文档库 最新最全的文档下载
当前位置:文档库 › 指数函数

指数函数

指数函数
指数函数

在函数y=a^x中可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a 不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凸的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过

指数函数

程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7)函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)

(8)显然指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

底数的平移:

对于任何一个有意义的指数函数:

在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

即“上加下减,左加右减”

底数与指数函数图像:

指数函数

(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y

轴左边“底大图低”。(如右图)》。

幂的大小比较:

比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A 与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B 之间的大小。

比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,可以利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1.

(2)对于底数不同,指数相同的两个幂的大小比较,可

指数函数

以利用指数函数图像的变化规律来判断。

例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.

(3)对于底数不同,且指数也不同的幂的大小比较,则可以利用中间值来比较。如:

<1> 对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、1的大小)进行分组,再比较各组数的大小即可。

<2> 在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就可以快速的得到答案。那么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向(例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)时,a^x大于1,异向时a^x小于1.

〈3〉例:下列函数在R上是增函数还是减函数?说明理由.

⑴y=4^x

因为4>1,所以y=4^x在R上是增函数;

⑵y=(1/4)^x

因为0<1/4<1,所以y=(1/4)^x在R上是减函数

定义域:实数集

指代一切实数

R 值域:(0,+∞)

分式化简的方法与技巧

(1)把分子、分母分解因式,可约分的先约分

(2)利用公式的基本性质,化繁分式为简分式,化异分母为同分母

(3)把其中适当的几个分式先化简,重点突破.

指数函数

(4)可考虑整体思想,用换元法使分式简化

指数函数图像与指数函数性质之间的对应关系

(1)曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞).

(2)曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠

指数函数

近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)

(3)曲线过定点(0,1)〈=〉x=0时,函数值y=a0(零次方)=1(a>0且a≠1)

(4)a>1时,曲线由左向右逐渐上升即a>1时,函数在(-∞,+∞)上是增函数;0

对数函数

对数函数

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数它实际上就是指数函数的反函数,可表示为x=a^y。因此指数函数里对于a的规定,同样适用于对数函数。

目录

真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,

底数则要大于0且不为1

对数函数的底数为什么要大于0且不为1?

【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立(比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于4,另一个等于-4)】

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然

对数(natural logarithm),并且把loge N 记为In N. 根据对数的定义,可以得到对数与指

数间的关系:

当a 〉0,a≠ 1时,a^x=N→X=logaN。

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:

负数和零没有对数;

loga 1=0 loga a=1

对数的定义和运算性质

一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的

对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。

底数则要大于0且不为1 真数大于0

对数的运算性质:

当a>0且a≠1时,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(5) a^(log(b)n)=n^(log(b)a) 证明:

设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

(6)对数恒等式:a^log(a)N=N;

log(a)a^b=b

对数与指数之间的关系

当a>0且a≠1时,a^x=N x=㏒(a)N

对数函数

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们

互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数图像总是通过(1,0)点。

(4) a大于1时,为单调增函数,并且上凸;a小于1大于0时,函数为单调减函数,

并且下凹。

(5)显然对数函数无界。

对数函数的常用简略表达方式:

(1)log(a)(b)=log(a)(b)

(2)lg(b)=log(10)(b)

(3)ln(b)=log(e)(b)

对数函数的运算性质:

如果a〉0,且a不等于1,M>0,N>0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n属于R)

(4)log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)

对数与指数之间的关系

当a大于0,a不等于1时,a的X次方=N等价于log(a)N

log(a^k)(M^n)=(n/k)log(a)(M) (n属于R)

换底公式(很重要)

log(a)(N)=log(b)(N)/log(b)(a)= lnN/lna=lgN/lga

ln 自然对数以e为底 e为无限不循环小数

lg 常用对数以10为底

对数函数的常用简略表达方式

(1)常用对数:lg(b)=log(10)(b)

(2)自然对数:ln(b)=log(e)(b)

e=2.718281828... 通常情况下只取e=2.71828 对数函数的定义

对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。因此指数函数里对于a的规定(a>0且a≠1),同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

性质

定义域求解:对数函数y=loga x 的定义域是{x ︳x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意真数大于0以外,还应注意底数大于0且不等于1,如求函数y=logx (2x-1)的定义域,需满足{x>0且x≠1}。

{2x-1>0 =〉x>1/2且x≠1,即其定义域为{x ︳x>1/2且x≠1}值域:实数集R 定点:函数图像恒过定点(1,0)。

单调性:a>1时,在定义域上为单调增函数,并且上凸;

0

奇偶性:非奇非偶函数,或者称没有奇偶性。

周期性:不是周期函数

零点:x=1

注意:负数和0没有对数。

两句经典话:底真同对数正

底真异对数负

幂函数

幂函数

简介

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意[实数;

排除了为0这种可能,即对于x<0或x>0的所有实数,q不[能是偶数;

排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。

定义域

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q 为奇数,则函数的定义域为不等于0 的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,

因此下面给出幂函数在第一象限的各自情况.

