文档库 最新最全的文档下载
当前位置:文档库 › 等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习(含答案)
等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习(含答案)-2

等腰三角形典型例题练习

参考答案与试题解析

4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证

DE=DF .

考点:全等三角形的判定与性质;角平分线的定义.

分析:过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出

△EMD≌△FND即可.

解答:证明:过D作DM⊥AB,于M,DN⊥AC于N,

即∠EMD=∠FND=90°,

∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN(角平分线性质),∠DME=∠DNF=90°,

∵∠EAF+∠EDF=180°,∴∠MED+∠AFD=360°﹣180°=180°,

∵∠AFD+∠NFD=180°,∴∠MED=∠NFD,

在△EMD和△FND中

,∴△EMD≌△FND,∴DE=DF.

5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

考点:等腰三角形的判定与性质;平行线的性质.

分析:根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.

解答:解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,

∴∠DBO=∠OBC,∠ECO=∠OCB,

∵DE∥BC,∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,

∴DB=DO,OE=EC,∵DE=DO+OE,∴DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由.

等腰三角形典型例题练习(含答案)-2

考点:等腰三角形的判定;全等三角形的判定与性质.

分析:用(HL)证明△EBD≌△FCD,从而得出∠EBD=∠FCD,即可证明△ABC是等腰三角形.

解答:△ABC是等腰三角形.

证明:连接AD,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,且DE=DF,

∵D是△ABC的BC边上的中点,∴BD=DC,

∴Rt△EBD≌Rt△FCD(HL),∴∠EBD=∠FCD,∴△ABC是等腰三角形.

7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE.

(1)∠E等于多少度?(2)△DBE是什么三角形?为什么?

考点:等边三角形的性质;等腰三角形的判定.

分析:(1)由题意可推出∠ACB=60°,∠E=∠CDE,然后根据三角形外角的性质可知:∠ACB=∠E+∠CDE,即可推出∠E的度数;

(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是∠ABC的角平分线,即得:

∠DBC=30°,然后再结合(1)中求得的结论,即可推出△DBE是等腰三角形.

解答:解:(1)∵△ABC是等边三角形,∴∠ACB=60°,

∵CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴,

(2)∵△ABC是等边三角形,BD⊥AC,∴∠ABC=60°,∴,

∵∠E=30°,∴∠DBC=∠E,∴△DBE是等腰三角形.

8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD.

考点:含30度角的直角三角形.

分析:由△ABC中,∠ACB=90°,∠A=30°可以推出AB=2BC,同理可得BC=2BD,则结论即可证明.

解答:解:∵∠ACB=90°,∠A=30°,∴AB=2BC,∠B=60°.

又∵CD⊥AB,∴∠DCB=30°,∴BC=2BD.∴AB=2BC=4BD.

9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.

考点:全等三角形的判定与性质;等腰三角形的性质.

分析:过D点作DG∥AE交BC于G点,由平行线的性质得∠1=∠2,∠4=∠3,再根据等腰三角形的性质可得∠B=∠2,则∠B=∠1,于是有DB=DG,根据全等三角形的判定易得△DFG≌△EFC,即可

得到结论.

解答:证明:过D点作DG∥AE交BC于G点,如图,

∴∠1=∠2,∠4=∠3,

∵AB=AC,∴∠B=∠2,∴∠B=∠1,∴DB=DG,而BD=CE,∴DG=CE,

在△DFG和△EFC中

,∴△DFG≌△EFC,∴DF=EF.

10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,

求证:BD=2CE.

考点:全等三角形的判定与性质.

分析:延长CE,BA交于一点F,由已知条件可证得△BFE全≌△BEC,所以FE=EC,即CF=2CE,再通过证明△ADB≌△FAC可得FC=BD,所以BD=2CE.

解答:证明:如图,分别延长CE,BA交于一点F.

∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,

又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.

∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.

又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.

∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.

11.(2012?牡丹江)如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:

如图①,连接AP.

∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH.

又∵S△ABP+S△ACP=S△ABC,∴AB?PE+AC?PF=AB?CH.

∵AB=AC,∴PE+PF=CH.

(1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明:

(2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=7.点P到AB边的距离PE=4或10.

考点:等腰三角形的性质;三角形的面积.

分析:(1)连接AP.先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC 即可得出PE=PF+PH;

(2)先根据直角三角形的性质得出AC=2CH,再由△ABC的面积为49,求出CH=7,由于CH>PF,

则可分两种情况进行讨论:①P为底边BC上一点,运用结论PE+PF=CH;②P为BC延长线上的

点时,运用结论PE=PF+CH.

解答:解:(1)如图②,PE=PF+CH.证明如下:

∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH,

∵S△ABP=S△ACP+S△ABC,∴AB?PE=AC?PF+AB?CH,又∵AB=AC,∴PE=PF+CH;

(2)∵在△ACH中,∠A=30°,∴AC=2CH.

∵S△ABC=AB?CH,AB=AC,∴×2CH?CH=49,∴CH=7.

分两种情况:

①P为底边BC上一点,如图①.

∵PE+PF=CH,∴PE=CH﹣PF=7﹣3=4;

②P为BC延长线上的点时,如图②.

∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.

12.数学课上,李老师出示了如下的题目:

“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.

小敏与同桌小聪讨论后,进行了如下解答:

(1)特殊情况,探索结论

当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).

(2)特例启发,解答题目

解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)

(3)拓展结论,设计新题

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD

的长(请你直接写出结果).

考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.

分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE 即可;

(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即

可;

(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,

D在BC的延长线上时,求出CD=1.

解答:解:(1)故答案为:=.

(2)过E作EF∥BC交AC于F,

∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,

∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,

∴△AEF是等边三角形,∴AE=EF=AF,

∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,

∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,

在△DEB和△ECF中

,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.

(3)解:CD=1或3,

理由是:分为两种情况:①如图1

过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EM,

∵△ABC是等边三角形,∴AB=BC=AC=1,

∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,

∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,

∴BN=,∴CN=1+=,∴CD=2CN=3;

②如图2,作AM⊥BC于M,过E作EN⊥BC于N,

则AM∥EM,

∵△ABC是等边三角形,∴AB=BC=AC=1,

∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=1

13.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

考点:全等三角形的判定与性质;等腰三角形的性质.

分析:根据全等三角形的性质和判定和线段垂直平分线性质求出AB=AC=CD,推出

∠CDA=∠CAD=∠CPM,求出∠MPF=∠CDM,∠PMF=∠BMA=∠CMD,在△DCM和△PMF中

根据三角形的内角和定理求出即可.

解答:解:∠F=∠MCD,

理由是:∵AF平分∠BAC,BC⊥AF,∴∠CAE=∠BAE,∠AEC=∠AEB=90°,

在△ACE和△ABE中

∵,∴△ACE≌△ABE(ASA)∴AB=AC,

∵∠CAE=∠CDE∴AM是BC的垂直平分线,∴CM=BM,CE=BE,∴∠CMA=∠BMA,

∵AE=ED,CE⊥AD,∴AC=CD,∴∠CAD=∠CDA,

∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,

∴∠MPC=∠CAD,∴∠MPC=∠CDA,∴∠MPF=∠CDM,

∴∠MPF=∠CDM(等角的补角相等),

∵∠DCM+∠CMD+∠CDM=180°,∠F+∠MPF+∠PMF=180°,

又∵∠PMF=∠BMA=∠CMD,∴∠MCD=∠F.

14.如图,已知△ABC是等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.

(1)线段AD与BE有什么关系?试证明你的结论.

(2)求∠BFD的度数.

考点:等边三角形的性质;全等三角形的判定与性质.

分析:(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;

(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.

解答:(1)证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA.

在△ABE和△CAD中,

∴△ABE≌△CAD∴AD=BE.

