文档库 最新最全的文档下载
当前位置:文档库 › 《概率论与数理统计》计算2008级(A卷)

《概率论与数理统计》计算2008级(A卷)

《概率论与数理统计》计算2008级(A卷)
《概率论与数理统计》计算2008级(A卷)

《概率论与数理统计》期末考试试卷(A 卷)

学院: 理学院 班级: 计算2008级 姓名:_______________学号:_

一、填空选择题(每题4分,共32分) 1.)(,0)1,1()(~2

11=???-∈=-X E x x f X x 则其他若π

2、设X (1,2)N -,Y (1,3)N ,且X 与Y 相互独立 , 则2X Y + .

3、若~(4,0.2),(3),(2).X B E X D X =-=则

4、设,A B 是两个随机事件,且__0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有

( )

__()(|)(|)A P A B P A B = __()(|)(|)B P A B P A B ≠

()()()()C P AB P A P B = ()()()()D P AB P A P B ≠

5、若要()cos x x ?=可以成为随机变量X 的概率密度,则X 的可能取值区间为

( ) (A) [0,]2π (B ) [,]2ππ (C ) [0,]π (D ) 37[,]24

ππ 6、 随机变量X 与Y 相互独立,且~(0,1)X N 和~(1,1)Y N ,则以下正确的是

( ) (A) 1{1}2P X Y +≤= (B) 1{0}2

P X Y +≤= (C) 1{0}2P X Y -≤= (D) 1{1}2

P X Y -≤= 7、设221122N(,),Y N(,)X μσμσ ,那么X 和Y 的联合分布为( )

(A )二维正态分布,且0ρ= (B )二维正态分布,且ρ不定

(C )未必为二维正态分布 (D )以上都不对

8、设2(,)X N μσ ,那么当σ增大时,()P X μσ-<=( )

(A) 增大 (B )减少 (C )不变 (D )增减不定

《概率论与数理统计》期末考试试卷(A 卷)

二、(8分)一个学生接连参加同一课程的两次考试。第一次及格的概率为p ,

若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格

的概率为.2/p 求

(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率;

(2)若已知他第二次已经及格,求他第一次及格的概率。

三、(10分)某型号器件的寿命X (小时)的概率密度为:??

???>=其他,01000,1000)(2x x x p

现有一大批此种器件(设各器件相互独立),任取5只,问其中至少有2只寿命

大于1500小时的概率是多少?

四、(10分)已知),(Y X 的联合密度为?????>+≤++-=.

,0;),(),(22222222R y x R y x y x R C y x p 求:(1)系数C ;(2)随机向量),(Y X 落在圆域D :)(222R r r y x <=+内的概

率。

五、(10分)设X 为随机变量,C 是常数,证明对于),(X E C ≠必有

])[()(2C X E X D -<。

六、(10分)(1). 设随机变量X 的母函数为3)1(8

1z +,求X 的分布律 ; (2). 设随机变量X ~???≥=-其他

,00,)(x e x f x λλ , 求X 的特征函数 。

七、(10分)设总体X 的概率密度函数为

211,01()10,x x f x θθ--?<

其中1θ>为未知参数,12,,...,n x x x 是来自总体X 的样本观测值。

求:(1)θ的矩估计量;

《概率论与数理统计》期末考试试卷(A 卷)

(2)θ的极大似然估计量L θΛ.

八、(10分)某种原件的寿命X (以小时计)服从正态分布()

2σμ,N , 2σμ,均未知,现测得16只元件的寿命如下:

159 280 101 212 224 379 179 264

222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于225(小时)?

(附:6451050.u .=、 9610250.u .=、 86010508.t .,=、 306202508.t .,=

753105015.t .,=、1312025015.t .,=)

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

地方时计算方法及试题精选(DOC)

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B 点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A 点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。 所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时+8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

计算方法2006-2007试卷

计算方法2006-2007第一学期 1 填空 1). 近似数253.1*=x 关于真值249.1=x 有几位有效数字 ; 2). 设有插值公式)()(1 1 1 k n k k x f A dx x f ?∑-=≈,则∑=n k k A 1 =______ 3) 设近似数0235.0*1=x ,5160.2*2 =x 都是有效数,则相对误差≤)(*2 *1 x x e r ____ 4) 求方程x x cos =的根的牛顿迭代格式为 5) 矛盾方程组?????-=+=-=+1211212121x x x x x x 与??? ??-=+=-=+1 2122221 2121x x x x x x 得最小二乘解是否相同。 2 用迭代法(方法不限)求方程1=x xe 在区间(0,1)内根的近似值,要求先论证收敛性,误差小于210-时迭代结束。 3 用最小二乘法x be ax y +=2中的常数a 和b ,使该函数曲线拟合与下面四个点 (1,-0.72)(1.5, 0.02),(2.0, 0.61),(2.5, 0.32) (结果保留到小数点后第四位) 4.(10分)用矩阵的直接三角分解法求解线性方程组 ???? ? ? ? ??=??????? ????????? ??717353010342110100201 4321x x x x 5.(10分)设要给出()x x f cos =的如下函数表 用二次插值多项式求)(x f 得近似值,问 步长不超过多少时,误差小于3 10- 6. 设有微分方程初值问题 ?? ?=≤<-='2 )0(2 .00,42y x x y y - )

