(X)在这个区间上是减函数? 二.指数函数与对数函数 指数函数> = /(〃>。且"。1)的图象和性质

最新高中数学导数知识点归纳总结

高中导数知识点归纳 1 一、基本概念 2 1. 导数的定义: 3 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也4 引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 5 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数6 )(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 7 ()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=) ()(lim )(00000 8 2 导数的几何意义:(求函数在某点处的切线方程) 9 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的10 斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为11 ).)((0'0x x x f y y -=- 12 3.基本常见函数的导数: 13 ①0;C '=(C 为常数) ②()1;n n x nx -'= 14 ③(sin )cos x x '=; ④(cos )sin x x '=-; 15 ⑤();x x e e '= ⑥()ln x x a a a '=; 16 ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 17 二、导数的运算 18 1.导数的四则运算: 19

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

高考数学必备知识点总结

高考重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补. {|,}{|} {,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。

6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求 )(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

函数与导数压轴题方法归纳与总结

函数与导数压轴题方法归纳与总结 题型与方法 题型一 切线问题 例1 (二轮复习资料p6例2) 归纳总结: 题型二 利用导数研究函数的单调性 例2 已知函数f (x )=ln x -a x . (1)求f (x )的单调区间; (2)若f (x )在[1,e]上的最小值为3 2,求a 的值; (3)若f (x )

归纳总结: 题型三 已知函数的单调性求参数的围 例 3.已知函数()1 ln sin g x x x θ=+?在[)1,+∞上为增函数, 且()0,θπ∈, ()1 ln ,m f x mx x m R x -=--∈ (1)求θ的值. (2)若[)()()1,f x g x -+∞在上为单调函数,求m 的取值围. 归纳总结:

题型四 已知不等式成立求参数的围 例4..设f (x )=a x +x ln x ,g (x )=x 3-x 2-3. (1)当a =2时,求曲线y =f (x )在x =1处的切线方程; (2)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (3)如果对任意的s ,t ∈????12,2都有f (s )≥g (t )成立,数a 的取值围. 归纳总结: 跟踪1.已知()ln 1 m f x n x x =++(m,n 为常数)在x=1处的切线为x+y -2=0(10月重点高中联考第22题) (1) 求y=f(x)的单调区间;

(2) 若任意实数x ∈1,1e ?? ???? ,使得对任意的t ∈[1,2]上恒有32()2f x t t at ≥--成立,数a 的取值围。 跟踪2. 设f (x )=-13x 3+12 x 2+2ax .(加强版练习题) (1)若f (x )在(23,+∞)上存在单调递增区间,求a 的取值围; (2)当0

高中数学导数知识点归纳总结

导 数 知识要点 1. 导数(导函数的简称)的定义:即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f (x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义: 就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2''' ≠-= ?? ? ??v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+ =,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

高考导数压轴题型归类总结材料

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 3 2)33(- =g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 1 1222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表: 所以)(x f .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极大值在函数

高考数学必考知识点总结归纳

高考数学必考知识点总结归纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。?注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().? 若为真,当且仅当、均为真p q p q ∧

若为真,当且仅当、至少有一个为真 ∨ p q p q ?p p 若为真,当且仅当为假 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? [] 0义域是_。 >->=+- f x a b b a F(x f x f x 如:函数的定义域是,,,则函数的定 ())()() [] - a a (答:,) 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

高三数学必考知识点汇总

高三数学必考知识点汇总 一 1.等差数列的定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+n-1d. 3.等差中项 如果A=a+b/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 1通项公式的推广:an=am+n-mdn,m∈N_. 2若{an}为等差数列,且m+n=p+q, 则am+an=ap+aqm,n,p,q∈N_. 3若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…k,m∈N_是公差为md的等差数列. 4数列Sm,S2m-Sm,S3m-S2m,…也是等差数列. 5S2n-1=2n-1an. 6若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中中间项. 注意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+…+an,① Sn=an+an-1+…+a1,② ①+②得:Sn=na1+an/2