(2)解:∵∠BFD=∠ABE+∠BAD,

又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.

15.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF

和CF,

求证:AE=CF.

考点:全等三角形的判定与性质.

分析:根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.

解答:证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,

又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.

16.已知:如图,在△OAB中,∠AOB=90°,OA=OB,在△EOF中,∠EOF=90°,OE=OF,连接AE、BF.问线段AE与BF之间有什么关系?请说明理由.

考点:全等三角形的判定与性质;等腰直角三角形.

分析:可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,当然相等了,由此

可以证明△AEO≌△BFO;延长BF交AE于D,交OA于C,可证明∠BDA=∠AOB=90°,则AE⊥BF.解答:解:AE与BF相等且垂直,

理由:在△AEO与△BFO中,

∵Rt△OAB与Rt△OEF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°﹣∠BOE=∠BOF,

∴△AEO≌△BFO,∴AE=BF.

延长BF交AE于D,交OA于C,则∠ACD=∠BCO,

由(1)知∠OAE=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.

17.(2006?郴州)如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.

(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;

(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.

考点:等腰三角形的性质.

分析:(1)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;

(2)类似(1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC的面积=三

角形ABD的面积﹣三角形ACD的面积.

解答:解:(1)DE+DF=CG.

证明:连接AD,

则S△ABC=S△ABD+S△ACD,即AB?CG=AB?DE+AC?DF,∵AB=AC,∴CG=DE+DF.

(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.

理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB?DE=AB?CG+AC?DF

∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.

同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.

18.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.

等腰三角形典型例题练习(含答案)-2

考点:等腰三角形的性质;三角形的面积.

分析:

猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB=AB?PD,S△PAC=AC?PE,

S△CAB=AB?CF,S△PAC=AC?PE,AB?PD=AB?CF+AC?PE,即可求证.

解答:解:我的猜想是:PD、PE、CF之间的关系为PD=PE+CF.理由如下:

连接AP,则S△PAC+S△CAB=S△PAB,

∵S△PAB=AB?PD,S△PAC=AC?PE,S△CAB=AB?CF,

又∵AB=AC,∴S△PAC=AB?PE,∴AB?PD=AB?CF+AB?PE,

即AB(PE+CF)=AB?PD,∴PD=PE+CF.

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=5cm ,BD=3cm , 则点D 到AB 的距离为( ) 2.如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ACD 和等边△BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论: ①AE=BD ②CN=CM ③MN ∥AB 其中正确结论的个数是( ) 二.填空题(共1小题) 3.如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于_________ . 三.解答题(共15小题) 4.在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且 ∠EDF+∠EAF=180°,求证DE=DF . 5.在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作DE ∥BC ,分别交AB 、AC 于点D 、E .请说明DE=BD+EC . 6.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AB ,DF ⊥ AC , 垂足分别为 E ,F ,且DE=DF .请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 至E ,使CE=CD .连接DE . (1)∠E 等于多少度? (2)△DBE 是什么三角形?为什么? 8.如图,在△ABC 中,∠ACB=90°,CD 是AB 边上的高,∠A=30°.求证:AB=4BD . 9.如图,△ABC 中,AB=AC ,点D 、E 分别在AB 、AC 的延长线上,且BD=CE ,DE 与BC 相交于点F .求证:DF=EF . A . 5cm B . 3cm C . 2cm D . 不能确定 A . 0 B . 1 C . 2 D . 3

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

等腰三角形经典练习题(有难度)

等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° 4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 A B C D F E F E A D B C X x x 2x 2x A B C D E x x 3x 2x 3x 2x 2x A x

设∠A 为x ∠A= 7 180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15° 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=2 1,DE+BC=1, A B C D E x x 180°-2x 30° x -15° x -15° A

求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=21,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题: 8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于 点D 、E 求证:DE=BD+AE 证明△PBD 和△PEA C B A D E P A B C D E

相似三角形经典证明题解析

相似三角形经典证明题 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?

