文档库 最新最全的文档下载
当前位置:文档库 › 物理化学实验-电池电动势的测定实验报告

物理化学实验-电池电动势的测定实验报告

物理化学实验-电池电动势的测定实验报告
物理化学实验-电池电动势的测定实验报告

原电池电动势的测定与应用

华南师范大学化学与环境学院

合作: 指导老师:林晓明

一、实验目的

①掌握电位差计的测量原理和原电池电动势的测定方法;

②加深对可逆电池,可逆电极、盐桥等概念的理解;

③测定电池(Ⅰ)及电池(Ⅱ)的电动势;

④了解可逆电池电动势测定的应用。

二、实验原理

1.用对消法测定原电池电动势:

原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法(又叫补偿法)。

对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

本实验使用的电动势测量仪器是SDC型数字电位差计,它是利用对消法原理设计的。2.原电池电动势测定:

电池的书写习惯是左方为负极,右方为正极。负极进行氧化反应,正极进行还原反应。如果电池反应是自发的,则电池电动势为正。符号“|”表示两相界面,“||”表示盐桥。

在电池中,电极都具有一定的电极电势。当电池处于平衡态时,两个电极的电极电势只差就等于该可你电池的电动势,规定电池的电动势等于正、负电极的电极电势之差,即

E=φ+-φ-

式中,E是原电池的电动势。φ+、φ-分别代表正、负极的电极电势。

根据电极电位的能斯特方程,有

O

?=-RT/ZF·ln(α

?

+

还原/α氧化)

O

?=-RT/ZF·ln(α

?

-

还原/α氧化)

电池(Ⅰ)Hg|Hg2Cl2(s)|KCl(饱和)‖AgNO3(0.02mol/L)|Ag

? 1/2Hg2Cl2 + e-

负极反应:Hg + Cl-(饱和)?→

正极反应:Ag+ + e-?→

? Ag

总反应:Hg + Cl-(饱和)+ Ag+ ?→

?1/2Hg2Cl2 + Ag

根据电极电位的能斯特公式,正极银电极的电极电位:

φAg/Ag+ = φθAg/Ag+ + 0.05916V lgɑAg+

其中φθAg/Ag+ = 0.799 - 0.00097(t-25)

又因AgNO3 浓度很稀,ɑAg+ ≈ [Ag+] = 0.02

负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式:

φ饱和甘汞 = 0.2415 - 0.00065(t–25)

而电池电动势 E = φ+ - φ-;可以算出该电池电动势的理论值。与测定值比较即可。

3.电动势测定的应用:

求溶液的pH值,通常将醌氢醌电极与饱和甘汞电极组成原电池,测定其电动势,则溶液的pH值可求。

电池(Ⅱ)Hg|Hg2Cl2|KCl(饱和)||H+(0.2mol/L HAc+0.2mol/L NaAc)Q·Q H2|Pt 醌氢醌是一种暗褐色晶体,在水中溶解度很小,在水溶液中依下式部分溶解。

C6H4O2·C6H4(OH)2(醌氢醌)== C6H4O2(醌)+C6H4(OH)2(氢醌) 在酸性溶液中,对苯二酚解离度极小,因此醌与对苯二酚的活度可以认为相同,即

α醌=α氢醌。

醌氢醌电极的制备很简单,只需待测pH值溶液以醌氢醌饱和,浸入惰性电极(铂电极)中即可。醌氢醌电极作为还原电极时,电极反应是

C6H4O2(醌)+2H+ +2e- →C6H4(OH)2(氢醌)

其电动势为:φ醌氢醌 =φθ醌氢醌–RT/F·ln 1/αH+ =φθ醌氢醌-2.303RT/F ·pH

其中φθ醌氢醌=0.6994-0.00074(t-25)

通过实验测得电池的电动势,就可以计算出溶液的pH值。

三、实验仪器及用品

1.实验仪器:

SDC数字电位差计、超级恒温槽、饱和甘汞电极、光亮铂电极、银电极、250mL烧杯、20mL 烧杯、U形管。

2.实验试剂:

0.02mol/L的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂。

四、实验步骤

1.制备盐桥

3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL烧杯中,加入100mL蒸馏水和3g琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。然后加入40g硝酸钾,充分搅拌使硝酸钾完全溶解后,趁热用滴管将它灌入干净的U形管中,两端要装满,中间不能有气泡,静置待琼脂凝固后便可使用。制备好的盐桥丌使用时应浸入饱和硝酸钾溶液中,防止盐桥干涸。

2.组合电池

将饱和甘汞电极插入装有饱和硝酸钾溶液的广口瓶中。将一个20mL小烧杯洗净后,用数毫升0.02mol/L的硝酸银溶液连同银电极一起淌洗,然后装此溶液至烧杯的2/3处,插入银电极,用硝酸钾盐桥不饱和甘汞电极连接构成电池。