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

2021年概率论基本公式

概率论与数理统计基本公式 欧阳光明(2021.03.07) 第一部分 概率论基本公式 1、) (;A B A B A AB A B A B A -?=?-==-- 2、对偶率: .- ---?=??=?B A B A B A B A ; 3、概率性率:)()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-?-=-时有: 特别, 4、古典概型 5、条件概率 例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少? . 348.0) () ()|()|()2(. 639.0)(3 1 )()()(. 21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B i i 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。,号罐球取自设解:6、独立事件 (1)P(AB)=P(A)P(B),则称A 、B 独立。 (2)伯努利概型 如果随机试验只有两种可能结果:事件A 发生或事件A 不发生,则称为伯努利试验,即:

P(A)=p,q p A P =-=- 1)( (0

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

(完整版)概率论基本公式

1、 A B AB A AB;A B A (B A) 例: 证明: A B) B A AB AB A B. 第一部分 概率论基本公 式 概率论与数理统计基本公式 证明: 由(A B) B ,知 B 不发生, A 发生,则 AB 不发生,从而 A B) B A AB 成立,也即 A B 成立,也即 A B 成立。得证。 2、对偶率: A B A B ;A B A B. 3、概率性率: (1) 有限可加: A 1、 A 2为不相容事件,则 P(A 1 A 2) P(A 1) P(A 2) P(A B) P(A ) P(B);P(A) P(B) (3) 对任意两个事件有: P(A B) P(A) P(B) P(AB) 例:已知: P(A) 0.5, P(AB) 0.2,P(B) 0.4.求:(1)P(AB);P(A B); P(A 解: AB AB B,且B 、AB 是不相容事件, P(AB) P(AB) P(B) 即P(AB) 0.2.,又 P(A) 0.5, P(A B) P(A) P(AB) 0.3 P(A B) P(A) P(B) P(AB) 0.7, P( AB) PA B 1 P(A B) 0.3. 4、古典概 P(A B) P(A) P(AB),特别, B A 时有: (2) B); P( AB ) 例: n 双鞋总共 2n 只,分为 n 堆,每堆为 2只,事件 A 每堆自成一双鞋的概率 2n (2-n 2))!! 2! ,自成一双为: n! C 22 n 解:分堆法: C 22n n !,则 P(A) 5、条件概率 P(B| A) P(AB) ,称为在事件 A 条件下,事件 B 的条件概 率, P(A) P(B)称为无条件概率。 乘法公式: P(AB) P(A)P(B |A) P(AB) P(B)P(A |B) 全概率公式:P(B) P(A i )P(B| A i ) i 贝叶斯公式: P(A i |B) P(A i B) P(A i )P(B|A i ) i P(B) P(A j )P(B |A j ) j 例:有三个罐子, 1号装有 2红1黑共 3个球, 2号装有 3红1黑 4个球, 3号装有 2红2

-计算方法试卷

《计算方法》2012年试题 一、填空题 1、设f(x)x=f(x)的牛顿迭代公式为 2、设矩阵A有如下分解: 则a=,b= 3、已知函数 是以-1,0,1为样条节点的三次样条函数,则a=,b= 4、A1=,A2= 5、下列数据取自一个次数不超过5次的多项式P(x) 则P(x)是次多项式。 6、设A=x(n)表示用幂法求A的按模最大特征值所对应的特征向量的第n 次近似值,若取x(0)=(0,1)T,则x(2011)= 二、选择题 1、设A为n阶实对称矩阵,P为n阶可逆矩阵,B=PAP-1,||A||r表示矩阵A的 r-A的谱半径,以下结论不正确的是 (A) (B) (C) (D)

2、可以用Jacobi迭代法解线性方程组Ax=b的必要条件是 (A) 举证A的各阶顺序主子式全不为零(B) A (C) 举证A的对角元素全不为零(D) 矩阵A 3、设A=(1,2,2)T,若存在Household矩阵H,使得Hx=σ(1,0,0)T,则 4、对于具有四个求积点(n=3)牛顿科特斯(Newton-Cotes)公式 如果已知Cotes系数,则其余三个系数为 (A) (B) (C) (D) 5、用二阶Runge-Kutta方法 求解常微分方程初值问题,其中:h>0为步长,x n=x0+nh 为保证格式稳定,则步长h的取值范围是 (A) (B) (C) (D)