2.如图,已知直线128:33 l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合. (1)求ABC △的面积; (2)求矩形DEFG 的边DE 与EF 的长; (3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.

3.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; (3)若在运动中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由. 4.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式; (3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ? N

(完整)初二数学等腰三角形练习题

G F E D C A 第2章 三角形期中复习 【课前复习】 1、已知等腰三角形的一边长为5cm ,另一边长为6cm ,则它的周长为 。 2、等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm.则腰长为 3、在等腰三角形中,设底角为0x ,顶角为0y ,用含x 的代数式表示y ,得y= ; 用含y 的代数式表示x ,则x= 。 4、如图,∠A=15°,AB=BC=CD=DE=EF ,则∠GEF= 5、有一个内角为40°的等腰三角形的另外两个内角的度数 为 .若一个角为140°呢,则另外两个角是 6、如果等腰三角形的三边均为整数且它的周长为10cm ,那么它的 三边长为 7、如图,把矩形ABCD 沿EF 折叠,使点C 落在点A 处,点D 落在 点G 处,若∠CFE=60o ,且DE=1,则边BC 的长为 . 8、判定两个等腰三角形全等的条件可以是( )。 A 、有一腰和一角对应相等 B 、有两边对应相等 C 、有顶角和一个底角对应相等 D 、有两角对应相等 9、等腰三角形一腰上的高线与底边的夹角等于( ) A 、顶角 B 、底角 C 、顶角的一半 D 、底角的一半 10、在△ABC 中,AB=AC ,下列推理中错误的是( ) A 、如果AD 是中线,那么AD ⊥BC ,∠BAD=∠DAC B 、如果BD 是高,那么BD 是角平分线 C 、如果AD 是高,那么∠BAD=∠DAC 、BD=DC D 、如果AD 是角平分线,那么AD 也是BC 边的垂直平分线 11如图,△ABC 中,AB =AC ,BD 、CE 为中线,图中共有等腰三角形( )个 A 、4个 B 、6个 C 、3个 D 、5 12、如图,AB =AC ,AE =EC ,∠ACE =280 ,则∠B 的度数是( ) A 、600 B 、700 C 、760 D 、450 13、三角形的三边长c b a ,,满足式子0)()(22=-+-+-a c c b b a ,那么这个三角形是( ) A 、钝角三角形 B 、等边三角形 C 、等腰非等边三角形 D 、以上都不对 14、正三角形ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样 的P 点有( ) A 1个 B 4个 C 7个 D 10个 E C A E D A Q A 15题图 16题图 17题图

等腰三角形典型例题

等腰三角形 1.如图,已知点C为线段AB上一点,和都是等边三角形,AN、BM相交于点O,AN、CM交于点P,BM、CN交于点Q. (1)求证:. (2)求的度数. (3)求证:. 【分析】(1)欲证,只需证明它所在的两个三角形全等.(2)的度数可用的外角来求,但要注意全等所得到这一条件的使用.(3)要,则,应该为一个等边三角形,可证明≌,从而得到. (1)证明:和都是等边三角形, ,,, , 即. 在和中, ≌, .

(2)由(1)知,≌,. , 即 .(3)在和中, ≌, , . 又, , 即, . 【点拨】 (1)要证明线段相等(或角相等),找它们所在的三角形全等. (2)本题的图形规律:共一个顶点的两个等边三角形构成的图形中,存在一对或多对绕公共点旋转变换的三角形全等. 2.如图,在中,,,的平分线AM的长15,求BC的长. 【分析】由AM平分,,可得,,

则,所以.在中,,可得,由,可求出BC的长. 解:在中,,, . AM平分, , , . 在中,, . 【点拨】含30度的直角三角形的性质常与直角三角形的两个锐角互余一起运用,此性质是求线段长度和证明线段倍分问题的重要方法. 3.如图,,,,.求证:.【分析】根据已知“,”联想到等腰三角形“三线合一”,通过辅助线将证明转化为证明. 证明:延长CE、BA交于点F. , . 在和中, ≌,