3.测定电池的电动势

①根据Nernst公式计算实验温度下电池(I)、(Ⅱ)的电动势理论值。

②正确接好测量电池(I)的线路。电池与电位差计连接时应注意极性。盐桥的两支管应标号,让标负号的一端始终不含氯离子的溶液接触。仪器要注意摆布合理并便于操作。

③用SDC数字电位差计测量电池(I)的电动势。每隔2min测一次,共测三次。

④同法,用SDC数字电位差计测量电池(Ⅱ)的电动势,要测至平衡时为止。

测量完毕后,倒去两个小烧杯的溶液,洗净烧杯的溶液。盐桥两端淋洗后,浸入硝酸钾溶液中保存。

五、实验数据记录与处理

将实验数据列入表1中。

室温: 23.5℃ 大气压: 1014.3hPa 1.电池(I )测定记录 恒温槽: 30℃

V 69198.00.02

1ln 9650055.303*314.87893.01ln Ag Ag /Ag Ag

/Ag =-=-=+

+

+

a F

RT ο

?? V 238.0250.300.000650.2415=-=)(—饱和甘汞? V 45373.0Ag /Ag ==+

饱和甘汞理论—??E

2.电池(Ⅱ)测定记录 恒温槽: 30℃ PH 理论值=-lg[H +

]=-lg(c a /c b *Ka)=4.74

6957.0)]2530(*00074.06994.0[=--=θ?醌氢醌

pH pH F

RT

06015.06957.0303.2-=-

=θ??醌氢醌醌氢醌 23825

.0p 06015.06957.02--=-=H E 饱和甘汞醌氢醌??

PH 测定=(0.45745-E )/0.06015=4.50

表2 电池(Ⅱ)实验数据记录表

六、讨论与分析

1.误差分析:

(1)温度的影响:文献值是在298.15K 时测定得到的;而实验测定时并不是在298.15K 下进行,且测定过程中还有升温的操作,故温度的偏差会对结果带来影响。

(2)仪器的不稳定带来较大误差:调节电桥平衡的操作时间应尽可能的短,否则电极

上较长时间的有电流通过,会发生电池反应使得溶液浓度下降、电极表面极化,这样可逆电极变成不可逆的,会给实验带来较大误差。而本次实验中所用仪器不稳定,需要较长的时间才能大致调节到平衡,即使是同一个电动势值,在很短的时间内测得的数据都有较大波动,所以不能很快调节到平衡是实验的误差主要来源。

(3)电流无限小的情况下测量,才能达到可逆电池的要求,但在实验过程中电流无法达到无限小仍存在一定值的电流,于是产生的极化作用破坏了电池的可逆性,使电动势偏离可逆值。

(4)恒温槽温度存在波动,电镀不均匀,会造成不稳定。此外实验中采用盐桥来消除液接电位,但实际实验中由于一开始的时候仪器不稳定,导致无法正常测定,最后得更换仪器后重新测定。而此时,盐桥已经被消耗一部分,其作用被减弱,不能保证盐桥能够完全消除液接电位。

2.数据分析:

观察实验测得的数据,可以看到,在相同温度下,随着反应时间的增加,原电池测得的电动势值并非维持在稳定态,而是逐渐降低的。产生这种现象的主要原因有两个:(1)随着时间的增加,反应也在不断地进行,电极的反应物也被不断地消耗,导致Ag+的浓度减小。由原电池反应的能斯特方程可知饱和甘汞电极由于Hg为纯液态,Cl-也达到饱和态,因此这两者的浓度可看作不变,即原电池负极的电极电势不变;另外,Ag+的浓度减小导致正极电势减小,电池反应的E减小,测得的结果也逐渐变小。

(2)随着反应的进行,盐桥也在不断地消耗。插入盐桥的目的就是为了降低液接电势,减少电池的极化现象。但因为盐桥被消耗,会导致其工作能力下降,电池的极化现象严重化,导致电池反应的E减小,测得的结果也逐渐变小。

七、思考题

1.为何测定电动势要用对消法?对消法的原理是什么?

解:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法。

对消法的原理:在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

2.测电动势为何要用盐桥?如何选用盐桥以适合不同体系?

解:使用盐桥可以有效地减弱液体接界电位,减小电池的极化现象带来的干扰,使测定更加准确。选用盐桥时,要求盐桥的盐浓度远远高于被测物的浓度,最少应大于10倍以上。此外,还要求盐桥的正、负离子迁移速率尽量相等,且不与溶液反应,最好选用与电极具有相同离子的盐桥,以排除引入外来离子造成测定干扰。

3.使用醌氢醌电极的限制条件是什么?

