文档库 最新最全的文档下载
当前位置:文档库 › 基于能量最小化的图像融合

基于能量最小化的图像融合

基于能量最小化的图像融合
基于能量最小化的图像融合

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

图像融合开题报告2

齐鲁工业大学 毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电气工程与自动化学院 专业电子信息工程 班级电子12-1 姓名泳麟 学号 201202031022 导师玉淑 2016年 4月 20 日

5.主要参考文献: [5] Blinn J F.Light reflection functions for simulation of clouds and dusty surfaces[C]//Proceedings of SIGGRAPH,1982:21-29. [6] Max N.Optical models for direct volume rendering[J].IEEE Transactions on Visualization and Computer Graphics,1995,1: 99-108. [7] Max N.Light diffusion through clouds and haze[C]//Computer Vision,Graphics,and Image Processing,1986:280-292. [8] 尤赛,福民.基于纹理映射与光照模型的体绘制加速算法[J]. 中国图象图形学报,2003,8(9). [3] Chao R,Zhang K,Li Y J.An image fusion algorithm using wavelet transform[J].Area Electronical Sinica,2004,32:750-753. [4] Hill P,Canagarajah N,Bull D.Image fusion using complex wavelets[C]//British Machine Vision Conference,Cardif,2002. [5] 梁栋,瑶,敏,等.一种基于小波-Contourlet 变换的多聚焦图像 融合算法[J].电子学报,2007,35(2):320-322. [6] 杰,龚声蓉,纯平.一种新的基于小波变换的多聚焦图像融合 算法[J].计算机工程与应用,2007,43(24):47-49. [7] 福生.小波变换的工程分析与应用[M].:科学,1999. [8] 敏,小英,毛捷.基于邻域方差加权平均的小波图像融合[J].国 外电子测量技术,2008,27(1):5-7. [9] 楚恒,杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J]. 光电工程,2005,32(8):59-63. [10] 王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合 方法[J].中国图象图形学报,2008,13(1):145-150. (上接196页) 康健超,康宝生,筠,等:一种改进的基于 GPU 编程的光线投射算法 201

基于Gram-Schmidt的图像融合方法概述

基于Gram-Schmidt的图像融合方法概述 摘要遥感图像融合的目的是综合来自不同空间分辨率和光谱分辨率的遥感信息,生成一幅具有新空间特征和波谱特征的合成图像。它具有重要的意义和广泛的应用前景。而由于采用的算法或变换方法的不同,融合方法有多种。在众多的融合方法相互比较的过程中,我们发现Gram-Schmidt具有较高的图像保真效果,是一种高效的图像融合方法。由于该算法在遥感图像融合中的应用尚处于起步阶段,对于Gram-Schmidt光谱锐化高保真的影像融合算法的了解尚不全面。对此,对Gram-Schmidt的原理、方法、优势等做了较为详尽的介绍。 关键词遥感融合保真Gram-Schmidt 概述 1 引言 对于光学系统的遥感影像,其空间分辨率和光谱分辨率一直存在着不可避免矛盾。在一定的信噪比的情况下,光谱分辨率的提高必然导致牺牲空间分辨率为代价。然而,通过将较低空间分辨率的多光谱影像和较高空间分辨率的影像的全色波段影像的融合,可以产生多光谱和高空间分辨率的影像。因此,各种基于不同算法的融合方法得到了迅速地发展和广泛地应用。 随着遥感技术的发展,由于对图像解译和反演目标参数的需要,一些简单的融合方法在很大程度上已经无法满足对于光谱信息保持,空间纹理信息增加的迫切需求。例如,对于检测植被活力和生长状态,反演陆地生产力,进行环境评价和矿产勘测等,如果融合后的图像信息的保真度无法满足要求,将会导致错误结果的产生。 通常采用的遥感图像融合方法有IHS变换、Brovey变换、主成分变换、小波变换等。虽然,这些融合方法都能够增加多光谱影像的空间纹理信息特征。但IHS、Brovey、主成分变换等方法易使融合后的影像失真;小波变换光谱信息虽保真相对较好,但小波基选择困难,且计算相对复杂(李存军等,2004)。 基于Gram-schmidt算法的图像融合方法既能使融合影像保真度较好,计算又较为简单。本文将对该影像融合算法的原理、方法以及所具备的优势做较为详尽的介绍。 2 算法简介

