文档库 最新最全的文档下载
当前位置:文档库 › 电机振动与噪声

电机振动与噪声

电机振动与噪声
电机振动与噪声

电动机振动和噪声是一个比较老的但又是一个仍然存在和难以解决的问题。引起电动机振动和噪声的原因很多,大致可归结为两个方面:

(1)电磁因素:如电路中电参数不平衡、磁拉力不平衡等;

(2)机械因素:如转子动平衡不好而引起的噪声等。永磁电动机与普通电动机相比有许多优点,磁钢代替普通

电动机中的励磁,提高了电动机效率,节省了材料并减小了电动机体积。但在永磁材料应用中还存在一些问题,如电动机噪声、振动增大等,因此,解决这些关键问题尤为重要。

我们首先要判别电动机的振动由何原因引起的,即电磁和机械原因判定。区分是电磁原因还是机械原因产生的方法是将电动机运转至最高转速,突然切断电源,若振动随之突然减小,振动则是电磁原因引起的;若振动变化不大,则主要是机械原因引起的。根据电动机振动噪声源的强弱程度,应首先治理电动机中最突出的振动噪声源,找出相应的减振降噪的具体措施,才能起到事半功倍效果。

1 电磁因素

电磁原因:(1)电磁力。这种电磁力主要是由极靴下磁通的纵振荡产生的,通常具有齿频率。由于直流电动机

固定在机座上的主极是集中质量,在交变磁拉力和主极集中力的作用下,使机座产生挠曲和横向振动。设计上采用非均匀气隙、电枢斜槽等,都是减少磁通振荡和振动电磁力的有效措施。(2)气隙的不均匀。由于装配气

隙不均匀,电动机运行时产生单边磁拉力,其作用相当于电动机转轴挠度增加。因此保证气隙装配均匀是防止振动的必要措施。(3)转子线圈损坏。由于转子线圈损坏使电动机运行时转子径向受力不均匀,其结果与转子

不平衡类似。不过,转子线圈损坏可用电枢检验仪测出。

根据以上产生电磁振动噪声的原因,可采取以下对策:

(1)合理的工艺结构和严格的工艺偏差在普通直流电动机中,负载时电枢反应使气隙磁场畸变,磁极下一边的

磁密比另一边的磁密大,造成气隙磁密不均、换向恶化。因此在主磁极间加装换向极,使换向极产生的磁场与交轴电枢反应磁场抵消,以改善换向条件,并可适当降低由换向不利引起的噪声。但在永磁电动机中,却因为永磁材料的使用而带来问题。作为磁极,磁钢是产生恒定不变的磁通的源,但它本身的磁阻却很大。在永磁电动机中,一般作为换向极的磁钢,其产生的磁势大小基本恒定,难以对空载、负载时不同的电枢反应作出相应的有效补偿,因此起不到降低由换向不利引起的噪音的作用。

在永磁电动机中,不论是以磁钢作定子或作转子,磁钢对铁心的齿槽效应不仅影响力学性能指标,而且也影响到噪声和振动。针对齿槽效应有两个办法:采用偏心气隙和人字形磁钢。

偏心气隙既是削弱电枢反应磁场的办法,也能削弱由齿槽效应产生的交变力引起的噪声和振动。它使气隙磁密发生变化,使本来很快进入磁极的齿槽变成逐渐进入,减少了磁钢对齿槽间气隙磁密的突变,试验证明,效果比较明显,尤其是在高速时。人字形磁钢的目的也是为了使齿或槽逐渐地进入磁钢,过渡部分一般为一个齿距t(如图1所示),对降低磁噪声也有较明显的效果。

通过试验发现,在永磁电动机中采用不均匀气隙对降低噪声比较有利。均匀气隙和两种不均匀气隙在空、负载时的电枢反应情况如图2所示。图2b是偏心气隙,气隙长度从磁钢中心线至极尖连续光滑增大,这样可有效抑制电枢反应引起的气隙磁场畸变,改善换向,也改善了磁钢因受电枢反应而产生的不可逆去磁现象。图2c 是磁钢尖端削角而其余部分气隙均匀的情况,圆弧两端各约六分之一长变成直线,实践证明两种情况都有效地抑制了电枢反应,偏心气隙有利于调速,但平均气隙磁密较低,而削角气隙比较好。

(2)使电动机结构件的固有频率与旋转齿频偏离

许多以磁振动噪声为主的电动机往往存在共振现象,避免共振效应可以大大降低电动机的磁振动噪声。要避免共振,除改变定子结构参数以改变固有频率外,还可以改变电枢齿数z。值得注意的是,发生共振现象的可能是定子的共振,也可能是端盖、转子的共振,甚至是整机的共振。电动机的固有频率十分丰富,要完全避免共振是不可能的,主要是避免旋转齿频与固有频率的接近和吻合。一般至少应使机壳、端盖的固有频率偏离齿频120%以上,转轴的临界转速应高于额定转速30%以上。

(3)多槽小齿距设计和斜槽

在电枢直径D一定的条件下,槽数的选择主要受到绕组形式、绕组对称条件及电动机效率的约束。电枢槽数增加一槽,换向片数增多,换向片距减小,换向区宽度变窄,减小了主磁场对换向元件的干扰;降低了片间电压;齿谐波磁密减小,则磁振动噪声、换向元件中的合成电势都减小;每极磁通减小,电枢铁心长度缩短。在满足电动机效率的前提下,采用多槽设计在降低磁振动噪声的同时会带来较多益处。斜槽式电枢使电动机气隙磁导变得均匀,削弱了齿谐波的有害影响,降低了齿槽效应引起的磁通脉动,既降低了磁振动噪声,也改善了电动机低速下的蠕动。通过实验表明电枢斜一个齿距降噪效果明显,约10 dB。

