文档库 最新最全的文档下载
当前位置:文档库 › 非线性整数规划的遗传算法Matlab程序

非线性整数规划的遗传算法Matlab程序

非线性整数规划的遗传算法Matlab程序
非线性整数规划的遗传算法Matlab程序

非线性整数规划的遗传算法Matlab程序

通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考!

模型的形式和适应度函数定义如下:

这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其中将多目标转化为单目标采用简单的加权处理。

function Fitness=FITNESS(x,FARM,e,q,w)

%% 适应度函数

% 输入参数列表

% x 决策变量构成的4×50的0-1矩阵

% FARM 细胞结构存储的当前种群,它包含了个体x

% e 4×50的系数矩阵

% q 4×50的系数矩阵

% w 1×50的系数矩阵

%%

gamma=0.98;

N=length(FARM);%种群规模

F1=zeros(1,N);

F2=zeros(1,N);

for i=1:N

xx=FARM{i};

ppp=(1-xx)+(1-q).*xx;

F1(i)=sum(w.*prod(ppp));

F2(i)=sum(sum(e.*xx));

end

ppp=(1-x)+(1-q).*x;

f1=sum(w.*prod(ppp));

f2=sum(sum(e.*x));

Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2-F2);zeros(1,N)]));

针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方

function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm)

%% 求解01整数规划的遗传算法

%% 输入参数列表

% M 遗传进化迭代次数

% N 种群规模

% Pm 变异概率

%% 输出参数列表

% Xp 最优个体

% LC1 子目标1的收敛曲线

% LC2 子目标2的收敛曲线

% LC3 平均适应度函数的收敛曲线

% LC4 最优适应度函数的收敛曲线

%% 参考调用格式[Xp,LC1,LC2,LC3,LC4]=MYGA(50,40,0.3)

%% 第一步:载入数据和变量初始化

load eqw;%载入三个系数矩阵e,q,w

%输出变量初始化

Xp=zeros(4,50);

LC1=zeros(1,M);

LC2=zeros(1,M);

LC3=zeros(1,M);

LC4=zeros(1,M);

Best=inf;

%% 第二步:随机产生初始种群

farm=cell(1,N);%用于存储种群的细胞结构

k=0;

while k %以下是一个合法个体的产生过程

x=zeros(4,50);%x每一列的1的个数随机决定

for i=1:50

R=rand;

Col=zeros(4,1);

if R<0.7

RP=randperm(4);%1的位置也是随机的

Col(RP(1))=1;

elseif R>0.9

RP=randperm(4);

Col(RP(1:2))=1;

else

RP=randperm(4);

Col(RP(1:3))=1;

end

x(:,i)=Col;

end

%下面是检查行和是否满足约束的过程,对于不满足约束的予以抛弃 Temp1=sum(x,2);

Temp2=find(Temp1>20);

if length(Temp2)==0

k=k+1;

farm{k}=x;

end

end

%% 以下是进化迭代过程

counter=0;%设置迭代计数器

while counter

%% 第三步:交叉

%交叉采用双亲双子单点交叉

newfarm=cell(1,2*N);%用于存储子代的细胞结构

Ser=randperm(N);%两两随机配对的配对表

A=farm{Ser(1)};%取出父代A

B=farm{Ser(2)};%取出父代B

P0=unidrnd(49);%随机选择交叉点

a=[A(:,1:P0),B(:,(P0+1):end)];%产生子代a

b=[B(:,1:P0),A(:,(P0+1):end)];%产生子代b

newfarm{2*N-1}=a;%加入子代种群

newfarm{2*N}=b;

%以下循环是重复上述过程

for i=1:(N-1)

A=farm{Ser(i)};

B=farm{Ser(i+1)};