第一象限

可以看到:

(1)所有的图形都通过(1,1)这点.(a≠0) a>0时图象过点(0,0)和(1,1)(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凸;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)显然幂函数无界限。

(6)a=2,该函数为偶函数{x|x≠0}。

图像

2.2指数函数地图像及性质

第一章 基本初等函数 2 指数函数的图像及性质 一、学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质. 二、知识梳理 1.指数函数的定义 一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 2.指数函数的图象与性质 a >1 0<a <1 图象 性质 定义域R ,值域(0,+∞) 图象过定点(0,1),即x =0时,y =1 当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数 在R 上是减函数 三、典型例题 知识点一 指数函数的概念 例1 给出下列函数: ①y =2·3x ;②y =3 x +1 ;③y =3x ;④y =x 3;⑤y =(-2)x .其中,指数函数的个数是( ) A .0 B .1 C .2 D .4 答案 B 解析 ①中,3x 的系数是2,故①不是指数函数;②中,y =3 x +1 的指数是x +1,不是自变量x ,故②不是 指数函数;③中,3x 的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数;④中,y =x 3 的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数. 规律方法 1.指数函数的解析式必须具有三个特征:(1)底数a 为大于0且不等于1的常数;(2)指数位置是自变量x ;(3)a x 的系数是1. 2.求指数函数的关键是求底数a ,并注意a 的限制条件. 跟踪演练1 若函数y =(4-3a )x 是指数函数,则实数a 的取值围为________. 答案 {a |a <4 3 ,且a ≠1}

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数第3课时指数与指数幂的运算(三)

指数函数第3课时指数与指数幂的运算(三) (一)教学目标 1.知识与技能: 能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法: 通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观 (1)培养学生观察、分析问题的能力; (2)培养学生严谨的思维和科学正确的计算能力. (二)教学重点、难点 1.重点:运用有理指数幂性质进行化简,求值. 2.难点:有理指数幂性质的灵活应用. (三)教学方法 1.启发学生认识根式与分数指数幂实质是相同的.并能熟练应用有理指数幂的运算性质对根式与分数指数幂进行互化. 2.引导学生在化简求值的过程中,注意将根式转化为分数指数幂的形式和积累一些常用技巧.如凑完全平方、分解因式、化小数为分数等等.另外,在运用有理指数幂的运算性质化简变形时,应注意根据底数进行分类,以精简解题的过程. (四)教学过程 教学环节教学内容师生互动设计意 图 复习引入复习 1.分数指数幂的概念. * (0,,) m n m n a a a m n N =>∈ * 1 (0,,) m n m n a a m n N a - =>∈ 2.分数指数幂的运算性质. (0,,) r s r s a a a a r R s R + ?=>∈∈ ()(0,,) r s rs a a a r R s R =>∈∈ ()(0,) r r r a b a b a r R ?=>∈ 师:提出问题 生:复习回顾 师:总结完善 复 习旧 知,为 新课作 铺垫.

应用举例 例1.(P56,例4)计算下列各式 (式中字母都是正数) (1) 2115 11 3366 22 (2)(6)(3) a b a b a b -÷- (2) 3 1 8 8 4 () m n- 学生思考,口答,教师板演、点 评. 例 1 (先由学生观察以上两个 式子的特征,然后分析、提问、解答) 分析:四则运算的顺序是先算乘 方,再算乘除,最后算加减,有括号 的先算括号的.整数幂的运算性质 及运算规律扩充到分数指数幂后,其 运算顺序仍符合我们以前的四则运 算顺序. 我们看到(1)小题是单项式的 乘除运算;(2)小题是乘方形式的 运算,它们应让如何计算呢? 其实,第(1)小题是单项式的 乘除法,可以用单项式的运算顺序进 行. 第(2)小题是乘方运算,可先 按积的乘方计算,再按幂的乘方进行 计算. 解:(1)原式 = 211115 326236 [2(6)(3)]a b +-+- ?-÷- =0 4ab =4a (2)原式= 3 1 88 8 4 ()() m n- =23 m n- 通 过这二 个例题 的解 答,巩 固所学 的分数 指数幂 与根式 的互 化,以 及分数 指数幂 的求 值,提 高运算 能力.