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

多源测试信息融合真题及参考答案)

2012-2013 学年 第一学期期末试卷 学号 姓名 成绩 考试日期: 2013年 1 月 7日 考试科目:《 多源测试信息融合 》(A 卷) 注意事项:1、闭卷考试,考试时间120分钟; 2、请在答题纸和试卷上写明自己的姓名和学号。 题目: 一、简答题(本题共50分,每小题10分) 1. 简述多源测试系统数据融合的目的和定义。 答:目的:对多源知识和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补来降低不确定性,以形成对系统环境相对完整一致的理解,从而提高系统智能规划和决策的科学性、反应的快速性和正确性,进而降低决策风险过程。 定义:利用计算机技术,对不同传感器按时序获得的观测信息,按照一定的准则加以自动分析、优化和综合,为完成所需的决策和估计任务而进行的信息处理过程。 2. 简述D-S 证据理论中,mass 函数的定义,什么是焦元和焦元的基? 答:(1)基本置信度指派m 是2Θ→[0,1]集合的映射,A 为2Θ一子集,记A ?2Θ ,且满足: m(A)也称为假设的质量函数或mass 函数; 2()0 ()1A m m A Θ ??=?? ?=??∑

(2)若m(A)>0,则称元素A 为证据的焦元;焦元中所包含识别框架中的元素个数称为该焦元的基,记作|A|。(4分) 3. 分布式融合系统常见的融合策略有哪些?(论述其中五个即可得满分) 答:常见的融合策略:“与”融合检测准则、“或”融合检测准则、表决融合检测准则、最大后验概率融合检测准则、Neyman-Pearson 融合检测准则、贝叶斯融合检测准则、最小误差概率准则。 4. 举例说明D-S 证据理论中的0信任冲突悖论。 答:如果识别框架下的多条证据中的一个证据的某一焦元的基本置信度分配为0,且该焦元与同一证据中其它基本置信度指派值不为0的焦元的交集不是其本身,则无论其它证据对该焦元的基本置信度分配有多大,组合结果中该焦元的基本置信度分配始终为0。 11230.5{}()0.2{}0.3{}=??==??=?A A m A A A A A ,12230.0{}()0.9{}0.1{}=??==??=?A A m A A A A A ,13230.55{} ()0.10{}0.35{} =?? ==??=?A A m A A A A A 14230.55{}()0.10{}0.35{}=??==??=?A A m A A A A A ,1230.00{} ()0.33{}0.67{} =?? ==??=? A A m A A A A A 。 5. 简述分布式融合检测系统二元假设检验问题,并分析二元假设检验结果可能出现的几种可能性。 答:在二元假设检验问题中,每个传感器的决策值ui 为二元值,定义如下: 010(1((1,2,,假设 判定为无目标) ,假设 判定为有目标) …,N)?==??i H H u i 设 P(H0)=P0 和 P(H1)=P1分别为H0和H1出现的先验概率,且P0 +P1=1