在磁钢的实际使用中,每块磁钢对铁心都存在磁拉力,若在整个圆周内磁拉力分布不均、则会使电动机产生噪声、振动,因此应该使同极性下气隙磁密尽可能接近,这就要求在磁钢装配前能被准确地测量。一般用普通特斯拉计仅能逐点测量一块磁钢上的各点磁密。为准确地测量每块磁钢的平均磁密可在专用测试工装上,设置几个测量元件,同时测量几个关键点的磁密并通过计算自动数显其平均值。用这个方法既提高了测量准确度,也提高了大批生产的效率。我厂在一系列永磁直流电动机中进行了试验,实践证明上述方法确实对解决永磁电动机的换向、噪声、振动等起到了一定的帮助。

2 机械因素

电动机的机械噪声主要从电动机结构设计、制造工艺和装配质量上进行控制。引起机械振动和噪声的原因很多,主要有三个方面:(1)转子不平衡;(2)零部件的加工工艺;(3)轴承因素。

由于结构不对称(如键槽等),材料质量不均匀(如厚薄不均或有砂眼)或制造加工的误差(如孔钻偏或其它)等原因,而造成转子的动不平衡,转动时由于偏心的惯性作用,将产生不平衡的离心力或离心力偶,在其作用下,引起电动机振动,从而产生噪声。转子铁心的直径与长度之比越大,轴承和各支撑部件的刚性差,转子转速高,对平衡精度要求较高些。

在转子生产过程中出现不平衡的主要因素可归纳为:(1)铁心厚度不一致;(2)压铁心时轴被压弯;(3)排线不良;

(4)线的张力不够;(5)线的质量问题;(6)转子浸漆、烘干时,有时需要卧置,上下两部分的涂漆不匀,造成不

平衡。

根据以上不良的主要因素,可采用以下对策:

(1)冲压时注意冲片各个尺寸是否合格;(2)冲片是否有落料变形问题,特别是尖角部分,是否有很大毛刺;(3)

材料厚度是否均匀,压后铁心厚度是否一致,这一点还将影响绕线时线圈的大小,造成不对称。通常,整张硅钢片一般中间厚、两边薄,所以在下料时,同一张硅钢片所下条料,应该顺次地叠放在

一起,如不注意则容易产生两端面不平行;(4)漆包线是否光滑,线径是否一致,线的软硬程度是否合适;(5)

绕线机是否正常;张力器的压头是否平行压线,滑轮转动是否灵活等。(6)操作人员是否合格;(7)平衡胶泥干后,转子的动平衡精度是否下降很多。我们先用去除铁心的方法做一次粗动平衡,然后用加重法做动平衡,这样不仅可以降低了平衡胶泥用量,而且可以使其精度变化不大。

零部件制造工艺要根据各自厂家的材料性质和加工设备等来确定本厂的加工工艺方案,作业守则。它对电动机的振动噪声也有很大的影响,主要体现在以下四个方面:

(1)转轴轴承档、端盖轴承室的加工精度和表面粗糙度也影响定、转子之间的同轴度,从而导致气隙不均匀,

产生单边磁拉力,电磁振动增大,附加噪声也随之增大。因此对转轴轴承档、端盖轴承室的精加工工序设立质量控制点,实施重点控制。严格控制轴承挡和轴承室精加工的质量,对于降低电动机的振动和噪声是有效的。(2)转轴弯曲造成不平衡的重量,其结果和转子不平衡相同。轴颈椭圆或转轴弯曲可用百分表在偏摆仪上测得,轴颈椭圆必须进行焊修或刷镀后磨圆处理,转轴弯曲时必须校直处理。

(3)机座、端盖重要支撑件制造误差或变形。由于机座、端盖等转子重要支撑件的配合面形位公差超差,特别是大、中型电动机运行较长时间后,机座、端盖等重要支撑件变形,使电动机在运行时轴承产生干扰力,造成电动机振动。这些配件的超差或变形可采用回转打百分表等方式测得,发现情况后,应对配件进行焊修等工艺方式处理,或更换配件。

(4)换向器表面的加工质量对电动机噪声的影响。常规换向器表面加工指标为:粗糙度Rα=1.6~0.8μm;全跳动≤0.008 mm。影响它的主要因素有:轴的圆度和直线度(轴应该有良好的圆度,但经过磨削加工的轴,与理想的圆度只能接近,而无法达到。轴在V形架上转动时,其轴心也随之变动,加工出的换向器也形成一个基本相似的不圆面。);换向器精切机的性能;合理的加工工艺参数;转子先进行有效的动平衡后再进行车削;换向器材质的好坏;点焊给换向器带来的影响。点焊过程实际上是退火过程,当点焊参数调节不当时,过量电流会引起换向器片的大范围发热。发热越多,退火程度和面积都越大。车削这种换向器时,运离点焊处会得到较好的车削效果,接近处,精度将明显下降。不规则的换向器将引起碳刷的不规则磨损,降低电动机使用寿命。在机械振动方面,轴承的影响是不可忽视的因素。轴承本身的问题(内外圈的粗糙度、圆度,滚珠的圆度、粗糙度、硬度,保持架的结构及材料等)及轴承游隙等都会对振动产生影响。尤其是滚动轴承,它产生一种固定频率的振动,由于它的油膜很薄,转子轴和轴承座之间的相对移动很小,除固定频率外,还可能存在着由于滚动轴承本身的弹性变形所引起的频率更高的振动,以及因轴承磨损而发生的不规则振动。对于磨损轴承,在电动机运转时其振动噪声频率较高,较易判断,及时更换轴承。