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函 数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 指数函数·例题解析

指数及指数函数知识点

(一)整数指数幂 1.整数指数幂概念: 43 421Λa n n a a a a 个???= )(* ∈N n ()0 10a a =≠ ()10,n n a a n N a -* = ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100Θ 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . (二)分数指数幂 1.分数指数幂: ()102 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>.

指数与指数函数(3)

指数与指数函数080612 一、考题选析: 例1、(07江苏)设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时, ()31x f x =-,则有( ) A.132323f f f ?? ???? << ? ? ??????? B.231323f f f ?????? << ? ? ??????? C.213332f f f ?????? << ? ? ??????? D.321233f f f ?????? << ? ? ??????? 例2、(07上海春)若21,x x 为方程1 1 )2 1(2+-=x x 的两个实数解,则=+21x x ; 例3、(05全国Ⅱ)设函数11 ()2 x x f x +--=,求使()f x ≥x 取值范围. 例4、(05江西10)已知实数a , b 满足等式,)3 1()2 1 (b a =下列五个关系式 ①0, 225()()4 x g x a e =+ 。若存在12,[0,4]ξξ∈使得12()()1f g ξξ-<成立,求a 的取值范围。 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。 解:(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3- x , 由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a , 则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3 -x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3- x . 令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点, 所以x+a+1≠0,那么a ≠-4. 当a <-4时,x 2>3=x 1,则 在区间(-∞,3)上,f `(x)<0, f (x)为减函数;

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

指数函数及其性质

2.1.2 指数函数及其性质(一) 一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数 的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质, 本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。 二、问题引领: 1、指数函数的概念、图象和性质

2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数 ,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与 0、1的大小关系为01a b c d <<<<<。 三、典例剖析: 例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。 分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。根据函数图象过点()2,π这一条件,可以求得底数a 的值。 解: ()x a x f =的图象经过点()2,π, ()2f π∴= 即2 a π=,解得1 2 a π= ()2x f x π∴=,即:()( )()10 12 1 01,12f f f ππππ -====-== 。 点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。 例题2:1、设1111333b a ???? <<< ? ????? ,求,,a b a a a b 的大小关系。 2、 比较235 4 0.5,1.2,1的大小。 分析:利用指数函数的单调性和特殊点比较大小。 解:1、因为函数13x y ?? = ??? 在R 上为减函数,又由1111333b a ????<<< ? ?????, 所以得:01a b <<<, 因为当01a <<时,函数x y a =为减函数,又a b <, 所以a b a a >,因为函数x y a =与x y b =在R 上同为减函数且当0x >时, 随着x 的增大,函数x y a =比函数x y b =减小的快,所以a a a b <, 即b a a a a b <<。

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

指数运算、指数函数

§1.4指数运算、指数函数 【复习要点】 1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】 1.指数的概念;运算法则:n n n mn n m n m n m b a ab a a a a a ===?+)(,)(, )1,,,0(* >∈>= n N n m a a a n m n m )1,,,0(1 1 * >∈>= = - n N n m a a a a n m n m n m 2.指数函数的概念, 性质和图象如表: 中利用函数的图象来比较大小是一般的方法。 4.会求函数y =a f (x)的单调区间。 5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。 【基础训练】 1]43 的结果为 ( ) A.5 B.5 C.-5 D.-5 2.将3 22-化为分数指数幂的形式为 ( ) A .21 2- B .31 2- C .2 12 - - D .65 2-

3.下列等式一定成立的是 ( ) A .2 33 1a a ?=a B .2 12 1a a ?- =0 C .(a 3)2=a 9 D .61 3 12 1a a a =÷ 4.下列命题中,正确命题的个数为 ( ) ①n n a =a ②若a ∈R ,则(a 2-a +1)0 =1 ③y x y x +=+34 33 4 ④6 2 3)5(5-=- A .0 B .1 C .2 D .3 5.化简11111321684 2 1212121212-----?????????? +++++ ? ? ? ? ????? ??????,结果是 ( ) A .1 1 321122--? ?- ? ?? B .1 13212--??- ? ?? C .1 3212-- D .1 321 122-??- ??? 6 .4 4 ? ? ? ? 等 于 ( ) A .16 a B .8 a C .4 a D .2a 【例题选讲】 1.设3 2212 ,-==x x a y a y ,其中a >0,a ≠1,问x 为何值时有 (1)y 1=y 2 ? (2)y 1<y 2? 2.比较下列各组数的大小,并说明理由 (1)43 1.1,43 4.1,32 1.1 (2)4 316.0- ,2 35 .0- ,8325.6 (3)53 2 )1(+a ,43 2 )1(+a 3.已知函数3234+?-=x x y 的值域为[7,43],试确定x 的取值范围. 4.设01a <<,解关于x 的不等式2 2 232 223 x x x x a a -++->