图像融合算法的分析与比较

摘要:图像拼接技术一直是计算机视觉、图像处理和计算机图形学的热点研究方向。图像融合算法是图像拼接过程中非常重要的一个步骤,本文介绍了几种常用图像融合算法,并且结合实验对它们的进行了分析和比较。 关键词:图像融合;图像拼接 一、引言图像拼接(image stitching)技术是由于摄像设备的视角限制,不可能一次拍出很大图片而产生的。图像拼接技术可以解决由于相机等成像仪器的视角和大小的局限,不可能一次拍出很大图片而产生的问题。它利用计算机进行自动匹配,合成一幅宽角度图片,因而在实际使用中具有很广泛的用途,同时对它的研究也推动了图像处理有关的算法研究。图1 图像拼接流程图图像拼接技术的基本流程如图1-1所示,首先获取待拼接的图像,然后是图像配准和图像融合,最终得到拼接图。图像拼接技术主要包括两个关键环节,即图像配准和图像融合。图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息后寻找图像间的变换模型,然后由待拼接图像经变换模型向参考图像进行对齐,变换后图像的坐标将不再是整数,这就涉及到重采样与插值的技术。图像拼接的成功与否主要是图像的配准。待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像进行匹配。图像融合的任务就是把配准后的两幅图像根据对准的位置合并为一幅图像。由于两幅相邻图像之间存在重叠区域,因此,采用配准算法可以实现图像的对齐。然而图像拼接的目的是要得到一幅无缝的拼接图像[1]。所谓无缝,就是说在图像拼接结果中,不应该看到两幅图像在拼接过程中留下的痕迹,即不能出现图像拼接缝隙。由于进行拼接的两幅图像并不是在同一时刻采集的,因此,它们不可避免地会受到各种不定因素的影响。由于这些无法控制的因素的存在,如果在图像整合过程结束之后,只是根据该过程中所得到的两幅相邻图像之间的重叠区域信息,将两幅图像简单的叠加起来,那么,在它们的结合部位必然会产生清晰的拼接缝隙,这也就达不到图像拼接所要求的无缝的要求。如何处理图像整合过程中无法解决的拼接缝隙问题,实现真正意义上的无缝拼接,正是图像融合过程中所要解决的问题。对于重叠部分,如果只是简单的取第一幅图像或第二幅图像的数据进行叠加,会造成图像的模糊和拼接的痕迹,这是不能容忍的。图像融合就是要消除图像光强或色彩的不连续性。它的主要思想是让图像在拼接处的光强平滑过渡以消除光强的突变。二、常见的图像融合算法 1、平均值法令,,分别表示第一幅图像、第二幅图像和融合图像在点处的像素值,则融合图像中各点的像素值按式(4-1)确定。 (1) 式(4-1)中,表示第一幅图像中未与第二幅图像重叠的图像区域,表示第一幅图像与第二幅图像重叠的图像区域,表示第二幅图像中未与第一幅图像重叠的图像区域。取两幅图像的平均值的算法速度很快,但效果一般不能令人满意,在融合部分有明显的带状感觉,用眼睛能够观察出区别。本文以左图像所在的坐标系为参考坐标空间,将右图像经过变换矩阵向参考图坐标进行映射,由于双线性插值法在计算效率和精度方面可以达到一个很好的平衡,因此在变换过程中本文采用双线性插值。然后采用平均值法对图像重叠区进行融合,得到图2(a)和图2(b)。从图中可以看出由于采用本文的配准方法拼接出来的图像在拼接点处结合得很好,但是由于重叠区域采用了简单的平均值法来进行融合,有明显的拼缝。 (a) 校园广场图片(b)足球场图片图2 采用平均值法来对图像进行融合 2、重叠区线性过渡为了消除重叠区的拼缝问题,目前采用较多的是重叠区线性过渡的方法. 实现的具体方法是假设重叠区域宽度为l。取过渡因子是()。两幅图像重叠区的x轴和y轴最大和最小值分别为、和、,则过渡因子,重叠区的像

图像融合研究背景和意义

图像融合研究背景和意义 随着传感器技术的发展,单一的可见光模式逐渐发展为多种传感器模式。各种传感器具有不同的成像机理、不同的工作波长范围、不同的工作环境与要求,完成不同的功能。由于传感器自身物理特性、成像机理和观察视角等各个方面的种种限制,单一的图像传感器往往不能够从场景中提取足够的信息,以至于很难甚至无法独立获得对一幅场景的全面描述。这就需要研究多源图像融合。利用图像传感器获得的图像(成像探测)可以直观地获取目标的外形或基本结构信息,可有效的识别目标或目标的特定部位,它是提高精确制导武器抗干扰能力、目标识别能力以及精确探测能力最基本、最有效的手段。为了满足实际中的需要,充分利用多传感器的数据信息,各种数据融合技术快速发展起来,达到将多传感器获得的丰富信息合并到一个新的数据集中。图像融合是数据融合的一个非常重要的分支,是20世纪70年代后期提出的概念,是综合传感器、图像处理、信号处理、计算机及人工智能的现在高新技术。 灰度图像融合技术是图像融合技术的一种。引用定义Pohl和Genderen 图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把工作在不同波长范围、具有不同成像机理的图像传感器对同一个场景的多个成像信息融合成一个新图像,从而使融合的图像可信度更高,模糊较少,可理解性更好,更适合人的视觉及计算机检测、分类、识别、理解等处理。 由各种传感器的性能特点可见,不同传感器对于场景的描述是完全不同的。通过对来自多个传感器的图像进行融合处理后,获得的融合图像包含了单一传感器无法提供的信息。 图像融合将带来以下好处: ①利用多个传感器提供的冗余信息可提高融合图像的精确性及可靠性。融合图像具有较强的鲁棒性,即使个别传感器故障也不会对融合图像产生严重影响; ②利用多个传感器提供的互补信息,融合后的图像包含了更为全面、丰富的信息,其更符合人或机器的视觉特性、更有利于对图像的进一步分析处理以及自动目标识别; ③在不利的环境条件下(例如烟、尘、云、雾、雨等),通过多传感器图像融合可以改善检测性能。例如,在烟、尘、云、雾环境下,TV(可见光)图像质量差(甚至无法看清目标),而毫米波雷达获得的图像对于烟、云、尘、雾却有较强的穿透能力,尽管信号会有些衰减,但仍然可获得较清晰的图像。