电动机装配后,轴承出现异常响声有时是连续的、有时是断续周期性的。通常的处理办法是换一套轴承,然而实践证明更换轴承并非都有效,尤其对出现周期性异常声响的电动机根本不起作用。一批zYTllO型电动机,装配后进行出厂检查,在振动测试过程中,出现周期断续异常响声。振动检查结果如表1所示。原以为是轴承问题,更换轴承后仍无效果;再将电动机进行拆检分析,有关部位尺寸均符合图纸要求;后发现是电动机采用的全封闭球轴承润滑脂时间过长造成的。更换后,异常响声立即消失,重新检测振动值,符合标准(换脂后试验结果如表1所示)。

承载区,其他称为非承载区。在钢球从非承载区的D运动到D的过程中,钢球自重与离心力的合力的大小及

方向不断发生变化,钢球交替与内外圈滚道碰撞,从而轴承内部产生异音。这种异音可以通过对轴承的预紧加以消除。因此,我厂ZYT系列电动机设计中要求前端轴承外圈必须有波形垫圈,其作用是给轴承外圈一定的

预紧力。通常这个预紧力(从试验中测得)如表2所示,若预紧力过小,轴承轴

向窜动量得不到控制;若预紧力过大,使轴承摩擦增大,温度上升,轴承寿命降低,甚至影响机械损耗。合适的压力是根据波形垫圈的软硬度确定,严格控制电动机的轴向问隙,以保证轴向预紧力在规定的范围,可以取得降低噪声3~5 dB(A)左右的好效果。

有了合适的轴向预紧力,并不能完全使电动机噪声不超标,轴承的径向工作游隙也是轴承噪声增大的主要原因。尤其是轴承径向工作游隙偏小或无间隙运行,噪声超标更为突出。从实验得知:轴承径向装配间隙(轴承室孔

与轴承之间)保证在O 012~0.017mm的范围内,就可基本消除无间隙或间隙偏小运行,轴承噪声显著降低。

经过多年的运行证明,本厂轴向预紧力选定和轴承室径向公差的改进是合理的,修改后的轴承噪声合格率较修改前提高了80%,电动机质量得到了保证。

通过上述实例分析,电动机轴承异常声响产生的主要原因是:(1)轴承本身质量问题(如发出高频振动声“哒哒…”,且频率随轴承转速而变化);(2)轴承位置的尺寸链公差超差造成的轴向窜动(电动机空载运转时发出类

似蜂鸣一样的声音,且轴向异常振动,开或关机时有“嗡”声音);(3)轴承径向工作游隙偏小或无间隙。为了消

除这种现象,电动机制造厂首先要保证尺寸的加工精度,按中间公差生产,避免出现公差极端现象,加强轴承进厂检查,装配前应清洗并涂上干净的润滑脂,这样可最大限度地避免产生轴承异常响声。

3 结语

电动机的振动噪声指标与电动机的电气和机械性能一样,应进行严肃地综合论证,否则得不偿失。一些行之有效的减振降噪措施往往影响电动机的主要技术指标和增大电动机的重量、尺寸和成本。如果过分地追求电动机的振动噪声指标,必须以牺牲电动机的技术和经济指标来换取。如:要大幅度地降低通风噪声就必须完善电动机的防护型式和冷却方法一闭式循环冷却。但也有不少例子说明,掌握了减振降噪规律后,只在结构和没计参数中作少量改动就可以大幅度地降低电动机的振动和噪声。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电机噪音分析

电机噪音分析 电机 1引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45 因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2pθ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产生较大的影响,而在一般情况下,由于它的频率较低,其影响不显著。 3.2谐波磁场产生的力波 谐波磁场产生的力波所引起的振动与噪声,一方面与该力波的幅值大小有关,也与力波的次数有

无刷电机振动和噪声

改善无刷电机电磁力矩产生的振动和噪声 1、斜槽:使铁心槽斜置、使磁钢或充磁呈倾斜状; 2、减小磁极间隙变化:对铁心磁极的端部进行直线或者圆弧状切割,使间隙尽量变宽; 3、使磁感应正弦波化:采用中间厚两边薄鱼糕状磁钢,使充磁波形正弦波化。磁钢极向异性化。 4、磁极的宽度和间隔变化:改变铁心极或者磁钢极幅度和间隔,使端部的影响平均化; 5、高频化:增加沟数,提高变化频率,使影响程度减小; 插入辅助沟、抵消槽的影响:绕线槽会造成磁场能量的变化,用插入辅助沟的方法来抵消这种影响; 6、槽和磁极相互配合:选择磁场能量变化少的槽数和磁极数; 7、铁心平滑化:如果采用无槽的空心绕线,从原理上讲可以彻底清除磁反应力矩。 控制器造成(控制器为正弦波驱动) 1、位置检测器的局限性:这主要归于数字轴编码器所提供的位置 信息有限分辨率。因为编码器是一个比较昂贵的部件,这就需要使用可能的最低方案来减少成本。一些运行要求可能需要使用特定种类的编码器,比如霍尔效应类型,它仅能提供比较低的分辨率。这样,这种局限性可能很容易变成永磁驱动系统的量化错误的主要来源,相对于诸如和有限CPU字长及A/D转换器的分辨率等量化错误,它会产生一个更大的转矩波动; 2、计算的错误:这主要归于有限的CPU字长。CPU字长在变量 和参数控制中会引起离散化的错误。另外,逻辑控制中的计算使得上面的错误得以传输和积累。最后结果会使控制电压或电流偏离理想的正弦值,从而导致转矩波动。 3、非完美的电流检测:理想的电流检测器一般是不存在的,所有 电流检测器都有固有的偏差并会产生偏离错误。因为磁场定位控建立在电流反馈,所以任何的电流检测错误都会直接影响转矩的性能。定量分析这种影响五一会对启动器的设计带来很大的益处。 4、PWM开关:这主要是因为使用一个PWM逆变器来产生正弦 波形的局限性。由PWM开关产生的电流会有一个和开关频率相应的高频纹波。高频纹波电流和电机的反电动势相互作用,从而产生一个高频转矩波动。另外,非同步的PWM频率和基波频率部分在转矩中会导致非周期的谐波,在开关和基波频率之间有一个相对比较低的比率时,这可能变得相当可观。