解:在酸性溶液中,方有α醌=α氢醌。

参考文献

[1] 何广平,南俊民,孙艳辉等. 《物理化学实验》[M].华南师范大学化学实验教学中心,

化学工业出版社,2007.

[2] 傅献彩,沈文霞等编. 物理化学. 第四版. 北京:高等教育出版社,2008.

蓄电池充放电试验方案

蓄电池检查试验方案 一、目的 为延长蓄电池使用寿命,确保电源类设备处于最佳运行状态,需对蓄电池组进行充放电试验,为保证检查试验过程中的人员分工明确、安全风险可控、试验方法规范,特制定本方案。 二、组织与职责 (一)组织管理组 组长: 1.协调蓄电池检查试验的整体统筹与实施。 2.监管各小组的履职情况。 副组长: 1.配合组长监管蓄电池检查试验工作的开展与实施。 2.配合组长监管各小组的履职情况。 安全负责人: 1.全面监管蓄电池检查试验工作当中的票证、倒闸操作以及安全交底工作,一经发现违规行为,立即叫停改造工作。 技术负责人: 1.负责监管蓄电池检查试验期间运行方式调整。 2.负责蓄电池检查试验期间提供相关的技术支持。 (二)现场实施组 组长: 成员: 三、编写依据 1.GB 50172-1992电气安装工程蓄电池施工及验收规范 2.DL/T 5044-1995火力发电厂.变电所直流系统设计技术规程 3.DL/T 724-2000电力系统用蓄电池直流电源装置运行与维护技术规程 四、工作范围 UPS、EPS、直流屏装置蓄电池组。 五、工作前的准备

1.方案学习 1.1组长负责对所有改造人员进行方案的学习培训,并进行签字确认。 1.2各小组组长负责对自己的成员进行方案的分解落实。 1.3安全负责人对所有人进行安全交底及措施的落实情况。 2.材料及工器具准备 六、工作项目及内容 1.按下表检查蓄电池型号及参数。 蓄电池型号及参数记录表

2.外观及接线检查 逐个目测检查蓄电池外观,不应有变形、污迹,蓄电池间连接可靠、无锈蚀。检查项目和结果满足下表要求。 蓄电池外观及接线检查项目确认表 3.蓄电池运行环境检查 蓄电池运行环境检查记录表

电动势的测定及其应用(实验报告)

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

原电池电动势的测定实验报告

原电池电动势的测定实验报告范本(完整版) After Completing The Task According To The Original Plan, A Report Will Be Formed To Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas?

互惠互利共同繁荣

原电池电动势的测定实验报告范本 (完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提岀今后设想。文档可根据实际情况进行修改和使用。 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的 操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池 (或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;⑵电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时 通过电池的电流应为无限小。

因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法, 可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为e+,负极电势为e-,则电池电动势 E = e+ - e-。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测岀,具体的电极电位可参考相关文献资料。

测定电池的电动势与内阻--精选习题1

实验三 测量电源的电动势和内阻 题型一 利用电流表和电压表测电源的电动势和内阻 【例1】 某同学将铜片和锌片插入水果中制成一个“水果电池”,该同学利用下列所给器材测量该“水果电池”的电动势E 和内阻r. A .电流表A 1(量程0.6 A ,内阻约1 Ω) B .电流表A 2(量程20 mA ,内阻约50 Ω) C .电压表V 1(量程4 V ,内阻约4 kΩ) D .电压表V 2(量程15 V ,内阻15 kΩ) E .滑动变阻器R 1(0~1 000 Ω) F .滑动变阻器R 2(0~9 999.9 Ω) G .待测“水果电池”(E 约为4 V ,内阻r 约为200 Ω) H .开关S ,导线若干 (1)为尽量减小实验的误差,电流表选择________;电压表选择________;滑动变阻器选________. 请在虚线方框中画出实验电路图; (2)该同学实验中记录的6组对应的数据如下表,试根据表中数据在图5中描点画出U -I 图线;由图线可得,“水果电池”的电动势E =________V ,内电阻r =________Ω. I/mA 4.0 5.0 8.0 10.0 12.0 14.0 U/V 3.04 2.85 2.30 1.90 1.50 1.14 (3)实验测得的“水果电池”的电动势和内阻与真 实值相比,E 测________E 真,r 测________r 真(选填“大于”、“小于”或“等于”). 题型二 安阻法测电源的电动势和内电阻 实验器材:一节干电池、电流表、电阻箱、电键. 依据的基本公式:________________________ 实验原理图:如图6所示 用图象法处理实验数据,若作出R -1I 图象(或1 I -R 图象), 图象在R 轴上的截距即为电源内阻的负值,图线的斜率即为电动势E. 【例2】 (北京理综·21(2))某同学通过查找资料自己动手制作了一个电池.该同学想测量一下这个电池的电动势E 和内电阻r ,但是从实验室只借到一个开关、一个电阻箱(最大阻值为999.9 Ω,可当标准电阻用)、一只电流表(量程Ig =0.6 A ,内阻rg =0.1 Ω)和若干导线. (1)请根据测定电动势E 和内电阻r 的要求,设计图7中器件的连接方式,画线把它们连接起来. (2)接通开关,逐次改变电阻箱的阻值R ,读出与R 对应的电流表的示数I ,并作记录.当电阻箱的阻值R =2.6 Ω时,其对应的电流表的示数如图8所示.处理实验数据时,首先计算出 每个电流值I 的倒数1 I ;再 制作R -1 I 坐标图,如图9 所示,图中已标注出了(R ,1 I )的几个与测量对应的坐标点,请你将与图8实验数据对应的坐标点也标注在图9上. (3)在图9上把描绘出的坐标点连成图线. (4)根据图9描绘出的图线可得出这个电池的电动势E =________V ,内电阻r =________Ω. 题型三 伏阻法(利用电压表、电阻箱)测电源电动势和内电阻 实验器材:一节干电池、电压表、电阻箱、电键. 依据的基本公式:E =U +U R r 或1U =1E +r E ·1 R