80热觉得信息融合和目标识别(实验2)

“机电装备设计”实验二 基于力觉、热觉的信息融合 和目标识别 实验指导书 实验班级______________ 实验者______________ 所学专业______________ 实验日期______________ 实验教师______________ 实验成绩______________ 内蒙古工业大学机械学院 先进制造实验室

1、实验目的 1、了解和实践多信息融合算法; 2、通过基于力觉、热觉的信息融合实现其目标物体的识别。 2、实验内容及要求: 1、用力觉和热觉信息实现目标物材分类; 2、位置材料特征提取; 3、特征提取实验; 4、多感觉信息融合。 3、实验装置 多感觉机械手实验装置 PCI6024E采集卡 计算机 4、实验原理 4.1、实验装置 1、实验装置简介 本实验装置是一种具有接近觉、接触觉、滑动觉、力觉、热觉等五种感觉的两自由度智能机械手,所有感觉集中于手爪部位,通过手爪对模拟工件的操作,实现感觉信息的测量。 作为实验装置,它使学生直接面对科学研究前沿,除多个实验可做生动的演示外,在信息处理部分可以融入自己的算法思想。在技术上,它具有控制方式灵活、人机界面友好、实验系统结构开放等特点。可作为“机械制造及其自动化”、“自动化”、“电子信息工程”等本科专业《机器人技术》课程的实验装置,也可用作相关专业研究生实践及研究开发平台。整个实验装置由机械手本体、控制器、计算机等三部分组成,系统组成示意图如图1所示。

机械手本体由多感觉手爪(其中力传感器装在腕部)、升降筒、支撑力柱和底座工作平台等组成,手爪的张开与闭合及手臂的升降均由步进电机驱动。手爪为丝杠螺母传动,带动一平移夹持机构实现手爪开合。升降是滚珠丝杠传动,螺母与升降筒固定在一起,由直线导轨保持其运动精度。 控制器由控制面板(含液晶显示)、传感器信号处理板、机械手控制板、电机驱动器、直流电源等组成。控制面板(含液晶显示)是人机界面,由按键输入,液晶输出。传感器信号处理板完成各种感觉信息的模拟信号处理,分别输出到PC机和机械手控制板。机械手控制板包括感觉信号的A/D转换、键盘输入处理和各种实验功能的实现(含手爪及升降电机的控制)。 计算机是各种感觉信息的演示界面,用LABVIEW软件开发,能用多个窗口观察各个感觉信息的实时变化,并进行多感觉信息融合算法的实践。

数字图像课程设计

中国地质大学长城学院 本科课程设计 课设名称:数字图像处理课程设计 课设题目:基于MATLAB的图像融合设计 院别工程技术学院 学生姓名 专业 学号 指导教师 职称 2019年06 月30 日

基于MATLAB的图像融合设计 摘要 图像融合能够将不同类型传感器获取的同一对象的图像数据进行空间配准。并且采用一定的算法将不同类型的传感器获取的同一对象的图像数据所含用的信息优势或互补性 有机地结合起来产生的新的图像数据。这种新数据含有所研究对象的更多信息表征,与单一图像相对比,能够减少或抑制所研究对象可能存在的多义性、不确定性和误差,最大限度地利用同一对象的多种图像数据的信息。 论文中主要内容是;首先介绍了图像信息融合的概念、接着论述了像素级、特征级、决策级三个图像融合的层次及MATLAB介绍,在最后论述了图像融合的在生活中的应用。 关键词:图像融合;图像层次;应用;