电机振动噪音的原因及解决措施通用范本

内部编号:AN-QP-HT811 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 电机振动噪音的原因及解决措施通用 范本

电机振动噪音的原因及解决措施通用范 本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹

电机噪音及振动分析

电动机的噪声和振动 电机类2007-06-18 22:02:51 阅读140 评论0 字号:大中小订阅 通常电动机的噪声和振动是同时发生的。电动机噪声包括通风噪声、电磁噪声和机械振动噪声。由于电动机修理操作不当。造成电机修理后的噪声和振动增大。原因如下: 电机修理后的噪声和振动增大引起原因 一、机械方面引起: 1、转子固定键未拧紧,有松动现象。 2、未做风扇静平衡,或做的精度不够。 3、转子不平蘅,未做静、动平衡检查。 4、定、转子铁心变形。 5、转轴弯曲,定、转子相擦。 6、地脚固定不稳,安装不正,不牢固。 7、铁心及铁心齿压板松动。 8、零部件加工不同心,装配公差不合理。 9、电动机组装和安装质量不好。 10、端盖、轴承盖螺丝未拧紧,或装偏。 二、电磁方面引起的: 1、三相绕组不平蘅。 2、绕组有短路或断路故障。 3、电刷接触不好,压力过大、过小。刷质不合要求。 4、断笼或端环开裂,松动。 5、改极时,定、转子槽数配合不适合。 6、集电环的短接片与短路环接触不稳定。 7、电源供电质量不好,三相不平蘅,有高次谐波等等。 三、风方面引起: 1、风扇有缺陷或损坏,如掉叶、变形、风扇不平衡产生噪声合振动。 2、风扇在轴上固定不牢固。 3、风罩与风叶之间的间隙不合适,过小或偏斜。 4、风路局部堵塞。 三种噪声简易鉴别方法

一、通风噪声鉴别法: 1、去掉风扇或堵住风口,让电机在无通风气流情况下运转,这时如果电动机噪声消失或显著减弱,则说明是通风噪声引起的。 2、变测量噪声的位置进行鉴别,因为以通风噪声为主的电动机,在电动机进口处和风扇附近处噪声最强。 3、磁噪声和机械噪声有时不稳定,时高时低,而通风噪声通常是稳定的。 4、用外径和型式不同的风扇,在不同转速下试运转,如果电动机噪声有明显差别,则说明电动机噪声主要是通风噪声引起的。 5、械噪声或电磁噪声较大的电动机,往往振动也大,但通风噪声与电动机振动关系不大。 二、机械噪声鉴别法: 1、机械噪声与外施电压大小和负载电流无关。 2、如果噪声不稳定,时高时低,那就是机械噪声,因为通风噪声是稳定的。 四、电磁噪声鉴别法:电磁噪声大小随磁场强弱、负载电流大小以及转速高低而变,利用这个特征,可采取下面办法进行鉴别。 1、突然断电法:由于机械惯性比电磁过渡过程慢得多,突然断电,无电磁因素影响,这是电动机转速几乎不变。如果这是电动机噪声突然消失或显著降低,可断定是电磁原因产生得噪声。 2、改变电压法:由于异步电动机转速随电压变化不大,当改变电压时,机械噪声和通风噪声基本不变,但电磁噪声随电压变化很大。 3、对拖法:用一台低噪声电动机拖动有噪声得被试电动机,这是噪声降低消失,则说明被拖动得电动机噪声是电磁噪声。 4、如果电磁噪声是因绕组不对称,匝间短路等缺陷引起,则三相电流不平蘅,如因转子断笼或绕线转子三相绕组不对称引起,则定子电流有波动。 解决噪声和振动的修理措施 一、降低机械方面引起的噪声的措施: 1、紧固所有装配件上的紧固螺栓,保证端盖,轴承盖,定、转子铁心,固定键,齿端板,风扇座,集流装置等配合不松动。 2、选用的轴承和润滑油,选用超精研磨、波纹度小于.2μM的电动机专用轴承,可降低轴承噪声。 3、装配轴承时要采用合理工具,最好热套。装配轴承时严禁猛打猛敲,使轴承受力不均。 4、增强修配零部件的机械强度的精度。 5、校正转子平衡。 6、提高电动机组装质量,保证同心度,与机械设备联接要正确,做好确定中心工作。 7、电刷硬度适当降低,刷压要合适,电刷在刷盒内间隙要合适(一般0.1MM左右) 8、检查铁心的偏心情况,必要时可适当当车圆转子表面(控制切削量0.10-0.20MM)。 9、检查电动机轴伸盒集电环的偏摆,时之合格。

电机电磁噪声的分析

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数m 为, ()()12m Z p Z p =±+±±+ 式中1Z 、2Z - 定、转子槽数、p -极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子60 相带整数槽绕组)为: ()()26m Kp p Z p =+±±+ 式中012K =±±?、、 定转子二阶齿谐波作用产生的力波次数为: ()()1222m Z p Z p =±+±±+ 在设计时,应尽量避免定转子槽配合产生较低的m ,另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即 2Z 与 1Z 相差较大及21Z Z ?, 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用,在定子铁心齿上产生的磁力有径向和切向两个分量。 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可以达到降低噪声的选择条件。 Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

电机振动噪音的原因及解决措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电机振动噪音的原因及解决措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7734-93 电机振动噪音的原因及解决措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。

4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。 ·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

电机振动噪音的原因及解决措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.电机振动噪音的原因及解决措施正式版