蓄电池在线核对性放电试验操作手册

蓄电池在线核对性放电试验操作手册 制定 编写 日期

通信系统后备蓄电池组经过一段时间的使用后,会因电池内活性物质脱落、变质、电解液减少、正极格栅腐蚀或硫化等原因,使电池组的实际容量逐渐减少。为了掌握蓄电池组的真实放电工作情况,确认市电停电后蓄电池组的保证供电时长,保障设备安全供电,应定期对在用蓄电池组进行放电测试。 蓄电池的放电测试有两种方式:核对性放电试验和容量试验。 核对性放电试验是指每年以实际负载做一次(UPS使用的密封电池,每季度一次)放电试验,每次放出电池组额定容量的30%-40%。通过核对性放电试验可以检验出各只单体电池间的连接是否可靠,电池内部是否有短路、断开等故障,整组电池放电性能是否严重劣化、是否存在落后电池等。 容量试验是指每三年做一次容量试验,放出电池组额定容量的80%。使用六年后的电池应每年一次。对于UPS使用的6伏或12伏电池,每年做一次。容量试验是一种完整的检测方式,只有通过容量试验才能真正判断电池的放电性能。 根据《电源、空调维护规程(2013修订版)》的规定,结合全省的实际情况,制定本操作手册,以电池核对性放电试验为手段,了解全省在网运行的蓄电池设备供电保障能力,指导现场维护人员操作方法,提高全省的动力专业蓄电池维护水平,保障蓄电池设备的运行安全。 本手册只适用于蓄电池核对性放电试验。 一、蓄电池核对性放电试验前的检查 在进行蓄电池核对性放电试验前,应对相关的通信电源系统和环境等设施进行必要的检查。检查内容包括但不限于以下内容: 一、电池室环境及电池外观检查; 电池室环境检查:蓄电池在使用过程中会释放出氢气,如果电池室密封很好,并且没有通风设施会造成氢气浓度过高,极易发生爆炸,属于严重的安全隐患。并且空气流通不好,新鲜度不足,对人员安全也存在较大风险。在放电试验过程中,应始终保持通风状况良好。 电池组外观检查:检查极柱、连接条有无松动、变形、腐蚀,温度是否异常,电池壳体有无损伤、泄露、变形等。 发现问题应首先处理隐患,在没有完成隐患处理以前不能进行放电试验。

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22() ()2Zn Zn s Zn a e ++-+ 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+ 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++ 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6) 22,1 ln 2Zn Zn Zn RT F a ??+ + -= - (9-7) 式中2,Cu Cu ? +和2,Zn Zn ?+是当221Cu Zn a a ++==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

电池电动势的测定及其应用

电池电动势的测定及其应用 摘要:本实验中我们通过对消法测量原电池Cu│CuCl2(m1)║AgNO3(m2)│Ag 和不同温度下原电池Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag 的电动势。通过能斯特方程以及吉布斯-亥姆霍兹方程,我们计算了不同温度下氯化银的溶度积和电池反应的热力学常数。 关键词:电池电动势; 对消法; 热力学函数 Measurement and Application of the Potential of Reversible Batter Abstract:In this experiment, we measure the electromotive force of two primary cells, Cu│CuCl2(m1)║AgNO3(m2)│Ag and Ag-AgCl│KCl(m3)║AgNO3(m2)│Ag by using compensation method. At the same time, the electromotive force of the latter one is measured under different temperatures. By means of Nernst equation and Gibbs-Helmholtz equation, we calculate the solubility product of AgCl and thermodynamic functions of the cell reaction under different temperatures. Keywords:Reversible Battery,Electrode Potential,Thermodynamic Functions the