P0=unidrnd(49);

a=[A(:,1:P0),B(:,(P0+1):end)];

b=[B(:,1:P0),A(:,(P0+1):end)];

newfarm{2*i-1}=a;

newfarm{2*i}=b;

end

FARM=[farm,newfarm];%新旧种群合并

%% 第四步:选择复制

FLAG=ones(1,3*N);%标志向量,对是否满足约束进行标记

%以下过程是检测新个体是否满足约束

for i=1:(3*N)

x=FARM{i};

sum1=sum(x,1);

sum2=sum(x,2);

flag1=find(sum1==0);

flag2=find(sum1==4);

flag3=find(sum2>20);

if length(flag1)+length(flag2)+length(flag3)>0

FLAG(i)=0;%如果不满足约束,用0加以标记

end

end

NN=length(find(FLAG)==1);%满足约束的个体数目,它一定大于等于N NEWFARM=cell(1,NN);

%以下过程是剔除不满主约束的个体

kk=0;

for i=1:(3*N)

if FLAG(i)==1

kk=kk+1;

NEWFARM{kk}=FARM{i};

end

end

%以下过程是计算并存储当前种群每个个体的适应值

SYZ=zeros(1,NN);

syz=zeros(1,N);

for i=1:NN

x=NEWFARM{i};

SYZ(i)=FITNESS2(x,NEWFARM,e,q,w);%调用适应值子函数

end

k=0;

%下面是选择复制,选择较优的N个个体复制到下一代

while k minSYZ=min(SYZ);

posSYZ=find(SYZ==minSYZ);

POS=posSYZ(1);

k=k+1;

farm{k}=NEWFARM{POS};

syz(k)=SYZ(POS);

SYZ(POS)=inf;

end

%记录和更新,更新最优个体,记录收敛曲线的数据

minsyz=min(syz);

meansyz=mean(syz);

pos=find(syz==minsyz);

LC3(counter+1)=meansyz;

if minsyz Best=minsyz;

Xp=farm{pos(1)};

end

LC4(counter+1)=Best;

ppp=(1-Xp)+(1-q).*Xp;

LC1(counter+1)=sum(w.*prod(ppp));

LC2(counter+1)=sum(sum(e.*Xp));

%% 第五步:变异

for i=1:N

if Pm>rand%是否变异由变异概率Pm控制

AA=farm{i};%取出一个个体

POS=unidrnd(50);%随机选择变异位

R=rand;

Col=zeros(4,1);

if R<0.7

RP=randperm(4);

Col(RP(1))=1;

elseif R>0.9

RP=randperm(4);

Col(RP(1:2))=1;

else

RP=randperm(4);

Col(RP(1:3))=1;

end

%下面是判断变异产生的新个体是否满足约束,如果不满足,此次变异无效 AA(:,POS)=Col;

Temp1=sum(AA,2);

Temp2=find(Temp1>20);

if length(Temp2)==0

farm{i}=AA;

end

end

end

counter=counter+1

end

%第七步:绘收敛曲线图

figure(1);

plot(LC1);

xlabel('迭代次数');

ylabel('子目标1的值');

title('子目标1的收敛曲线');

figure(2);

plot(LC2);

xlabel('迭代次数');

ylabel('子目标2的值');

title('子目标2的收敛曲线');

figure(3);

plot(LC3);

xlabel('迭代次数');

ylabel('适应度函数的平均值');

title('平均适应度函数的收敛曲线'); figure(4);

plot(LC4);

xlabel('迭代次数');

ylabel('适应度函数的最优值');