目录 基于MATLAB的图像融合设计 0 摘要 0 第一章绪论 (1) 1.1图像融合的概念 (1) 1.2图像融合的主要研究内容 (1) 第二章图像融合的常用方法 (3) 2.1 图像融合的常用算法 (3) 2.1.1 基于图像灰度的融合算法 (3) 2.1.2基于变换域的融合算法 (3) 2.2图像融合规则 (4) 第三章MATLAB 程序设计 (5) 3.1 MATLAB 软件简介 (5) 3.2 MATLAB 软件窗口环境 (6) 第四章图像融合实例-小波变换(DWT ) (8) 第五章应用与总结 (12) 参考文献 (13) 附录 (14)

第一章 绪论 图像融合技术作为多类型传感器信息融合的一个非常重要的分支-可视信息的融合,近20年来,引起了世界范围为内的广泛关注和研究热潮。图像融合就是通过多幅图像数据互补得到一幅新的图像,在这幅图像中能够反映多重原始图像中的信息。图像融合的目的是充分利用多个待融合源图像中包含的互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理,减少不确定性。图像融合技术在遥感、医学、自然资源勘测、生物学等领域占有极其重要的地位。 论文中介绍了像素级图像融合常用方法及图像融合实例。 1.1图像融合的概念 图像融合是二十世纪70年代后期提出的新的概念,是多传感器信息中可视信息部分的融合,是将多源信道所采集的关于统一目标图像经过一定的图像处理,提取各自信道的信息,最后合成统一的图像以供观察和处理。鉴于图像融合具有突出的探测优越性,在技术先进国家受到高度重视并取得相当的进展。 图像融合的形式大致可分为多传感器不同时获取的图像的融合、多传感器同时获取的融合、单一传感器不同时间,不同条件获取的图像融合三种。图像融合能够充分利用这些时间或空间上冗余或互补的图像信息,依据一定的融合算法合成一幅满足某种需要的新图像,从而获得对场景的进一步分析、理解以及目标的检测、识别或跟踪。 1.2图像融合的主要研究内容 图像融合的层次可分为 : 像素级、特征级和决策级。 像素级图像融合是在基础层面上进行的信息融合,其主要完成的任务是对多传感器目 标和背景要素的测量结果进 行融合处理。像素级图像融合是直接在原始数据层上进行的融合,该层次的融合准确性最高,能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理与理解。 像素级融合是图像 图1 图像融合示意图 图2 像素级图像融合原理图示意图

图像融合的三大方法

图像融合分类 图像融合的层次可分为像素级、特征级和决策级三个部分。 (1)像素级图像融合 像素级图像融合是指在严格配准条件下对各传感器输出的信号直接进行信息综合处理的过程。像素级图像融合是直接在原始数据层上进行融合,该层次的融合准确性最高,相比其他层次上的图像融合该层次上的图像融合具有的更精确、更丰富、更可靠的细节信息,有利于图像更进一步的理解与分析。像素级图像融合是特征级和决策级图像融合的基础,也是目前 处理时间较长,对通信带宽的要求高,的图像进行精确的配准,多源 图像复合。 图2-1 像素级数据融合原理示意图 (2)特征级图像融合 特征级图像融合是指对不同传感器的多源信息进行特征提取(包括形状、边缘、区域、轮廓、

纹理、角等),然后再对从多个传感器获得的多个特征信息进行综合的分析和处理的过程。特征级图像融合属于中间层次,为决策级图像融合做准备,它既保留了重要信息,有对信息进行了压缩,便于实时处理。 特征级图像融合可以分为两大类:目标状态数据融合和目标特性融合。目标状态数据融合主要用于多传感器目标跟踪领域;目标特性融合就是特征层次的识别。 目前特征级图像融合的方法有:加权平均法、贝叶斯估计方法、聚类分析方法等。 图2-2 特征级数据融合原理示意图 (3)决策级图像融合 决策级图像融合是指对每个图像的特征信息进行分类、识别等处理,形成相应的结果,进行进一步的融合过程, 最终的决策结果是全局最优决策。决策级图像融合是一种更高层次的信息融合,其结果将为各种控制或决策提供依据。 进行 高,图像中的原始信息的损失最多。