,即. , . 在和中, ≌, , . 【点拨】 (1)利用等腰三角形“三线合一”不仅能得到线段相等、角相等,而且能得到线段的倍半关系. (2)联系等腰三角形“三线合一”作顶角平分线或底边的中线或底边的高线是常用的辅助线. 4.如图,△ABC中,AB=AC,在AB边上取点D,在AC延长线上取点E,使BD=CE,连结DE交BC于G. 求证:DG=GE. 【分析】由于△ABC是等腰三角形,D为AB上一点,E为AC延长线上一点,故可考虑过D或E作腰AC或AB的平行线,通过构造等腰三角形,可获得结论. 证法1:过D作DF∥AC,交BC于F(如图). ∴∠DFB=∠ACB. 又∵AB=AC, ∴∠B=∠ACB. ∴∠B=∠DFB. ∴DB=DF.

等腰三角形及三线合一经典试题难题

等腰三角形及三线合一经典试题 难题 1.等腰三角形的对称轴是( ) 2. 1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) 2.2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 3.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40°C .40°D .80° 4.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108° 5.等腰三角形的一个内角为 80 ,则另两个内角的度数为 6.等腰三角形底边长为10,则腰长的取值范围为 7.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________. 8. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若 ∠EDF=70°,求∠AFD 的度数 9.如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 10. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( ) 11. 已知:如图:CA=CB, DA=DB 求证:(1)∠1=∠2.(2)CD ⊥AB . A B C D F E C B A D E P E C A H F G

E D C A B H F 12.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE?都是等边三角形.BE 交AC 于F ,AD 交CE 于H , ①求证:△BCE ≌△ACD ; ②求证:CF=CH ; ③判断△CFH 的形状并说明理由. 13.如图, 中, ,试说明: . 14.如图3,在?ABC 中,∠=A 90ο ,AB AC =,D 是BC 的中点,P 为BC 上任一点,作PE AB ⊥,PF AC ⊥,垂足分别为E 、F 求证:(1)DE =DF ;(2)DE DF ⊥ A E F B D P C 图3 15.已知,如图1,AD 是?ABC 的角平分线,DE 、DF 分别是?ABD 和?ACD 的高。 求证:AD 垂直平分EF A 1 2 E F B D C 图1

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

初中数学三角形证明题练习及答案

三角形证明题练习 1.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 与D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是( ) 2.如图,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( ) 3.如图,在△ABC 中,AD 是它的角平分线,AB=8cm ,AC=6cm ,则 S △ABD :S △ACD =( ) 4.如图,在△ABC 中,AB=AC ,∠A=40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数 为( ) 5.如图,在△ABC 中,AB=AC ,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为( ) 6.如图,点O 在直线AB 上,射线OC 平分∠AOD ,若∠AOC=35°,则∠BOD 等于( ) 7.如图,在△ABC 中,∠ACB=90°,BA 的垂直平分线交BC 边于D ,若AB=10,AC=5,则图中等于60°的角的个数是( ) 8.如图,已知BD 是△ABC 的中线,AB=5,BC=3,△ABD 和△BCD 的周长的差是( ) 9.在Rt △ABC 中,如图所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8cm ,则BC 等于( ) A . 13 B . 10 C . 12 D . 5 A . 5个 B . 4个 C . 3个 D . 2个 A . 4:3 B . 3:4 C . 16:9 D . 9:16 A . 70° B . 80° C . 40° D . 30° A . 30° B . 36° C . 40° D . 45° A . 145° B . 110° C . 70° D . 35° A . 2 B . 3 C . 4 D . 5 A . 2 B . 3 C . 6 D . 不能确定

等腰三角形经典试题(有难度)

等腰三角形经典试题(有难度)

————————————————————————————————作者:————————————————————————————————日期:

等腰三角形练习题 一、计算题: 1. 如 图 , △ ABC 中 , AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上, F E A D B C X x x 2x 2x A B C D E x x 3x 2x 3x 2x 2x

EDF=70°, 求∠AFD 的度数 ∠AFD=160° 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A=7180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15° A B C D E x x 2x 2x 3x 3x x A 180°-2x 30°

6. 如图,△ABC中,∠C=90°,D为AB上一点,作DE⊥BC于E,若BE=AC,BD= 2 1,DE+BC=1, 求∠ABC的度数 延长DE到点F,使EF=BC 可证得:△ABC≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt△DBF中, BD= 2 1,DF=1 所以∠F =∠1=30°E A C B D F 1 2

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

等腰三角形知识点+经典例题

第一讲等腰三角形 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一 边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC 为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线. (4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A =180°-2∠B,∠B=∠C=180 2A ?-∠. (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。

(完整版)相似三角形知识点及典型例题

相似三角形知识点及典型例题 知识点归纳: 1、三角形相似的判定方法 (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似。 (3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似。简述为:两角对应相等,两三角形相似。 (4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简述为:两边对应成比例且夹角相等,两三角形相似。 (5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。简述为:三边对应成比例,两三角形相似。 (6)判定直角三角形相似的方法: ①以上各种判定均适用。 ②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 #直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。 每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。 如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高, 则有射影定理如下: (1)(AD)2=BD·DC,(2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。 注:由上述射影定理还可以证明勾股定理。即(AB)2+(AC)2=(BC)2。

典型例题: 例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG 证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC ∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G 又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF ∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】 本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。 例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =AC FD 证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点, ∴ED=21 AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD (1) 又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA (2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD 证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD (1) ∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2) 由(1)(2)两式得:BA FB =AC FD ,证毕。 【解题技巧点拨】

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

等腰三角形精选有难度证明题

等腰三角形练习题 一、计算题 1、如图, ABC 中,AB=AC ,BC=BD ,AD=DE=EB ,求∠A 的度数。 2、如图,CA=CB ,DF=DB ,AE=AD ,求∠A 的度数。 3、如图, ABC 中,AB=AC ,D 在BC 上,D E ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=070,求∠AFD 的度数。 4、如图, ABC 中,AB=AC ,BC=BD=DE=EA ,求∠A 的度数。 5、如图, ABC 中,AB=AC ,D 在BC 上,∠BAD=030,在AC 上取点E ,使AE=AD ,求∠EDC 的度数。 6、如图, ABC 中,∠C=090,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC ,BD=1 2 ,DE+BC=1,求∠ABC 的度数。 7、如图, ABC 中,AD 平分∠BAC ,若AC=AB+BD ,求∠B :∠C 的值。 二、证明题

8、如图, ABC中,∠ABC、∠CAB的平分线交于点P,过点P作D E∥AB,分别交BC、AC于点D、E。求证:DE=BD+AE。 9、如图, DEF中,∠EDF=2∠E,FA⊥DE于点A,问:DF、AD、AE之间有什么样的大小关系。 60,角平分线AD、CE交于点O。求证:AE+CD=AC 10、如图, ABC中,∠B=0 100,BD平分∠ABC,求证:BC=BD+AD。 11、如图, ABC中,AB=AC,∠A=0 13、如图, ABC中,∠1=∠2,∠EDF=∠BAC,求证:BD=ED。 15、如图, ABC中,AB=AC,BE=CF,EF交BC于点G。求证:EG=FG。 16、如图, ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD,求证:AF=FC。 17、如图, ABC中,AB=AC,AD和BE两条高,交于点H,且AE=BE,求证:AH=2BD。

等腰三角形典型例题练习(含答案)

等腰三角形典型例题练习 一.选择题(共2小题) 1.如图,∠C=90°,AD平分∠BAC交BC于D,若BC=5cm,BD=3cm,则点D到AB的距离为() A.5cm B.3cm C.2cm D.不能确定 2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD 和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论: ①AE=BD ②CN=CM ③MN∥AB 其中正确结论的个数是() A.0B.1C.2D.3 二.填空题(共1小题) 3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于_________. 三.解答题(共15小题) 4.在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证 DE=DF. 5.在△ABC中,∠ABC、∠ACB的平分线相交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.请说明DE=BD+EC.