蓄电池充放电试验

蓄电池放电试验方案 批准: 审核: 编写: 重庆大唐国际彭水水电开发有限公司设备部 二〇一二年七月二日

蓄电池放电试验方案 本次试验按DL/T724-2000-6.3.3阀控蓄电池核对性放电要求进行全核对性放电试验。 一、计划时间: 开关站直流Ⅰ组蓄电池充放电试验:2012年07月11日08:00至2012年07月14日23:00 开关站直流Ⅱ组蓄电池充放电试验:2012年07月15日08:00至2012年07月19日23:00 地下厂房直流Ⅰ组蓄电池充放电试验:2012年07月29日08:00至2012年08月01日23:00 地下厂房直流Ⅱ段充电装置试验:2012年08月02日08:00至2012年08月05日23:00 大坝直流充电装置试验:2012年08月11日08:00至2012年08月14日23:00 二、组织措施 现场指挥:李正家 成员:谭小华(工作负责人)、刘宏生、肖琳、肖力、陈灏、刘应西、韦黎敏、运行当班值 三、试验前准备工作 1、设备部

1)外观检查:蓄电池槽、盖、安全阀、极柱封口剂等的材 料应具有阻燃性,用目测检查蓄电池外观,蓄电池的外观不应有裂纹、变形及污迹; 2)极性检测:用万用表检查蓄电池极性; 3)开路电压检查:蓄电池在环境温度5℃~35℃的条件 下完全充电后静置至少24h,测量蓄电池的开路电压应符开路电压最大最小电压差值不大于; 4)蓄电池连接压降:蓄电池间的连接条电压降应不大于 8mV; 5)内阻测试:制造厂提供的蓄电池内阻值应与实际测试的 蓄电池内阻值一致,允许偏差范围为±10%。 2、发电部 退出需放电试验的运行蓄电池组。 三、试验步骤 1、蓄电池核容试验: 1)以×10小时放电率电流对电池组充电,连续充电至少 72小时,直至3小时内充电电流基本稳定不变(电池组充满状态),静置1到2小时,电池组温度与周围温度基本一致后对电池组进行放电,放电电流为10小时放电率电流(120A),连续放电10小时(放电过程中调整负载,始终保持放电电流不变)或端电压达到终止电压或单个电池电压低于时,停止放电,记录连续放电时间,由此算出容量。

原电池电动势的测定与应用物化实验报告

原电池电动势的测定及热力学函数的测定 一、实验目的 1) 掌握电位差计的测量原理和测量电池电动势的方法; 2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 了解可逆电池电动势测定的应用; 5) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池 反应的热力学函数△G 、△S 、△H 。 二、实验原理 1.用对消法测定原电池电动势: 原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流通过电池的情况下进行,因此,采用对消法。对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。 2.电池电动势测定原理: Hg | Hg 2Cl 2(s) | KCl( 饱和 ) | | AgNO 3 (0.02 mol/L) | Ag 根据电极电位的能斯特公式,正极银电极的电极电位: 其中)25(00097.0799.0Ag /Ag --=+ t ?;而+ ++-=Ag Ag /Ag Ag /Ag 1 ln a F RT ?? 负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式: φ饱和甘汞 = 0.2415 - 0.00065(t – 25) 而电池电动势 饱和甘汞理论—??+=Ag /Ag E ;可以算出该电池电动势的理论值。与测定值 比较即可。 3.电动势法测定化学反应的△G 、△H 和△S : 如果原电池内进行的化学反应是可逆的,且电池在可逆条件下工作,则此电池反应在定温定

原电池电动势的测定实验报告

实验九原电池电动势的测定及应用 一、实验目的 1.测定Cu-Zn电池的电动势和Cu、Zn电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC-Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=-(9-1) 式中G ?是电池反应的吉布斯自由能增量;n为电极反应中得失电子的数目;F为法拉第常数(其数值为965001 ?);E为电池的电动势。所以测出该电池的电动势E后,进而 C mol- 又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计 测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就