图2-3决策级数据融合原理示意图

图像融合规则

图像融合的规则 图像多尺度分解和重构对多尺度图像融合的结果有着至关重要的作用,图像融合规则则是另一个关键因素,它直接影响图像融合的性能。基于融合规则可以将图像融合分为三类:基于像素的图像融合、基于窗口的图像融合和基于区域的图像融合。 1、 基于像素的图像融合 基于像素的图像融合规则分为均值法和最大值法。像素绝对值取大 (Choose-Max,CM )规则是最简单、直接的融合规则。CM 规则可描述为: (,),|(,)||(,)|(,)(,),|(,)|<|(,)|A A B F B A B c m n c m n c m n c m n c m n c m n c m n ≥?=?? 式(2-14) 其中,(,)A c m n 和(,)B c m n 分别为源图像A 和源图像B 的某一组分解系数,(,)F c m n 为融合后的系数。例如,小波变换的高频分解系数对应输入图像的边缘、 纹理等细节信息,而像素绝对值是对这种细节信息强度的最直观的度量, CM 规则正是基于这一点可以对高频系数进行融合。 CM 规则具有简单、易实现、运算速度快等优点。但是仅仅依赖单独像素点作为细节信息的强度度量是不稳定的,尤其当多尺度变换缺乏平移不变性时,分解系数的能量会随源图像的平移、旋转等规则变化发生剧烈的不规则的变化,导致融合后的图像缺乏一致性。另外CM 规则传递并放大源图像中的噪声和死点。 Petrovic V S.和Xydeas C.S.H 提出了考虑分解层内各子带系数及分解层间各子带系数相关性的系数选取融合规则。根据人眼视觉系统对局部对比度比较敏感这一特性,蒲恬[50]提出了基于对比度系数选取融合规则。考虑人眼视觉系统不仅具有频率选择特性,还具有方向特性,刘贵喜[51]等人提出了基于方向对比度的系数选取融合规则。 基于像素的融合规则在融合处理时表现出对边缘的高度敏感性,使得在预处理时要求图像是严格配准的,否则处理结果将不尽如人意,这就加大了预处理的难度。但该规则是在假设图像相邻像素(或系数)之间不存在相关性的前提下提出的,然而,这与实际情况并不相符,因此基于像素选取的融合规则不能获得令人十分满意的融合效果。 2、 基于窗口选择的融合规则 为克服CM 规则的不稳定性,人们提出了基于窗口的融合规则。细节信息强度的度量不再仅仅依赖某一点,而是根据待融合系数局部区域(一般窗口大小为33?或者55?等)的统计特性来选取像素系数的一种融合规则。常用的基于窗

信息融合技术在图像融合中的应用

信息融合技术在图像融合中的应用 摘要:图像信息融合能够以软件手段把对同一目标或场景的不同图像,综合成对同一目标或场景的全面、准确的描述,它在医学、遥感、军事等领域有着较为广泛的应用。良好的图像融合方法能够为后续的计算机自动化处理奠定坚实的基础。本文介绍了图像融合的概念和层次划分,并重点分析了图像融合中所用到的信息融合方法。 关键词:信息融合,图像融合 1.引言 军事、医学、自然资源勘探、海洋资源管理、环境和土地利用管理、地形地貌分析、生物学等的应用需求有力地刺激了图像处理和图像融合技术的发展。医学上,图像融合技术被用来诊疗和制定手术方案。商业和情报部门用图像融合技术来对旧照片、录像带进行恢复、转换等处理。随着遥感技术的发展,获取遥感数据的手段越来越丰富,各种传感器获得的影像数据在同一地区形成影像金字塔,图像融合技术实现多源数据的优势互补,为提高这些数据的利用效益提供了有效的途径。星载遥感用于地图绘制、多光谱、高光谱分析、数据的可视化处理、数字地球建设等,图像融合是必不可少的技术手段。 2.图像融合的概念 图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像是二维信号,图像融合技术是