电机振动噪音的原因及解决措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,

轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性

电机噪音分析

电机噪音分析 本文转载自湘电集团有限公司https://www.wendangku.net/doc/fb1929558.html,/ 1 引言 噪声是由物体的振动产生的,再通过空气或其它弹性介质才能传播到人的耳朵。它由很多杂乱无章的单调声音混合而成。其中20Hz~20000Hz是人们耳朵可以听到的频率。低于20Hz的波叫次声波,高于20000Hz的波叫超声波。 噪声直接影响人们的身体健康,太强或长时间噪声,会使人十分痛苦、难受,甚至使人耳聋或死亡。噪声是现代社会污染环境的三大公害之一。为了保障人民的身体健康,国际标准化组织(ISO)规定了人们容许噪声的标准,如表1。 表 1 每天最长工作时间(h)8 4 2 - 噪声dB(A) 85 93 96 115(最大) 电机是产生噪声的声源之一,电机又在家庭、商业、办公室以及工农医等行业广泛而大量地应用着,与人民的生活密切相关。随着社会的进步,人们对污染环境的噪声提出了越来越高的要求与限制,尤其对与人们密切接触的家用电器更是如此。这方面,先进国家尤其重视。我国政府历来重视人民的健康,对限制噪声不遗余力。表2是我国产品标准规定的部分家用电器的噪声限值。 表2 我国部分家用电器的噪声限值dB(A) 电冰箱(250升以下)洗衣机吸油烟机电磁灶吸尘器洗衣机镇流器空调器(2500W、分体式) 52 75 75 50 84 72 35 45

因此,尽量降低电机的噪声,生产低噪声的电机,给人们创造一个舒适、安静的环境是每个设计者与生产者的职责。 2 电机噪声的分类 根据电机噪声产生的不同方式,大致可把其噪声分为三大类: ①电磁噪声;②机械噪声;③空气动力噪声。 3 电磁噪声 电磁噪声主要是由气隙磁场作用于定子铁芯的径向分量所产生的。它通过磁轭向外传播,使定子铁芯产生振动变形。其次是气隙磁场的切向分量,它与电磁转矩相反,使铁芯齿局部变形振动。当径向电磁力波与定子的固有频率接近时,就会引起共振,使振动与噪声大大增强,甚至危及电机的安全。 根据麦克斯韦定律,气隙磁场中单位面积的径向电磁力按下式计算: 式中:B——气隙磁密 θ——机械角位移 μ0——真空磁导率 由于定、转子绕组中存在着主波磁势与各次谐波磁势,它们相互作用可以产生一系列的力波。 3.1 主波磁场产生的力波 主波磁场B1所产生的径向力波为:Pr1=P0+P1,式中,是径向力的不变部分,它均匀作用于圆周上,使定子铁芯受到压缩应力。不变部分不会产生振动与噪声。P1=P0cos(2p θ-2ω1t-2θ0),其中p主波的极对数,ω1—主波的角速度,θ0—初相角。P1是径向力波的交变部分,这个力波的角频率是2ω1,即2倍的电源频率,它使定、转子产生2倍电源频率的振动与噪声。它的强度与气隙磁密的平方成正比。这在两极的大容量电机中,容易产

电机的振动、噪音和发热

电机的振动、噪音和轴承高温 S 一般评估电动机的品质除了运转时之各特性外,以人之五感判断振动及噪音的情形较多。而电动机产生的振动噪音,主要有: 1、机械振动噪音,为转子的不平衡重量,产生相当转数的振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的噪音。 4、流体噪音,风扇或转子引起通风噪音对电动机很难避免,很多情形左右电动机整体的噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之噪音,又磁通密度饱和或气隙偏心引起磁的噪音。 一、机械性振动的产生原因与对策 1、转子的不平衡振动 A、原因: ·制造时的残留不平衡。 ·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常振动与噪音 A、原因:

·轴承内部的伤。 ·轴承的轴方向异常振动,轴方向弹簧常数与转子质量组成振动系统的激振。 ·摩擦音:圆柱滚动轴承或大径高速滚珠轴承产生润滑不良与轴承间隙起因。 B、对策: ·轴承的替换。 ·适当轴方向弹簧预压给轴承间隙的变动。 ·选择软的滑脂或低温性优秀的滑脂,残留间隙使小(须注意温升问题)。 3、电刷滑动音 A、原因: ·整流子与电刷的滑动时的振动电刷保持器激振产生 B、对策: ·握刷的弹性支持、选择电刷材质与形状、抑制侧压引起的电刷振动及提高整流子的精度等。 二、流体噪音的产生与对策 电动机的流体噪音中,主要为冷却用的风扇引起的噪音。此外,转子铁心的槽开口部接近静止侧的部份,变成显著气笛音,再则通风路等如存在共鸣空间,产生显著的共鸣者。 1、风扇噪音的大小: 电动机一般求两方向转动,风扇的叶片为径向直线叶片,效率不良,而且噪音大。噪音值约由下式来求。但测定电动机的轴中心高度,距离有1m的情形。 噪音dB(A)=70 log D+50 log N+ D:叶片的外径(m),N:每秒的转数,:常数32~36, 由上式,降低噪音位准,以减少风扇的外径较重要。但吐出风量与风压低下,与这些的配合变成重要。风扇在外框的内部时有减音或遮音效果。 2、风扇噪音的频率依不同类型而有差异。 ·压力噪音,为风扇的叶片空气受压力冲击产生。 ·扰流噪声,为叶片周边空气流动的扰乱起因者,径向直线叶片的风扇,电动机的用途上可说不可避免。·风扇与其它部份的干涉引起的气笛音,为接近转动叶片存在其它部份空气如流通,产生激烈的气笛音。 三、电磁噪音(感应电动机)

电机振动噪音的原因及解决措施

电机振动噪音的原因及 解决措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机振动噪音的原因及解决措施电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。 ·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。