可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++ - + 正极起还原反应: 22()2()C u C u a e C u s + +- + 电池总反应为: 2222()()()()C u Zn Zn s C u a Zn a C u s ++++ ++ 电池反应的吉布斯自由能变化值为: 22ln C u Zn Zn C u a a G G RT a a ++?=?- (9-2) 上述式中G ? 为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221C u Zn a a + +==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn C u a R T E E nF a ++ =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1ln 2C u C u C u RT F a ??+ ++=- (9-6) 22,1ln 2Zn Zn Zn RT F a ??+ + -=- (9-7) 式中2,Cu Cu ?+ 和2,Zn Zn ?+ 是当221C u Zn a a + +==时,铜电极和锌电极的标准电极电势。 对于单个离子,其活度是无法测定的,但强电解质的活度与物质的平均质量摩尔浓度和

通信蓄电池核对性放电试验作业指导书

目次 通信蓄电池核对性放电试验作业指导书 1 总则 为规范通信-48V蓄电池组管理,及时准确掌握蓄电池容量及性能,提高设备管理水平,保证蓄电池稳定运行,特编制该作业指导书。

2 范围 …… 3 术语和定义 3.1阀控式密封铅酸蓄电池 阀控式密封铅酸蓄电池正常使用时保持气密和液密状态,当内部气压超过预定值时,安全阀自动打开释放气体。当内部气压降低时,安全阀自动闭合密封,防止外部空气进入电池内部。阀控式密封铅酸蓄电池在使用寿命期间,正常使用情况下无需补加电解液。 3.2完全充电 按照生产厂家推荐的充电方法对蓄电池进行充电,蓄电池内部的储电容量达到最大值时,即为完全充电状态。 3.3恒流充电 在充电电压范围内,充电电流维持在恒定值的充电。 3.4均衡充电 为补偿蓄电池在使用过程中产生的电压不均衡现象,使其恢复到规定范围内而进行的充电。3.5浮充电 在充电装置的直流输出端始终并接着蓄电池组和负载,以恒压充电方式工作。正常运行时充电装置在承担经常性负荷的同时向电池组补充充电,以补偿电池组的自放电,使电池组以满容量状态处于备用。 3.6核对性放电 为检验正常运行中的蓄电池组容量,将蓄电池组脱离运行,以规定的放电电流进行恒流放电,只要其中一节电池放到了规定的终止电压,应停止放电。蓄电池组的实际容量按条计算。 4 作业准备 准备工作安排

作业人员要求 仪表、工器具、材料 4.4资料

4.5危险点分析及安全控制措施 4.6人员作业分工 5 工作程序 作业流程图 参见“附录D 蓄电池核对性放电作业流程图” 作业程序 5.2.1蓄电池放电前的检查工作 5.2.1.1检查并确认蓄电池组处于浮充运行状态。 5.2.1.2查看开关电源监控模块有关蓄电池运行数据,并做好相关记录。蓄电池组总电压应在 52V~54V之间。 5.2.1.3检查蓄电池连接处有无松动、腐蚀现象。松动处用扳手拧紧,腐蚀处除出腐蚀物后抹上 凡士林。 5.2.1.4检查蓄电池壳体有无渗漏和变形。对有渗漏和变形电池应及时记录并向通信高级专责或 系统部主任汇报等待处理意见。 5.2.1.5检查蓄电池极柱、安全阀周围是否有酸雾酸液逸出。对有酸雾酸液逸出的电池应及时记 录并向通信高级专责或系统部主任汇报等待处理意见。 5.2.1.6测量并记录蓄电池房的温度和湿度。 5.2.1.7将蓄电池房门打开。 5.2.1.8对只有一套开关电源的系统,必须检查确认开关电源及另一组蓄电池(对双蓄电池组配 置系统)运行正常。

实验一原电池电动势测定

实验一 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。 在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”

【实验报告】原电池电动势的测定实验报告

原电池电动势的测定实验报告 实验目的 1.掌握可逆电池电动势的测量原理和电位差计的操作技术 2.学会几种电极和盐桥的制备方法 3.学会测定原电池电动势并计算相关的电极电势 实验原理 凡是能使化学能转变为电能的装置都称之为电池(或原电池)。 可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆;(2)电池中不允许存在任何不可逆的液接界;(3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,即测量时通过电池的电流应为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位;用电位差计测量电动势可满足通过电池电流为无限小的条件。电位差计测定电动势的原理称为对消法,可使测定时流过电池的电流接近无限小,从而可以准确地测定电池的电动势。 可逆电池的电动势可看作正、负两个电极的电势之差。设正极电势为φ+,负极电势为φ-,则电池电动势E = φ+ - φ- 。 电极电势的绝对值无法测定,手册上所列的电极电势均为相对电极电势,即以标准氢电极作为标准,规定其电极电势为零。将标准氢电极与待测电极组成电池,所测电池电动势就是待测电极的电极电势。由于氢电极使用不便,常