title('最优适应度函数的收敛曲线');贴出一幅运行得到的收敛曲线

实例matlab-非线性规划-作业

实例matlab-非线性规划-作业

现代设计方法-工程优化理论、方法与设计 姓名 学号 班级 研 问题 : 某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台。每季度的生产费用为 (元),其中x 是该季生产的台数。若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元。已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低。讨论a 、b 、c 变化对计划的影响,并作出合理的解释。 问题的分析和假设: 问题分析:本题是一个有约束条件的二次规划问题。决策变量是工厂每季度生产的台数,目标函数是总费用(包括生产费用和存储费)。约束条件是生产合同,生产能力的限制。在这些条件下需要如何安排生产计划,才能既满足合同又使总费用最低。 问题假设: 1、工厂最大生产能力不会发生变化; 2、合同不会发生变更; 3、第一季度开始时工厂无存货; 4、生产总量达到180台时,不在进行生产; 5、工厂生产处的发动机质量有保证,不考虑退货等因素; 6、不考虑产品运输费用是否有厂家承担等和生产无关的因素。 符号规定: x1——第一季度生产的台数; x2——第二季度生产的台数; 180-x1-x2——第三季度生产的台数; y1——第一季度总费用; y2——第二季度总费用; y3——第三季度总费用; y ——总费用(包括生产费用和存储费)。 ()2bx ax x f +=

建模: 1、第一、二、三季度末分别交货40台、60台、80台; 2、每季度的生产费用为 (元); 3、每季度生产数量满足40 ≤x1≤100,0≤x2≤100,100≤x1+x2 ≤180; 4、要求总费用最低,这是一个目标规划模型。 目标函数: y1 2111x b x a Z ?+?= y2()4012222-?+?+?=x c x b x a Z y3()()()10018018021221213 -+?+--?+--?=x x c x x b x x a Z y x x x x x x Z Z Z Z 68644.04.04.0149201 212221321--+++=++= 40≤x1≤100 0≤x2≤100 100≤x1+x2≤180 ()2 bx ax x f +=

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

运用Matlab进行线性规划求解(实例)

线性规划 线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。 8.2.1 基本数学原理 线性规划问题的标准形式是: ????? ??????≥=+++=+++=++++++=0,,,min 21221122222121112 121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z 或 ???? ?????=≥===∑∑==n j x m i b x a x c z j n j i j ij n j j j ,,2,1,0,,2,1,min 1 1 写成矩阵形式为: ?? ???≥==O X b AX CX z min 线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。不符合这几个条件的线性模型可以转化成标准形式。 MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。 8.2.2 有关函数介绍 在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。 linprog 函数的调用格式如下: ●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。 ●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。若没有不等式约束,则令A=[ ],b=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。若没有等式约束,令Aeq=[ ],beq=[ ]。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。该选项只适用于中型问题,默认时大型算法将忽略初值。 ●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。 ●[x,fval]=linprog(…):返回解x 处的目标函数值fval 。 ●[x,lambda,exitflag]=linprog(…):返回exitflag 值,描述函数计算的退出条件。 ●[x,lambda,exitflag,output]=linprog(…):返回包含优化信息的输出参数output 。 ●[x,fval,exitflag,output,lambda]=linprog(…):将解x 处的拉格朗日乘子返回到lambda 参数中。

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

Matlab非线性规划

一般非线性规划 标准型为: min F(X) s.t AX<=b b e q X A e q =? G(X)0≤ Ceq(X)=0 VLB ≤X ≤VUB 其中X 为n 维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab 求解上述问题,基本步骤分三步: 1. 首先建立M 文件fun.m,定义目标函数F (X ): function f=fun(X); f=F(X); 2. 若约束条件中有非线性约束:G(X)0≤或Ceq(X)=0,则建立M 文件nonlcon.m 定义函数G(X)与Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=... 3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下: (1) x=fmincon (‘fun’,X0,A,b) (2) x=fmincon (‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon (‘fun’,X0,A,b, Aeq,beq,VLB,VUB) (4) x=fmincon (‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon (‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options) (6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...) 注意: [1] fmincon 函数提供了大型优化算法和中型优化算法。默认时,若在