电机振动噪音的原因及对策

电机振动噪音的原因及对策 发表时间:2019-09-17T09:08:06.447Z 来源:《基层建设》2019年第18期作者:赖桂青 [导读] 摘要:世界经济的发展和制造自动化的提高,电机的用量与日俱增。 广东松下环境系统有限公司 528305 摘要:世界经济的发展和制造自动化的提高,电机的用量与日俱增。尤其是在新能源汽车、家电及工业等领域内得到广泛应用,但是由于电机噪音的不合格引起相关产品的振动、噪音问题,会影响电机的可靠性和安全性。关于电机噪音的研究十分复杂,其中涉及机械振动、物理声学、数学、电磁等多个领域,它不仅仅受电机某个运动部件的影响,还要考虑电机的整体。根据噪音产生的原因,通常将电机噪音分为电磁噪音、机械噪音和空气动力噪声。 关键词:电机噪音、原因、对策 引言 振动与噪音是电机重要的技术指标,如何降低电机的振动与噪音是中小型电机行业中普遍存在的问题。根据噪音产生的原因,通常将电机噪音分为电磁噪音、机械噪音和通风噪音。 1 电磁噪音 电机电磁噪声产生原因分析电磁噪声是由在时间上和空间上作变化,并由电机各部分之间作用的磁拉力引起的。 对于异步电机电磁噪声的形成的原因可以归为: (1)气隙空间的磁场是一个旋转力波,它的径向力波使定子和转子发生径向变形和周期性震动,产生了电磁噪声。 (2)气隙磁场中除了电源基波分量外,还有高次谐波分量,高次谐波的径向力波也都分别作用于定转子铁心上,使它们产生径向变形和周期震动,在一般情况下,对高次谐波来说,电动机转子刚度相对较强,定子铁心的径向变形是主要的,可能产生较大的噪声。(3)定子铁心不同阶次谐波的变形,有不同的固有频率,当径向力波的频率与铁心的某个固有频率接近或相等时,就会引起“共振”。在这种情况下,即使径向力的波幅不大,也会导致铁心变形、周期性震动和产生较大噪声。 (4)定子变形后引起周围空气振动,从而产生噪声。这时,定子相当于一个声辐射器。 (5)当铁心饱和时,将会使磁场正弦分布的顶部变得平坦,在磁场分布中加大了三次谐波分量,将使电磁噪声增加。 (6)定转子的槽都是开口的,气隙磁导在旋转时也是在变化和波动的。气隙磁场中出现了很多由于槽开口引入的谐波。 1.1电磁噪音的降低对策 (1)定子、转子的槽数配合。对电机振动和噪音起主要作用的是振动阶数较低、幅值较大的力波,高阶数或磁场幅值较小的力波可以不用考虑。 (2)采用斜槽,不管空载还是负载状态下,斜一个槽距以上的电磁噪音明显低于直槽。这是由于定子或转子采用斜槽能有效地削弱谐波磁场引起的附加转矩和电磁噪音,所以电机转子往往采用斜槽,而且对电机其他性能影响很小,但会使径向力沿轴向长度相位不同,产生了扭转力矩,导致铁心扭转振动,产生噪音。 (3)增大电机气隙。定转子间气隙长度δ增大,气隙磁道降低,可降低气隙谐波磁通密度,由于声功率近似与振幅平方成正比,振动幅值和径向力成正比,径向力与气隙磁密平方成正比,磁通密度与气隙δ成反比。因此,增大气隙长度可降低电磁噪音,但会使电机的功率系数降低,空载电流增大,基本损耗增加,需综合考虑。 2.机械噪音 机械噪音是由电机运转部分的摩擦、撞击、不平衡以及结构共振形成的。还有很大机械噪音都是由轴承引起的。由于轴承随电机转子一起旋转,因滚珠、内圈、外圈表面的不光滑,它们之间有间隙,滚珠的不圆或内部混合杂物,而引起它们间互相碰撞产生振动与噪声。其产生的噪声值与滚珠、内外圈沟槽的尺寸精度、表面粗糙度及形位公差等有很大关系。有人认为,只要采用精密轴承就可以降低轴承噪声,殊不知使用后,反而使噪声增加。原因是轴与轴承内圈的配合过紧,使精密轴承的内圈变形大于普通轴承的变形量,因而跳动、振动加大,噪声上升。所以轴承与轴承室、轴的配合也是非常重要的。 2.1机械噪音的降低对策 (1)根据电机的性质、规格和使用环境严格选择电机转子的平衡精度,减少转子铁芯偏心产生的噪音。 (2)一般应采用密封轴承,防止杂物进入; (3)轴承生产厂在轴承装配前,对滚珠、内圈、外圈的机加工一定要达到设计要求,在装配时,应有严格的退磁清选工序,洗去油污与铁屑。 事实证明,清洗后的轴承比清洗前的轴承噪声一般降低3dB。润滑脂一定要清洁干净,绝不能含有任何铁屑、灰尘和杂质; (4)轴承外圈与轴承室的配合、内圈与轴的配合,一般不宜太紧。轴承外圈与轴承室的配合,其径向间隙宜在3~9μm 的范围内;(5)为消除转子的轴向间隙,必须对轴承施加适当的压力。一般选用波形弹簧垫圈或三点式弹性垫圈,且以放在轴伸端为宜;(6)在装配轴承前,应对轴承进行清洗和消磁,并涂抹相应型号的润滑油,装配时采热胀法,并且轴承压入时应使轴承内圈受力,外圈不能受力,否则会产布氏压痕,从而产生轴承噪音。 3.空气动力噪声 电机的空气动力噪声是由旋转的转子及随轴一起旋转的扇叶,造成空气的流动与变化所产生的。扇叶和转子上某些凸出部位使空气产生冲击和摩擦形成通风噪音,且随扇叶和转子圆周速度的增高而增大,强度与扇叶和通风道的设计好坏有关。也和风道截面的变化和风道形状有关。扇叶噪声在电机的噪声中往往占主要地位。 3.1空气动力噪声降低对策 (1)扇叶的设计风叶采用奇数叶片,最好采用不等分的叶片间距;风叶采用后倾式,并用圆角过渡;合理选择叶片形状;扇外径与端盖间的距离为扇叶外径的10%-15%;扇叶应具有良好的动平衡。 (2)风道中尽量减少障碍物,有专用风道的宜采用流线形风道,风道 的截面变化不要突然;风道的设计合理设计风路系统,降低空气阻尼;改变风道方向时,采用大的半径;风道截面积应逐渐变化。