三、计算解答题 1、设f(x)=e2x。 (1) 写出或导出最高幂次系数为1的且次数不超过2的Legendre多项式L0(x),L1(x),L2(x); (2) 求出在P2(x)。 2、,给如下的数值积分公式: 其中:表示在x=1处的到数值。 (1) 求常数A1、A2、A3使上述求积公式的代数精度最高; (2) 导出上述求积公式的余项(或截断误差)R[f]=I-I n 3、 (1) 找出参数的最大范围,使得求解以A为系数矩阵的线性代数方程的Gauss-Sidle迭代法收敛; (2) 取何值时,Gauss-Sidle迭代法经有限次迭代后得到方程的精确解 4、[0.5,0.6]内有唯一的实根 (1) 试判断一下两种求上述方程的迭代格式的局部收敛性,并说明理由。 格式1x0>0;格式2x0>0 (2) 方程f(x)=0的根就是y=f(x)的反函数x=g(y)在y=0时x的值。已知下列数据是

概率论基本公式

概率论基本公式 Document number:PBGCG-0857-BTDO-0089-PTT1998

概率论与数理统计基本公式 第一部分概率论基本公式 1、)(;A B A B A AB A B A B A -?=?-==-- 例:证明: 2、对偶率:.- - - - ?=??=?B A B A B A B A ; 3、概率性率: (1) )()()(212121A P A P A A P A A +=?为不相容事件,则、有限可加:(2 ) ) ()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-?-=-时有: 特别, (3))()()()(AB P B P A P B A P -+=?对任意两个事件有: 4、古典概型 5、条件概率 例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少 . 348.0) () ()|()|()2(. 639.0)(3 1 )()()(.2 1 )|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴====== ====∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B i i 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。,号罐球取自设解:6、独立事件

(完整版)数学05级计算方法试题A

大连理工大学应用数学系 数学与应用数学专业2005级试卷 课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页 一、填空(每一空2分,共42分) 1.为了减少运算次数,应将表达式.543242 16171814131 1681 x x x x x x x x -+---++- 改写为_______; 2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ?-1 02 求得的近似值为 , 用Simpson 公式求得的近似值为 。 1.设函数()1,0,1)(3-∈S x s ,若当1-

解:1)设B i={球取自i号罐}, i =1,2,3。A ={取得是红球},由题知B1> B2、B3是一个完备事件 2 3 1 由全概率公式P(B)=v P(A)P(B|A) 依题意,有:P(A|B i) ;P(A|B2); P(A| B3) . i 3 4 2 1 P(BJ =P(B2) = P(B3) ,P(A) :0.639. 3 (2)由贝叶斯公式:P(B1 | A)二P(A| B1)P(B1):. 0.348. P(A) 6、独立事件 (1)P(AB)=P(A)P(B),则称A、B 独立。 (2)伯努利概型 如果随机试验只有两种可能结果:事件A发生或事件A不发生,则称为伯努利试验,即: P(A)=p, P( A) =1 - p = q (0

研究生计算方法试卷1101

江西理工大学研究生考试试卷 一、填空题(共20分,每空2分) (1) 若1)(37++=x x x f , 则]2,2,2[710 f = , ]2,2,2[7 10 f = 。 (2) 设 ) (ij a A =是n 阶方阵, 则 ∞ A = , 1 A = 。 (3) 如果A 是正交阵, 则)(2A cond = 。 (4) 形如)()(0 k b a n k k x f A dx x f ?∑=≈的插值型求积公式,其代数精度至少可达 阶, 至多共能达 阶。 (5) ??????+=1221a A ,当a 满足条件时, A 可作LU 分解,当a 满足条件 时, 必有分解式T L L A ?=,其中L 是对角元素为正的下三角阵。 (6) 在用逐次超松弛迭代法(SOR )解线性方程组b AX =时,若松弛因子ω满足条件 时, 则迭代一定发散。 专业 学号 姓名

二、给定)(,,],[,010x f x x b a x x <∈在[a,b 上具有三阶连续导数,证明: ) ()()() ()()())(()()()2)(()(12 012 00' 10100 2 01101x R x f x x x x x f x x x x x x x f x x x x x x x x f +--+ ---+-+---= . 其中:10120) 3()())((6 1)(x x x x x x f x R <<--= ζζ (10分) 三、用复化梯形公式(取n=2)和高斯—勒让德公式(取三个高斯点210,,t t t 。查表555556.0,774597.0,888889.0,0,555556.0,774597.0221100=====-=A t A t A t )计算如下积分(15分) dx x e x ?--1 02 1 )1( 四、求积公式)0()1()0()(' 011 0f B f A f A dx x f ++≈?,又知其误差 )1,0(,)('''∈=ξξf k R ,试确定系数010,,B A A ,使该求积公式有尽可 能高的代数精度,指出这个代数精度并确定误差式中的k 值。(10分) 五、用高斯列主元消去法求解方程组 ? ??? ????????=????????????????????? ???12341098796 548532 74214321x x x x 写出详细的求解过程,并保留到小数点后4位。(15分) 六、 证明解初值问题 00'y )y(x y),f(x,y == 的二步法 )3f f 4f (4 h )y y (21y 1n n 1n 1n n 1n -+-++-++= 其中: )y ,x (f f n n n =, 是二阶的,并求其局部截断误差主项。(15分) 七、用改进的欧拉方法求解2阶常微分方程初值问题 106 .0)0(,4.0)0(s i n 22' 2'''≤≤-=-==+-x y y x e y y y x

相关文档
相关文档 最新文档