多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模糊性、改善分类性能等。 目前,将图像融合技术应用于数字图像处理的主要目的有以下几种: (1)增加图像中有用信息的含量,改善图像的清晰度,增强在单一传感器图像中无法看见/看清的某些特性; (2)改善图像的空间分辨率,增加光谱信息的含量,为改善检测/分类/理解/识别性能获取补充的图像信息; (3)通过不同时刻的图像序列融合来检测场景/目标的变化情况; (4)通过融合多个二维图像产生具有立体视觉的三维图像,可用于三维重建或立体摄影、测量等; (5)利用来自其它传感器的图像来替代/弥补某一传感器图像中的丢失/故障信息。 3.图像融合层次划分 作为信息融合的一种,图像融合是对多个场景信息的综合,其目的就是通过对各个场景信息的提取,从而获得对同一场景更为准确、更为全面、更为可靠的图像描述。一般来说,图像融合可以在以下3个层次上进行[3]: 像素级——像素级融合是在获取的图像信息上进行融合,它能够

图像融合评价方法

图像融合的评价标准 对图像的观察者而言,图像的含义主要包括两个方面:一是图像的逼真度,另一个是图像的可懂度。图像的逼真度是描述被评价图像与标准图像的偏离程度,通常使用归一化均方差来度量。而图像的可懂度则是表示图像能向人提供信息的能力。多少年来,人们总是希望能够给出图像逼真度和可懂度的定量测量方法,以作为评价图像质量和设计图像系统的依据。 当前图像融合效果的评价问题一直没有得到很好的解决,原因是同一融合算法对不同类型的图像,其融合效果不同;同一融合算法对同一图像观察者感兴趣的部分不同,则认为效果不同:不同的应用方面,对图像各项参数的要求不同,导致选取的评价方法不同。目前评价图像融合效果的方法可分为两类:即主观的评价方法和客观的评价方法。在许多融合应用中,最终的用户都是人,人眼的视觉特性也是非常重要的考虑因素。然而在人为评价融合方法的过程中,会有很多主观因素影响评价结果。 同时,由于图像融合往往作为特定任务的预处理部分,因而融合性能的评价取决于能否提高后续任务的性能。这就需要研究通用的、综合考虑主客观因素的图像融合质量评价标准,使计算机能够自动选取适合当前图像的、效果最佳的算法,从而为不同场合下选择不同的算法或同一融合算法中不同融合规则提供依据。 在实际应用中,如何评价图像融合算法的性能是一个非常复杂的问题。衡量融合图像的效果时,应遵循以下原则: (1)合成图像应包含各源图像中所有的有用信息; (2)合成图像中不应引入人为的虚假信息,否则会妨碍人眼识别或后续的目标识别过程; (3)在时空校准等前期处理效果不理想时,算法还应保持其可靠性和稳定性。另外,可靠和稳定还包含这样的含义,无论在什么气候条件下算法的性能都不会有太大的变化; (4)算法应将原始图像中的噪声降到最低程度; (5)在某些应用场合中应考虑到算法的实时性,可进行在线处理,到目前为止,评价图像融合算法性能的方法可分为两类,即主观的评价方法和客观的评价方法。 2.4.1 图像融合质量的主观评价方法 主观评价方法就是依靠人眼对融合图像效果进行主观判断。例如,找一些测

像素级图像融合方法研究与应用

像素级图像融合方法研究与应用 随着图像传感器技术的发展,多传感器图像融合已成为图像理解、计算机视觉以及遥感领域中的一个研究热点,并广泛应用于自动目标识别、智能机器人、遥感、医学图像处理和制造业等领域。像素级多传感器图像融合获取的原始信息量最多、检测性能最好、应用范围最广,是各级图像融合的基础。 本论文结合有关国家自然科学基金、航天技术创新基金等课题要求,针对像素级多传感器图像融合方法和应用进行了深入研究。主要工作可总结为以下几个方面: 多传感器图像配准是进行像素级多传感器图像融合的前提,其误差大小直接影响融合结果的有效性。 对图像配准方法进行了综述,分析了各种方法的适用性、优点和不足之处。在此基础上,针对目前研究中存在的问题,提出了一种基于Harris 角点特征的 图像自动配准方法。 该方法首先提取参考图像和待配准图像的Harris 角点特征点集,然后通过角点邻域相关匹配和马氏距离仿射变换不变性实现角点的匹配,从而完成图像的配准。实验结果表明该算法在保持高配准精度的同时有较高的执行速度,能够实现有大旋转角度、平移以及灰度差条件下不同传感器或波段的图像自动配准。 传统的基于小波变换的图像融合方法存在移变问题。针对此问题,提出了一种具有平移不变性基于离散小波框架的多传感器图像融合方法。 提出了低频基于改进的邻域熵、高频基于跨尺度的邻域空间频率的融合策略,有效地抽取了变换域各尺度、方向上的显著特征,并将它们融合在一起。大量的实验验证了该方法的有效性。 为了进一步满足图像融合对连续方向的要求,在研究了可操纵方向金字塔变