电机振动噪音的原因及解决措施示范文本

电机振动噪音的原因及解决措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电机振动噪音的原因及解决措施示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 电机振动噪音的原因及解决措施一般评估电动机的品 质除了运转时之各特性外,以人之五感判断电机振动及电 机振动噪音的情形较多。而电动机产生的电机振动电机振 动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重 量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密 小型电动机或高速电动机情形以外,几乎不会有问题。但 轴承自然的电机振动与电动机构成部材料的共振,轴承的 轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生 摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。 ·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。

电机噪音知识

一、电机噪声分类分为三类: 电磁噪声、机械噪声、空气动力噪声等。1.电磁噪声为电机空隙中的磁场脉动,引起定子、转子和整个电机结构的振动所产生的一种低频噪声。其数值大小决定于电磁负荷与电机的设计参数。电磁噪声主要是结构噪声,分为:恒定电磁噪声、与负载有关的磁噪声等,主要原因是由于定、转子槽的配合不当,定、转子偏心或气隙过小以及长度不一致等。2.机械噪声是电机运转部分的摩擦、撞击、不平衡以及结构共振形成的噪声。机械原因引起的噪声种类很多,也很复杂。噪声源主要有:自身噪声源,负载感应噪声源,辅助零部件的机械噪声源。归结为加工工艺、加工精度、装配质量等问题产生。一般是由电刷与换向器、轴承、转子、通风系统等产生。据此可将机械噪声分为:电刷噪声、轴承噪声、风扇噪声、负载噪声等。二、判断噪音种类采用切断电源法,利用电磁噪声随磁场强弱、负载电流大小及转速高低而变的特征,对空载运行的电机静听一段时间后突然切断电源。随着电源的切断,部分噪声会立即消失,此为电磁噪声。停电后电机借惯性继续运转产生的噪声则为机械噪声。----------------------------------交流电动机在运行中由于摩擦、振动、绝缘老化等原因,难免发生故障。这些故障若及时检查、发现和排除,能有效地防止事故的发生。三、异步电机的故障检查 1.听声音,仔细找故障点交流异步电机在运行中,若发现较细的“嗡嗡”声,没有忽高忽低的变化,是一种正常的声音,若声音粗、且有尖锐的“嗡嗡”、“咝咝”声是存在故障的先兆,考虑以下原因: (l)铁芯松动电机在运行中的振动,温度忽高忽低的变化,会使铁芯固定螺栓变形,造成硅钢片松动,产生大的电磁噪声。 (2)转子噪声转子旋转发出的声音,由冷却风扇产生的,是一种“呜呜”声,著有像敲鼓时的“咚咚”声,这是电机在骤然启动、停止、反接制动等变速情况下,加速力矩使转子铁芯与轴的配合松动所造成的,轻者可继续使用,重者拆开检查和修理。 (3)轴承噪声电机在运行中,必须注意轴承声音的文化,把螺丝刀的一端触及在轴承盖上,另一端贴在耳朵上,可以听到电机内部的声音变化,不同的部位,不同的故障,有不同的声音。如“嘎吱嘎吱”声,是轴承内滚枪的不规则运动所产生,它与轴承的间隙、润滑脂状态有关。“咝咝”声是金属摩擦声,一般由轴承缺油于磨所致,应拆开轴承添润滑脂剂等。 2.利用嗅觉,分析故障电机在正常运行中是没有异味的,若嗅到异昧,便是故障信号,如焦糊味,是绝缘物烧烤发出的,且随电机温度的升高,严重时还会冒烟;如油焦味,多半是轴承缺油,在接近干磨状态时油气蒸发出现的异味。 3.利用手感,检查故障用手触摸电视的外壳,可以大致判断温升的高低,若用手一触及电机外壳便感到很烫,温度值很高,应检查原因,如:负荷过重、电压过高等,然后针对原因排除故障。四、常见故障的原因 1.电动机没有启动力矩,或空载时不能启动,并发出不正常声音。原因: (l)三相电源电路(包括闸刀开关、引线定子绕组)有一相断电,造成单相启动。 (2)电源电压过低。 (3)轴承过度磨损,使转子靠近定子的一侧,造成定子与转子不同心,气隙不均匀。 2.电动机启动力矩小,有载时不能启动,负载增大时电机停转,有时发出强烈杂声,局部发热。原因:电网电压低,绕组有匝间短路,转子绕组中有断线或脱焊现象,启动后一相断线造成单相运行。 3.启动电流大,而且不平衡,声响大,造成保护装置动作而切断电源。原因:定子绕组接线方法可能不正确,绕组对地绝缘老化。电机噪音大无非有两方面的原因:机械方面和电气方面。 1.机械方面如电机冷却风扇损坏或刮擦电机外壳,电机固定不稳等。这方面的情况好处理一些,只要能找到噪音源,一般好处理。 2.电气方面 (1)变频器载波频率设置太低可以适当把载波频率设置高些,但这时又会带来一些问题,如果载波频率调得太高,又会对其它设备造成干扰,尤其是当采用PLC通讯方式时。因此要根据现场的实际情况设置载波频率。 (2)电机共振有时,电机在运行时的某一频段会产生机械共振。这时可以利用变频器的跳频设置方法。一般变频器都有“跳频”设置,其作用是:设置电机共振的频率,当变频器运行到此频段时,跳过此