指数函数知识点总结(供参考)

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33)2(-= ⑵ 44)2(-= ⑶ 66)3(π-= ⑷ 222y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21). 5. 计算(0.0081)4 1 -- [3×(87)0]1-·[8125 .0-+(38 3)31 -]21 -. 题型二、化简 1. 3 2 13 2b a b a ?- ÷3 211- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0, b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1- = 3,求下列各式的值:

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

2.2指数函数的图像与性质

第一章基本初等函数 2指数函数的图像及性质 一、学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质. 二、知识梳理 1.指数函数的定义 一般地,函数y= a x( a> 0,且 a≠ 1)叫做指数函数,其中x 是自变量,函数的定义域是R . 2.指数函数的图象与性质 a>1 0< a< 1 图象 定义域 R,值域 (0,+∞ ) 图象过定点 (0,1),即 x= 0 时, y= 1 性质当 x> 0 时, y>1;当 x> 0 时, 0< y< 1; 当 x<0 时, 0<y< 1 当 x< 0 时, y> 1 在 R 上是增函数在 R 上是减函数 三、典型例题 知识点一指数函数的概念 例 1 给出下列函数: ① y=2·3x ;② y= 3 x+ 1 x 3 x .其中,指数函数的个数是 ( ) ;③ y= 3 ;④ y= x ;⑤ y= (- 2) A . 0 B . 1 C. 2 D. 4 答案 B 解析①中, 3x的系数是 2,故①不是指数函 数;②中,y=3x+ 1 的指数是 x+ 1,不是自变量 x,故 ②不是 指数函数;③中,3x的系数 是 1,幂的指数是自 变量 x,且只 有 3x一项,故③是指数函数;④ 中, y= x3 的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2< 0,不是指数函 数. 规律方法1.指数函数的解析式必须具有三个特 征: (1)底数 a 为大于 0 且不等 于 1 的常数; (2)指数位 置是 自变量 x; (3)a x的系数 是 1. 2.求指数函数的关键是求 底数a,并注意 a 的限制条件.

(完整word版)指数及指数函数知识点及习题

指数及指数函数 (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的 n 次方根用符号n a 表示. 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数. 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0). 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n . 结论:当n 是奇数时,a a n n = 当n 是偶数时,?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. (一)指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域 为R . 注意:○ 1 指数函数的定义是一个形式定义 ○ 2 注意指数函数的底数的取值范围,底数为什么不能是负数、零和1.

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

3.1.2(一)指数函数学生版

1 / 1 3.1.2 指数函数(一) 一、基础过关 1.下列以x 为自变量的函数中,是指数函数的是 ( ) A .y =(-4)x B .y =πx C .y =-4x D .y =a x +2 (a>0且a≠1) 2.函数f(x)=(a 2-3a +3)a x 是指数函数,则有 ( ) A .a =1或a =2 B .a =1 C .a =2 D .a>0且a≠1 3.函数y =21 x 的值域是 ( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞) D .(1,+∞) 4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f(x)的 图象大致为 ( ) 5.函数f(x)=a x 的图象经过点(2,4),则f(-3)的值为____________. 6.函数y =8-23-x (x≥0)的值域是________. 7.比较下列各组数中两个值的大小: (1)0.2-1.5和0.2-1.7 ; (2)(14)13和(14)23; (3)2-1.5和30.2. 8.判断下列函数在(-∞,+∞)内是增函数,还是减函数. (1)y =4x ; (2)y =????14x ; (3)y =2x 3. 二、能力提升 9.设函数f(x)=? ???? 2x , x<0, , x>0. 若f(x)是奇函数,则g(2)的值是 ( ) A .-1 4 B .-4 C.14 D .4 10.函数y =a |x| (a>1)的图象是 ( ) 11.若f(x)=???? ? a x ,-a 2+ , 是R 上的单调递增函数,则实数a 的取值范围为________. 12.求函数y =????12x2-2x +2 (0≤x≤3)的值域. 三、探究与拓展 13.当a >1时,判断函数y =a x +1 a x - 1 是奇函数.