6.>已知:如图,D是△ABC的BC边上的中点,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF.请判断△ABC 是什么三角形?并说明理由. 7.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD.连接DE. (1)∠E等于多少度? (2)△DBE是什么三角形?为什么? 8.如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠A=30°.求证:AB=4BD. 9.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF. 10.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E, 求证:BD=2CE.

相似三角形经典题(含答案)

相似三角形经典习题 例1 从下面这些三角形中,选出相似的三角形. 例2 已知:如图, ABCD 中,2:1:=EB AE ,求AEF ?与CDF ?的周长的比,如果2cm 6=?AEF S ,求CDF S ?. 例3 如图,已知ABD ?∽ACE ?,求证:ABC ?∽ADE ?. 例4 下列命题中哪些是正确的,哪些是错误的? (1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ?的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ?的边上,并且点D 、点E 和ABC ?的一个顶点组成的小三角形与ABC ?相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法. 例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.

例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ). 例8 格点图中的两个三角形是否是相似三角形,说明理由. 例9 根据下列各组条件,判定ABC ?和C B A '''?是否相似,并说明理由: (1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)?='∠?='∠?=∠?=∠35,44,104,35A C B A . (3)?='∠=''=''?=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB . 例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据. 例11 已知:如图,在ABC ?中,BD A AC AB ,36,?=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ?=2 .

等腰三角形经典练习题(有难度)整理版

1 等腰三角形练习题 一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45° 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 设∠A 为x, 由5x=180° 得∠A=36° 3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=70°, 求∠AFD 的度数 ∠AFD=160° A B C D F E F E A D B C X x x 2x 2x A B C D E x x 3x 2x 3x 2x 2x

2 4. 如图,△ABC 中,AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A=7180 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x ∠EDC=∠AED -∠C=15° A B C D E x x 2x 2x 3x 3x x A B C D E x x 180°-2x 30° x -15° x -15°

3 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC,BD=21,DE+BC=1, 求∠ABC 的度数 延长DE 到点F,使EF=BC 可证得:△ABC ≌△BFE 所以∠1=∠F 由∠2+∠F=90°, 得∠1+∠F=90° 在Rt △DBF 中, BD=21,DF=1 所以∠F =∠1=30° 7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED 由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1 二、证明题: 8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于 C D E P E A C B D F 1 2 A B C D E

2016年最新等腰三角形和等边三角形知识点和典型例题

新知:等腰三角形 1.等腰三角形的定义: 2.等腰三角形的性质:等边对等角;等腰三角形的三线合一 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 5.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明) 6.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 7.等腰三角形的判定: 1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义) 2.在同一三角形中,等角对等边 8.等边三角形定义:三条边都相等的三角形叫做等边三角形 9.等边三角形的性质: ⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。 ⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。 ⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一) ⑹等边三角形内任意一点到三边的距离之和为定值(等于其高) 10.等边三角形的判定: ⑴三边相等的三角形是等边三角形(定义) ⑵三个内角都相等(为60度)的三角形是等边三角形 ⑶有一个角是60度的等腰三角形是等边三角形 (4)两个内角为60度的三角形是等边三角形 (5)说明:可首先考虑判断三角形是等腰三角形。 (6)等边三角形的性质与判定理解: 11、三角形中的中位线 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用: 等腰三角形的性质应用及判定 例1如图,△ABC中,D、E分别是位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。 常用结论:任一个三角形都有三条中位线,由此有: 结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。 结论2:三条中位线将原三角形分割成四个全等的三角形。

相关文档
相关文档 最新文档