电机电磁噪声的分析资料

电机电磁噪声的分析 定转子的槽配合的选择对电磁噪音的影响很大,选择合适的槽配合是降低电磁噪音最有效、最经济的方法,因此,在选择定转子槽配合时要慎重。要避免出现幅值较大,次数较低的力波,幅值较大的定转子齿谐波磁场由定转子槽数决定,由电机学,可知定转子一阶齿谐波作用产生的力波次数 m 为, 12m Z p Z p 式中1Z 、2Z - 定、转子槽数、p -极对数 定子相带谐波与转子一阶齿谐波作用产生的力波次数(对定子 60 相带整数 槽绕组)为: 26m Kp p Z p 式中012 K 、、定转子二阶齿谐波作用产生的力波次数为: 1222m Z p Z p 在设计时,应尽量避免定转子槽配合产生较低的m , 另外齿谐波幅值随转子槽数增大而减小。因此,为了降低电机的电磁噪音,在选择定转子槽数时应采用远槽多槽配合,即2Z 与1Z 相差较大及21Z Z , 电动机二维(力波频率与力波阶次)电磁噪声理论 由异步电动机气隙磁密波的作用 ,在定子铁心齿上产生的磁力有径向和切向两个分量。 径向分量使定子铁心产生的振动变形是电磁噪声的主要来源;

切向分量是与电磁转矩相对应的作用力矩,它使齿对其根部弯曲,并产生局部振动变形,这是电磁噪声的一个次要来源; 电磁噪声一般在极数较多、功率较大的电机中比较明显,并且是引起负载时噪声增大的重要原因。 三相异步电动机运行时,气隙中存在基波与一系列谐波磁场,它们相互作用 除产生引起转矩的切向力外,还会产生许多高次、频率且各不相同的旋转径向电磁力波,这些径向力波作用在定转子上,使它发生径向周期性变形,即产生频率等于径向力波频率的振动,该振动传到机座,引起机座的振动,从而又使机座周围的空气脉动而引起电磁噪声,电机本身都有固有的振动频率,当径向力波频率与电机的固有频率相同或相近时,就会引起共振,产生很大的电磁噪音。 笼型异步电动机电磁噪声的频带通常为700 ~4000Hz 。在这个频率范围内,人的耳朵有很高的灵敏度,因而引起强烈的噪声感觉,严重时表现为十分刺耳的啸叫声。 降低电动机电磁噪声的基本条件,除了使力波频率远离电动机固有频率这一传统条件以外,电动机二维电磁噪声理论又增加一个使力波阶数不等于模态振型阶数这个新条件。因此,二维电磁噪声理论给电动机槽配合的选择提供了两个可 以达到降低噪声的选择条件。 Y系列电动机的主要模态振型阶数大多数是2阶的,所以异步电机避免产生高电磁噪声的经验是消除2阶力波,二维电磁噪声理论给予异步电动机设计中槽配 合的选择增加了必须考虑降低电磁噪声的新内容: 1.计算电磁力波阶数和力波频率; 2.计算电动机结构的模态参数,特别是模态频率和模态振型阶数;

有关电机噪音和振动

第一章电机振动的产生以及控制 低频测振 1.1 电机产生振动的原因 1)电机所用的绝缘材料、叠片铁心、线圈嵌线等零部件的组成方式,使其结构刚度和运行时的热胀冷缩条件比较复杂 2)电机转子存在的不平衡量 3)电机内的电磁力 4)输入端受到的扭转冲击,以及输出端受到的电网冲击 1.2 电机振动产生的危害 1)电机转子弯曲、断裂. 2)转子磁极松动,造成定子和转子相互擦碰 3)加速电机轴承的磨损,使轴承的正常寿命大大缩短? 4)电机端部绑线松动,造成端部绕组相互摩擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿 1.3 需要明确的几个基本概念 固有频率和振型 振动响应(幅值和相位) 1.4 电机振动的形式及其控制 1.4.1 电机定子铁心的振动 定子铁心的振动主要是由电磁力造成的,产生椭圆形、三角形、四边形等振型。(齿部高频分量较多) ?当定子叠片铁心内有交变磁场通过时,会产生轴向振动,若铁心未压紧,铁心就会产生剧烈的振动,严重时造成断齿。为了防止此类振动的发生,定子铁心一般采用压板及螺杆压紧结构,但同时应注意防止因铁心局部压力过大而造成的损伤。 1.4.2 电机定子绕组的振动 在电机运行过程中,定子绕组经常受到以下几种力的影响,引起绕组的系统频率或者倍频率振动:绕组中的电流与漏磁通的作用力,转子磁拉力,绕组热胀冷缩力。

在电机设计时,特别值得考虑的是由电磁力引起的定子绕组的槽部和顶部振动。为了防止这两类振动,经常要采取槽部线棒固紧结构以及端部轴向刚性支架措施。 1.4.3 电机机座的振动 机座的振动源: 1)由定子铁心的电磁振动通过铁心与机座的连接传来,引起机座的倍频振动,且 随着单机容量的增大而增大; 2)转子振动的激振力 实践证明: 落地轴承形式的转子激振力对机座的影响要比轴承座设置在定子机座端盖上的轴承形式的影响要小得多。 为了减小机座的振动,经常采取的措施是: 1)铁心与机座之间的连接采用弹性结构,以减少铁心振动对机座和基础的影响; 2)对机座的自振频率进行控制,使其避开铁心的倍频振动频率和转子的振动频 率。

相关文档
相关文档 最新文档