知识讲解_指数函数及其性质_基础

指数函数及其性质 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>? ?≤??x x 时,a 恒等于,时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)

① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1,a a a a ?-+=?>≠? 且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断; (2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x . 举一反三: 【变式1】指出下列函数哪些是指数函数? (1)4x y =;(2)4 y x =;(3)4x y =-;(4)(4)x y =-; (5)1 (21)(1)2 x y a a a =-> ≠且;(6)4x y -=.

指数函数及其性质

§2.1.2指数函数及其性质(2个课时) 班级 姓名 教学目标 :1、理解指数函数的概念、图象和性质。 2、利用图象来探索、掌握函数的性质,增强分析问题,解 决问题的能力。 教学重点: 指数函数的概念、图象和性质 教学难点:利用指数函数的图象概括出指数函数的性质。 学习过程 一、复习 1. 根式的概念;n = ; 当n = ; 当n = ={ 。 分数指数幂的意义:m n a = ,m n a - = 。 2.0的正分数指数幂 ,0的负分数指数幂 。 3.整数指数幂的运算性质对于有理数指数幂 。 二、新课导学 1:归纳:指数函数的定义 阅读教材48P 问题1,问题2,观察这两个函数解析式有何共同特征? 一般地,函数y = x a (a 0,且a 1)叫做指数函数, 其中x 是 .函数的定义域是 。 讨论: 下列函数中,哪些是指数函数? (1) (2) (3) (4) (5) (6) (7) (8) 2、探索:指数函数的图象 请同学们完成函数y=x 2 、y=x ? ? ? ??21的表格中空白处并用描点法画出图象: x y 4=4x y =x y 4-=x y )4(-=x y π =2 4x y =x x y =x a y )12(-= )12 1 (≠>a a 且

观察、思考:(1)这两个函数的图象有什么关系?能否由函数2x y=的图 象得到函数1 2x y ?? = ? ?? 的图象? (2)观察函数y=x2、y= x ? ? ? ? ? 2 1的图象,它们有哪些共同特征? 尝试:①图象都分布在象限,与轴相交,位于x轴 的; ②(底数2大于1)当1 a>时,第一象限的点的纵坐标都大于;第二象限的点的纵坐标都大于且小于;从左向右图象逐渐。 ③(底数1 2大于0又小于1)当01 a <<时,第一象限的点的纵坐标都大 于且小于; 第二象限的点的纵坐标都大于;从左向右图象逐渐。3、概括:指数函数y = x a(01) a a >≠ 且的性质 考察:指数函数y = x a(01) a a >≠ 且的奇偶性 4、学习课本 56 P例6 、57P例7 例8 三、练习:教材 58 P2、3

练习3 指数函数(解析版)

练习4 指数函数 1.(2020·贵溪市实验中学高二期中)计算()25314 33434a b a b a b -----?????-÷ ? ????? 得( ) A .2 32 b - B . 232 b C .23b D .23b - 【答案】D 【解析】原式 () 25131423333a b b ??-+-- ?----?? =-=-故选: D 2.(2020·沙坪坝·重庆南开中学高一期中)网络上盛极一时的数学恒等式“301.01 1.4≈,3651.0137.8≈, 7301.011427.6≈”形象地向我们展示了通过努力每天进步1%,就会在一个月、一年以及两年后产生巨大差 异.虽然这是一种理想化的算法,但它也让我们直观地感受到了“小小的改变和时间累积的力量”.小明是以为极其勤奋努力的同学,假设他每天进步2.01%,那么30天后小明的学习成果约为原来的( )倍. A .1.69 B .1.78 C .1.96 D .2.8 【答案】C 【解析】() 30 10.0201+=()3021.01??=??()2 30 21.01 1.4 1.96??≈=?? .故选:C . 3.(2020·镇江正兴教育发展有限公司高一期中)如果指数函数x y a =(0a >且1a ≠)在[]1,1x ∈-上的最 大值与最小值的差为8 3 ,则实数a =( ) A .3 B .13 C .2或12 D .3或 1 3 【答案】D 【解析】当01a <<时,x y a =在[]1,1x ∈-单调递减,则1 8 3a a --= ,解得3a =-(舍去)或13a =; 当1a >时,x y a =在[]1,1x ∈-单调递增,则183a a --=,解得13 a =-(舍去)或3a =, 综上,3a =或1 3 .故选:D. 4.(2020·浙江高一单元测试)如图,是指数函数①x y a =、②x y b =、③x y c =、④x y d =的图象,则( )

相关文档