用另外一些易制备、电极电势稳定的电极作为参比电极。常用的参比电极有甘汞电极、银-氯化银电极等。这些电极与标准氢电极比较而得的电势已精确测出,具体的电极电位可参考相关文献资料。 以饱和甘汞电极与铜/硫酸铜电极或锌/硫酸锌电极组成电池,测定电池的电动势,根据甘汞电极的电极电势,可推得这两个电极的电极电势。 仪器和试剂 SDC-II型数字式电子电位差计,铜电极,锌电极,饱和甘汞电极,0.1 mol?L-1 CuSO4 溶液,0.1 mol?L-1 ZnSO4 溶液,饱和KCl 溶液。 实验步骤 1. 记录室温,打开SDC-II型数字式电子电位差计预热5 分钟。将测定旋钮旋到“内标”档,用1.00000 V电压进行“采零”。 2. 电极制备:先把锌片和铜片用抛光砂纸轻轻擦亮,去掉氧化层,然后用水、蒸馏水洗净,制成极片。 3. 半电池的制作:向两个50 mL 烧杯中分别加入1/2 杯深0.1000 mol?L-1 CuSO4 溶液和0.1000 mol?L-1 ZnSO4 溶液,再电极插入电极管,打开夹在乳胶管上的弹簧夹,将电极管的尖嘴插入溶液中,用洗耳球从乳胶管处吸气,使溶液从弯管流出电极管,待电极一半浸没于溶液中时,用弹簧夹将胶管夹住,提起电极管,保证液体不会漏出电极管,如有滴漏,检查电极是否插紧。 4. 原电池的制作:向一个50 mL 烧杯中加入约1/2 杯饱和氯化钾溶液,将制备好的两个电极管的弯管挂在杯壁上,要保证电极管尖端上没有气泡,以免电池断路。

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

蓄电池充放电试验方法

蓄电池充放电 阀控式蓄电池俗称“免维护蓄电池”被广泛应用于备用电源系统中,“免维护”仅指无需加水、加酸、换液,而日常的检测和维护工作仍是不可缺少的。因蓄电池在运行中欠充、过充、过放、环境温度过高等都会使蓄电池的性能劣化,所以只有对其进行核对性放电才能客观、准确地测出蓄电池的真实容量, 才能保证直流电源系统运行的可靠性。 步骤/方法 1.放电前,应提前对电池组做均充,以使电池组达到满充电状态,一般以 2.35V/单体充电12小时,静置12-24h。 2.记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及整流器 (或开关电源)的其它设置参数,同时检查所有的螺钉是否处于拧紧状态。 3.结合基站/交换局的实际情况,断开电池组和开关电源之间的连接,确认 假负载处于空载状态后,把假负载正确连接到电池组正负极上,15分钟后记录电池的开路电压。 4.根据情况需要,确定电池组的放电倍率,一般以3小时率或10小时率放 电(3小时率放电电流为0.25C10,10小时率放电电流为0.10C10),在假负载上选择相匹配的负载档,对电池组进行放电。 5.在放电过程中,考虑到假负载上的电流表显示准确度不够,需用钳形电流 表对放电电流进行检测,根据钳形表的实际显示,对假负载进行调整,使电池组放电电流到要求的放电电流,等放电5分钟左右,开始记录电池组的总电压、单体电压、放电电流、环境温度以及连接条的温度等。

6.若是选择10小时率放电,应每1小时(3小时率放电,则每30分钟)测量 一次电池的放电总压、单体电压、放电电流等:在放电的后期应提高测量的频率,10小时率是在9小时后每30分钟测量一次;3小时率是在2小时后每15分钟测量一次。放电过程中,同时应重点监控环境温度、电池单体和连接条的温度,有没有出现异常情况,同时电池组中放电电压最低的单体电池。 7.对于新安装的电池组,放电结束条件是电池组放出容量达到额定容量要求 或电池组中有一个单体达到1.80V,而对于已经在线使用的电池组是以总压达到43.2V(48V电池系统)为放电结束。 8.对于放电过程中的情况,如在到放电终止时,电池组放出的容量经核算没 有达到所规定的额定容量,电池组的出厂容量可能存在问题,应及时联系相关厂家前来处理。 9.放电结束,先让假负载空载,接着再断开电池组与假负载的连接,把电池 与开关电源连接上,此时应注意已经放过电的电池组与整流器之间的压差较大,连接时可能会出打火现象,最好是先调低开关电源的浮充电压值,使开关电源的浮充电压值尽量接近电池组的开路电压,以减小火花。 10.若放电情况正常可观察和记录充电开始的情况,若放电情况不正常,应监 测电池组的充电情况,确保电池的正常充电。 注意事项:

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

实验七 电池电动势的测定

实验七电池电动势的测定 一、实验目的 1、掌握对消法测定电动势的原理和方法,学习使用电位差计(SDC-Ⅰ精密数字电位差计)测量电池的电动势。 2、学习制备电极、盐桥,组装电池,认识甘汞电极。 3、了解一些可逆电池电动势的应用。 二、实验原理 原电池由两个“半电池”(电极)组成一个电池,不同的半电池可以组成各种各样的原电池。当原电池处于平衡状态时,两极间的电位差为最大,这一最大电位差称为电池电动势,电池处于平衡状态的首要条件是两个电极间不能有电流通过,若有电流通过,电池的平衡状态就会被破坏,因此在测量电池电动势时,必须遵守两个电极间不能有电池通过或通过的电流为无限小这一条件。 因此,不能直接用电压表去测量电动势,电压表尽管内阻很大,但还不是无限大,当把它接在电池的两极间进行测量时,总有一定的电流通过电压表,同时两极间也有同样大小的电流通过。怎样使电池的两极间没有电流通过,测量电池电动势呢?可利用一个外加工作电池和待测电池并联,这样工作电池和待测电池的电动势方向相反,当它们数值相等时,二者相互对消,检流计中无电流通过,这时测出的两极间的电位差Δφ就等于电动势E,即为E=Δφ(Ⅰ→0),对消法就是根据上述原理测定电池电动势的方法,其实验原理图如图一所示。 E、E N、E X分别为工作电池、标准电池、待测电池,G是检流计,K是转换开关,AB是均匀电阻,C是滑动接触点,r是可变电阻。工作电池E、均匀电阻AB、可变电阻r组成一个通路。 按图测定Ex的原理如下:将转换开关合在“1”的位置,工作电池经AB构成一个 通路,在均匀电阻AB上产生均匀电势降。标准电池的正极经过检流计和工作电 池的正极相连,负极连接到一个滑动接触点C上,改变滑动接触点的位置,找到 C点,使检流计中无电流通过,则标准电池的电动势恰为AC段的电势差完全抵 消(实际工作是:调节r核C使检流计G为零,此时AB段的电势差确定,即 AB电阻单位长度段的电阻为定值)。再将转换开关合在“2”的位置上,用同样的 方法滑动C到C’可以找出检流计无电流通过的另一点C’,此时A C’段的电势差 就等于待测电池电动势Ex。 三、实验仪器和试剂 SDC-Ⅰ精密数字电位差计全套,标准电池,甘汞电极,锌电极,铜电极,0.1mZnSO 溶液,0.1mCuSO溶液,饱和KCl溶液,盐桥,洗瓶,100ml烧杯3个,水砂纸。 四、实验步骤 1、制备饱和KCl盐桥 在一个锥形瓶内,加入3克左右琼脂和100ml蒸馏水,在电炉上加热,直至琼脂完全溶解,加入30克左右的KCl充分搅拌,直到KCl完全溶解后,趁热把此溶液装入盐桥管中,不要夹带气泡或留有断层,静置待琼脂凝结后即可使用,不用时将其放在饱和KCl溶液里存放。 2、电位差计的使用: ⑴将仪器和220V电源联接,开启电源,预热三分钟。 ⑵标定:采用“内标”(仪器内自带标准电池)进行校验。首先,将“测量选择”置于“内标”位置,调节“”六个大按钮,使“电位指示”为“1.00000”V,然后调节“检零调节”,使“检零指示”接近“0000”。(此外,本实验也可采用“外标”进行校验。此时,首先将外接标准电池的“+,-”极性对应和面板“外标”端子连接好,并将“测量选择”置于“外标”位置,调节“100~105”六个大旋钮,使“电位指示”数值与外标电池值相同。(通常标准电池随温度的变化关系式:E t=1.01865-0.0000406(t-20)-0.00000095(t-20)2,按此式对外标电池进行温度检验,否则将影响测量精度)。然后调节“检零调节”使“检零指示”接近“0000”)为方便起见,本实验统一用“内标”进行校验。应注意,在校验结束后的一个测量周期内,不得再调节“检零调节”或碰“检零调节”旋钮,否则影响测量结果。 ⑶测量:用盐桥把待测电池锌的两个电极连接起来,把这个电池的负极与正极对应和仪器面板上“测量”端子连接好,并将“测量选择”置于“测量”,调节“100~105”六个大旋钮,使“检零指示”接近“0000”,此时,“电位指示”值即为被测电动势值,然后将“测量选择”置于“外标”位置,也即将电路断开,隔约3分钟,再将“测量选择”置于

相关文档
相关文档 最新文档