遗传算法解决非线性规划问题的Matlab程序

通常,非线性整数规划是一个具有指数复杂度的NP问题,如果约束较为复杂,Matlab优 化工具箱和一些优化软件比如lingo等,常常无法应用,即使能应用也不能给出一个较为令 人满意的解。这时就需要针对问题设计专门的优化算法。下面举一个遗传算法应用于非线性整数规划的编程实例,供大家参考! 模型的形式和适应度函数定义如下: nun £ =迟叼匸[(1_冏)督 i-1 /-I J=K乙员-??严丿=12 M…严 ▼ 0 或1* 适应度函数为3 Fi tn叱O)=》〔?巾1口{>?(卡(£)一/;0?门))转幷亠 Z j'-i 50 4 S0 其中比=2、即士£ = £ =瓦%■,口(1-务),马;j^ = s = ■ x v' y- to.8,02)., /-I i-L i-1 E 这是一个具有200个01决策变量的多目标非线性整数规划,编写优化的目标函数如下,其 中将多目标转化为单目标采用简单的加权处理。 fun ctio n Fit ness=FITNESS(x,FARM,e,q,w) %%适应度函数 %输入参数列表 % x 决策变量构成的 4X50的0-1矩阵 % FARM 细胞结构存储的当前种群,它包含了个体x

% e 4 X50的系数矩阵 % q 4 X50的系数矩阵 % w 1 X50的系数矩阵 %% gamma=0.98; N=length(FARM);% 种群规模 F1=zeros(1,N); F2=zeros(1,N); for i=1:N xx=FARM{i}; ppp=(1-xx)+(1-q).*xx; F1(i)=sum(w.*prod(ppp)); F2(i)=sum(sum(e.*xx)); end ppp=(1-x)+(1-q).*x; f1=sum(w.*prod(ppp)); f2=sum(sum(e.*x)); Fitness=gamma*sum(min([sign(f1-F1);zeros(1,N)]))+(1-gamma)*sum(min([sign(f2- F2);zeros(1,N)])); 针对问题设计的遗传算法如下,其中对模型约束的处理是重点考虑的地方 function [Xp,LC1,LC2,LC3,LC4]=MYGA(M,N,Pm) %% 求解 01 整数规划的遗传算法 %% 输入参数列表

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

完整word版matlab解非线性规划例题

关于非线性规划问题 背景: 线性规划问题,即目标函数和约束条件都是线性函数的规划问题,但在实际工作中,还常常会遇到另一类更一般的规划问题,即目标函数和约束条件中至少有一个是非线性函数问题,即非线性规划问题。 求解方法:Matlab软件 问题: 某厂向用户提供发动机,合同规定,第一、二、三季度末分别f(x)?ax?bx^2(元)交货50台、70台、90台。,每季度的生产费用为x是该季度生产的台数,若交货有剩余可用于下季度交货,但需其中c元。已知工厂每季度最大生产能力为100支付存储费,每季度每台bca=4,问工厂如何安排每台,第一季度开始时无存货,设=0.2,=50,月生产计划,才能既满足合同又使总费用最低(包括生产费用和库存费用)。 问题分析与假设: F(x)。目标函数是总费用,记为约束条件是生产合同和生产能力的限制。 x1x2台,则第三季度生产台,第二季度生产设第一季度生产(210?x1?x2)台。则: 120?x1?x2?210 50?x1?1000?x2?100 bca=4,

=0.2,=50,由. T1?50x1?0.2x1^2,第一季度生产费用 k1?4(x1?50),剩余品存储到下一季度的费用 T2?50x2?0.2x2^2同理可得: k2?4(x1?x2?120) T3?50(210?x1?x2)?0.2(210?x1?x2)^2 建模 总费用 F(x)?T1?T2?T3?k1?k2?10300?0.2(x1^2?x2^2)?0.2(210?x1?x2)^2?4(2x1?x2?120)先建立M-文件: a=50;b=0.2;c=4; H=diag(2*b*ones(1,3));C=[a+2*c,a+c,a]; A1=[-1,0,0;-1,-1,0];b1=[-50,-120]'; A2=[1 1 1];b2=210; v1=[0 0 0]';v2=[100 100 100]'; [x,faval,exitflag,output,lambada]=quadprog(H,C,A1,b1,A2,b2,v1,v2,[]) X2=x'*H*x/2+C*x-140*c 再建立主程序: a=50;b=0.2;c=4; H=diag(2*b*ones(1,3));C=[a+2*c,a+c,a]; A1=[-1,0,0;-1,-1,0];b1=[-50,-100]'; A2=[1 1 1];b2=210; v1=[0 0 0]';v2=[100 100 100]'; [x,faval,exitflag,output,lambada]=quadprog(H,C,A1,b1,A2,b2,v1,v2,[]) X2=x'*H*x/2+C*x-140*c 运算结果: x =