两个技巧 已知三个或四个数组成等差数列的一类问题,要善于设元. 1若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…. 2若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的判断方法 1定义法:对于n≥2的任意自然数,验证an-an-1为同一常数; 2等差中项法:验证2an-1=an+an-2n≥3,n∈N_都成立; 3通项公式法:验证an=pn+q; 4前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列. 二 1.不等式的定义 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.比较两个实数的大小 两个实数的大小是用实数的运算性质来定义的, 有a-b>0?;a-b=0?;a-b<0?. 另外,若b>0,则有>1?;=1?;<1?. 概括为:作差法,作商法,中间量法等. 3.不等式的性质 1对称性:a>b?; 2传递性:a>b,b>c?; 3可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

2019高考数学必考知识点总结归纳

2019高考数学必考知识点总结归纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示 什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。?注重借助于数轴 和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-? ?? ???1013 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().? 若为真,当且仅当、均为真p q p q ∧ 若为真,当且仅当、至少有一个为真p q p q ∨

若为真,当且仅当为假 ?p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? [] 0义域是_。 >->=+- 如:函数的定义域是,,,则函数的定 ())()() f x a b b a F(x f x f x [] a a - (答:,) 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域)

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

高考精华总结---高考数学(理科)知识点总结

2013高考数学(理科)知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 {}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为 B A a ? (答:,,)-??? ??? 1013 3. 注意下列性质: {} ()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ??==I Y (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B Y I I Y = =, 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 ()(∵,∴ ·∵,∴ ·,,)335 30555 50 1539252 2∈--

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

高考数学必考点总结

高考数学必考点总结 高中数学第一章-集合 考试内容:集合、子集、补集、交集、并集. 逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、 必要条件及充要条件的意义. § 01.集合与简易逻辑知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易 二、知识回顾: (一)集合

1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的 使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为 A A ; ②空集是任何集合的子集,记为 A ; ③空集是任何非空集合的真子集;如果 A B ,同时 B A ,那么A = B. 如果A B, B C,那么A C . [注]:①Z= {整数}(V) Z ={全体整数}(X) ②已知集合S中A的补集是一个有限集,贝y集合A也是有限集.(X) (例: S=N;A= N ,则C s A= {0}) ③空集的补集是全集. ④若集合A=集合B,则C A二,C A B = C S (CB) =D (注:C B = ). 3. ①{(x, y) | xy =0 , x€ R, y€ R}坐标轴上的点集. ②{(x, y) | xy< 0, x € R y € R二、四象限的点集. ③{(x, y) |xy>0, x € R y € F}一、三象限的点集. [注]:①对方程组解的集合应是点集. 例:x y 3解的集合{(2 ,1)}. 2x 3y 1 ②点集与数集的交集是. (例: A ={(x,y)| y=x+1} B={y|y=x2+1}则 A n B =) 4. ①n个元素的子集有2n个.②n个元素的真子集有2n-1个. ③n个元素的非空真子集有2n-2个.

高三数学一轮复习(知识点归纳与总结):变化率与导数、导数的计算

第十一节变化率与导数、导数的计算 [备考方向要明了] [归纳·知识整合] 1.导数的概念 (1)函数y=f(x)在x=x0处的导数: 称函数y=f(x)在x=x0处的瞬时变化率 lim Δx→0f(x0+Δx)-f(x0) Δx=lim Δx→0 Δy Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0, 即 f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0). (3)函数f(x)的导函数:

称函数f ′(x )=lim Δx → f (x +Δx )-f (x ) Δx 为f (x )的导函数. [探究] 1.f ′(x )与f ′(x 0)有何区别与联系? 提示:f ′(x )是一个函数,f ′(x 0)是常数,f ′(x 0)是函数f ′(x )在x 0处的函数值. 2.曲线y =f (x )在点P 0(x 0,y 0)处的切线与过点P 0(x 0,y 0)的切线,两种说法有区别吗? 提示:(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 3.过圆上一点P 的切线与圆只有公共点P ,过函数y =f (x )图象上一点P 的切线与图象也只有公共点P 吗? 提示:不一定,它们可能有2个或3个或无数多个公共点. 2.几种常见函数的导数 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

相关文档
相关文档 最新文档