换的原理和性质的基础上,提出了另一种具有平移不变性基于可操纵方向金字塔变换的多传感器图像融合方法。该方法利用可操纵方向金字塔变换良好的方向控制能力和平移不变性,有效地捕获了源图像的方向信息,提高了融合图像的直觉可视性,获得较基于离散小波框架方法质量更高的融合图像。 提出了一种基于双树复小波变换的多传感器图像融合方法。该方法在保持近似的平移不变性和良好的方向分析能力的同时,只引入有限的数据冗余,在获得较高质量融合图像的同时,进一步降低了算法复杂度,减少了计算量和对。

图像融合开题报告2

毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电子信息工程 专业电子信息科学与技术 班级070405 姓名闫夏 学号070405137 导师高俊钗 2011年3 月3 日

1.毕业设计(论文)题目背景、研究意义及国内外相关研究情况 1.1题目背景: 图像融合是二十世纪七十年代后期提出的新概念,他是一门综合了传感器、图像处理、信号处理、显示、计算机和人工智能等技术的现代高新技术[1]。由于图像融合系统具有突出的探测优越性(时空覆盖宽、目标分辨力与测量维数高、重构能力好、冗余性、互补性、时间优越性以及相对低成本等),在国际上技术先进的国家受到高度重视并已取得了相当的发展,并在许多领域得到了广泛的应用[2]。 1.2研究意义: 图像融合是指综合两个或多个多源图像的信息,图像融合的目的是综合同一个场景中的多个图像的信息,其结果是更适合人的视觉和计算机视觉的一幅图像,或更适合进一步图像处理需要的图像。融合后的图像更符合人或机器的视觉特性,以利于对该图像进一步的分析、理解以及目标的检测、识别或跟踪。对图像融合来说,融合源图像可能是在同一个时间段,来自多个传感器的图像,也可能是单个传感器在不同时间提供的图像序列。一般来说,图像是对客观实际的一种反映,是一个不完全、不精确的描述[3]。图像融合充分利用多幅图像资源,通过对观测信息合理支配和使用,把多幅图像在空间或时间上的互补信息依据某种准则融合,获得对场景的一致性解释或描述,使融合后的图像具有比参加融合的任意一幅图像更优越的性质,更精确地反映客观实际[4]。 本文研究的重点——多聚焦图像的融合是图像融合研究中一类具有代表性的问题。由于光学镜头的聚焦有限,使得人们在摄影时很难得到一幅所有景物均被聚焦的图像。解决这个问题的有效方法是对同一场景拍摄几幅聚焦点不同的图像,然后,将其融合为一幅场景内所有景物均被聚焦的图像,这种图像融合被称为多聚焦图像融合。多聚焦图像融合的实现可以使多个不同距离的目标物体同时清晰地呈现,这为特征提取,图像识别奠定良好的基础,同时有效地提高图像信息的利用率和系统对目标探测识别的可靠性,广泛应用于机器视觉、数码相机、目标识别等领域。 本课题所研究的图像融合利用小波融合算法的优越性将多聚焦图像进行综合处理,从而提高图像的清晰度和目标的可识别程度,得到在一幅场景内所有场景均清晰的图像。利用Matlab软件仿真,通过融合效果评价准则来不断改进融合算法,以得到最佳的融合效果。 1.3国内外相关研究情况: 图像融合技术最早被应用于遥感图像的分析和处理中。美国陆地资源卫星(LAND-SAT)用多幅光谱图像进行简单的数据合成运算,取得了一定的噪声 抑制和区域增强效果[5];美国德克萨斯仪器公司(TI)研究将红外热像和微光 图像融合,来提高夜战能力;TI公司还进行了将通用组件红外系统与电视、采用焦平面阵列的前视红外系统和25mm三代微光电视系统、长波及短波红外视频信号的融合试验,取得了有益的结果[6];A.Toet等采用低通对比金字塔的图像融合方法,对野外背景坦克的可见光和红外图像进行了融合处理,提高

相关文档