MATLAB非线性优化fmincon

active-set and sqp algorithms 不接受用户提供的海塞矩阵,对拉格朗日的海塞矩阵提供一个拟牛顿的近似值; 目标函数估值次数与迭代次数? 优化成功或失败 一、求解失败 1、在到达迭代次数阈值或目标函数估值次数阈值时,求解器没有最小化目标到要求的精度,此时求解器停止。接下来,可以尝试以下方法: (1)设置‘Display’为‘iter’,查看每步的迭代信息,这些信息包括:目标函数(Fval or f(x) or Resnorm)是否是下降的;检查约束越界(Max constraint)是否是递减趋向于0;查看一阶优化是否是递减趋向于0;查看置信域半径(Trust-region radius)是否下降趋向于一个小的值。若其中至少一种情况为是,就表示结果是不断改善的。如果结果是不断改善的,可以采取下边的措施:设置MaxIter、MaxFunEvals比默认值大的值,默认值可以在优化工具箱或求解器的函数参考页的优化表中查看;从最后计算出的点开始重新求解。如果结果没有改善,尝试以下其他的方法。(2)放松精度 如果TolX或TolFun太小,当求解器达到一个最小值时可能也不会识别到,这就会导致无限次徒劳的迭代。DiffMaxChange和DiffMinChange选项能影响求解器的改善,它们控制求导估计中有限差分的步长。 (3)从不同的初始点重新开始求解

(4)检查目标函数和约束函数的定义 举个例子,可以检查目标函数和非线性约束函数在某些特定点处返回正确的值。不可行的点不一定导致函数的错误。 (5)对问题进行中心化和标准化 当每个坐标轴对目标函数和约束函数有相同的影响时,求解器更能可靠的运行,对每个坐标轴方向乘以合适的量使得每个坐标轴的影响相同,在特定的坐标轴上加上合适的值使得它们长度一致。 (6)提供解析的梯度和雅可比矩阵 如果用户不提供解析的梯度或雅可比矩阵,求解器会用有限差分来估计这些值,因此提供这些导数可以减少运算时间,提高计算准确度。 对于约束问题,提供梯度还有另一个好处----求解器到达一个点x 时能满足该点是可行的,但有限差分在x点周围可能会导致不可行的点,在这种情况下,求解器可能会失败或突然中断。(7)提供海塞矩阵 当提供海塞矩阵时,求解器能运行的更可靠,而且运行的次数比较少。 2、无可行点 在TolCon约束精度内,求解器不能找到一个满足所有约束条件的点,此时,可以尝试以下方法: (1)检查线性约束

遗传算法求函数极大值(matlab实现)

遗传算法求函数最大值(matlab实现) 一、题目: 寻找f(x)=x2,,当x在0~31区间的最大值。 二、源程序: %遗传算法求解函数最大值 %本程序用到了英国谢菲尔德大学(Sheffield)开发的工具箱GATBX,该工具箱比matlab自带的GATOOL使用更加灵活,但在编写程序方面稍微复杂一些 Close all; Clear all; figure(1); fplot('variable*variable',[0,31]); %画出函数曲线 %以下定义遗传算法参数 GTSM=40; %定义个体数目 ZDYCDS=20; %定义最大遗传代数 EJZWS=5; %定义变量的二进制位数 DG=0.9; %定义代沟 trace=zeros(2, ZDYCDS); %最优结果的初始值

FieldD=[5;-1;2;1;0;1;1]; %定义区域描述器的各个参数%以下为遗传算法基本操作部分,包括创建初始种群、复制、交叉和变异 Chrom=crtbp(GTSM, EJZWS); %创建初始种群,即生成给定 规模的二进制种群和结构gen=0; %定义代数计数器初始值variable=bs2rv(Chrom, FieldD); %对生成的初始种群进行十进制转换 ObjV=variable*variable; %计算目标函数值f(x)=x2 while gen

多目标非线性规划程序(Matlab)

function [errmsg,Z,X,t,c,fail] = BNB18(fun,x0,xstat,xl,xu,A,B,Aeq,Beq,nonlcon,setts,options1,options2,ma xSQPit,varargin); %·???D???êy1????£Dí?ó?a·??§?¨??μü′ú??·¨?£?úMATLAB5.3?Dê1ó?£?DèOptimizat ion toolbox 2.0?§3?? % Minimize F(x) %subject to: xlb <= x <=xub % A*x <= B % Aeq*x=Beq % C(x)<=0 % Ceq(x)=0 % % x(i)?é?aá?D?±?á?£???êy£??ò1ì?¨?μ % ê1ó???ê? %[errmsg,Z,X]=BNB18('fun',x0,xstat,xl,xu,A,B,Aeq,Beq,'nonlcon',setts) %fun£o M???t??£?±íê?×?D??ˉ??±êoˉêyf=fun(x) %x0: áD?òá?£?±íê?±?á?3??μ %xstat£o áD?òá?£?xstat(i)=0±íê?x(i)?aá?D?±?á?£?1±íê???êy£?2±íê?1ì?¨?μ %xl£o áD?òá?£?±íê?±?á????? %xu: áD?òá?£?±íê?±?á?é??? %A: ???ó, ±íê???D?2?μèê???ê??μêy %B: áD?òá?, ±íê???D?2?μèê???ê?é??? %Aeq: ???ó, ±íê???D?μèê???ê??μêy %Beg: áD?òá?, ±íê???D?2?μèê???ê?óò???μ %nonlcon: M???t??£?±íê?·???D???ê?oˉêy[C,Ceq]=nonlin(x),???DC(x)?a2?μèê???ê?, % Ceq(x)?aμèê???ê? %setts: ??·¨éè?? %errmsq: ·μ??′í?óìáê? %Z: ·μ????±êoˉêy×?D??μ %X: ·μ??×?ó??a % %àyìa % max x1*x2*x3 % -x1+2*x2+2*x3>=0 % x1+2*x2+2*x3<=72 % 10<=x2<=20 % x1-x2=10 % ?èD′ Moˉêydiscfun.m % function f=discfun(x) % f=-x(1)*x(2)*x(3); %?ó?a % clear;x0=[25,15,10]';xstat=[1 1 1]'; % xl=[20 10 -10]';xu=[30 20 20]'; % A=[1 -2 -2;1 2 2];B=[0 72]';Aeq=[1 -1 0];Beq=10; % [err,Z,X]=BNB18('discfun',x0,xstat,xl,xu,A,B,Aeq,Beq); % XMAX=X',ZMAX=-Z % % BNB18 Finds the constrained minimum of a function of several possibly integer variables. % Usage: [errmsg,Z,X,t,c,fail] = % BNB18(fun,x0,xstatus,xlb,xub,A,B,Aeq,Beq,nonlcon,settings,options1,opti ons2,maxSQPiter,P1,P2,...) % % BNB solves problems of the form: % Minimize F(x) subject to: xlb <= x0 <=xub

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用 (一) 问题描述 非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划是20世纪50年代才开始形成的一门新兴学科。70年代又得到进一步的发展。非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。目标函数和约束条件都是线性函数的情形则属于线性规划。本实验就是用matlab 软件来解决非线性规划问题。 (二) 基本要求 掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。 题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大? 题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定 系数. 题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大. (三) 数据结构 题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0

相关文档
相关文档 最新文档