文档库 最新最全的文档下载
当前位置:文档库 › 小学六年级数学总复习概念整理

小学六年级数学总复习概念整理

小学六年级数学总复习概念整理
小学六年级数学总复习概念整理

小学六年级数学总复习概念整理

第一部分数

(一)整数

1. 正整数、零与负整数统称为整数。0既不是正数也不是负数。

2、自然数:用来表示物体个数0.1.2.3.4.5,…叫做自然数。一个物体也没有,用“0”表示,“0”是最小的自然数,没有最大的自然数,自然数的个数是无限的。

3、自然数的基本单位:任何非“0”的自然数都是由若干个“1”组成,所以“1”是自然数的基本单位。自然数不仅表示事物的多少,还表示事物的次序。

4、“0”的含义:一个物体也没有,用“0”表示,但并不是说“0”只表示没有物体,它还有多方面的含义。比如在表示温度时,它是正、负温度的分界线;在刻度尺上,它是起点;在数轴上它是整数和负数的划分点;在计数中,“0”起占位作用。还可以从运算的角度认识“0”,如任何数加“0”都等于原数;0和任何数相乘得0;0不能做除数……

5、计数单位:数数时用的单位就叫做计数单位。计数单位有:个(一),十,百,千,万,十万,百万,千万,亿,十亿,百亿,千亿,……

6、数位:把计数单位按一定的顺序排列起来,它们所占的位置就叫做数位。数位有:个位、十位、百位、千位、万位、十万位、百万位、千万位、亿位、十亿位、百亿位、千亿位……

7、多位数的读法:要从高位到低位,一级一级往下读。读亿级和万级时,按照个级的读法去读,再在后面加上“亿”字或“万”字就可以了。一个数中间有一个0或者连续有几个0,都只读一个0,但每级末尾的0都不读出来。

8、多位数的写法:也要从高位到低位,一级一级地往下写,哪一个数位上一个单位也没有,就在哪一个数位上写0.

9、比较正整数大小的方法:如果数位不同,那么数位多的数就大。如果位数相同,左起第一位上数大的那个数就大;如果左起第一位上的数相同,就比较左起第二位上的数。依次类推直到比较出数的大小。

10、倍数和因数:自然数a(a≠0)乘自然数b(b≠0),所得积c,c就是a和b的倍数,a和b就是c的因数.例如:4×5=20,4和5是20的因数,20是4和5的倍数。11、公因数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数。因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

12、公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。倍数的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

13、质数:一个数只有1和它本身两个因数,这个数叫质数(或素数),最小的质数是2.

14、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。最小的合数是4,1既不是质数,也不是合数。

15、互质数:公因数只有1的两个数,叫作互质数.互质的两个数不一定是质数,例如(8和9),但是两个质数一定是互质数,例如3和5。

16、2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数;5的倍数的特征:个位上是0或者5的数是5的倍数;3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3 的倍数;同时是2和5的倍数的特征:个位上是0的数同时是2和5的倍数。同时是2、5、3的倍数的特征:一个数各个数位上的数字的和是3的倍数,且个位上是0,这个数就一定同时2、5、3的倍数。

17、奇数:不是2的倍数的数叫作奇数。最小的奇数1.

18、偶数:是2的倍数的数叫作偶数。最小的偶数是0.

19.数的奇偶性:两个相同性质的数(都是偶数或都是奇数)相加减结果都是偶数。两个不同性质的数(一个奇数,另一个是偶数)相加减结果是奇数。

20、把大数改写成以“万”或“亿”作单位的数:一个较大数,为了读写方便,通常把它改写成用“万”或“亿”作单位的数。一种是把较大的多位数直接改写“万”或“亿”作单位的数,去掉末尾的4个0或8个0,然后写上“万”“或”亿,不满万或亿的尾数直接改写成小数;另一种是根据需要省略万位或亿位的尾数,把原来的多位数按照“四舍五入”法写成它的近似数。

(二) 小数

1、读法:读小数的时候,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数部分从高位到低位顺次读出每个数位上的数字。

2、写法:写小数的时候,整数部分按照整数的写法来写(整数部分是零的写作“0”)小数点,点在个位的右下角,小数部分从高位到低位顺次写出每一个数位上的数字。

3、小数的大小比较:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数相同的,百分位上的数大的那个数就大……

4、求小数的近似数:根据要求保留小数位数,确定好从哪一位起按照“四舍五入”的方法省略尾数。

5、小数化成分数的方法:先把小数改写成分母是10、100、1000…..的分数,再约分,就化成了分数。

6、小数化成百分数的方法:先将小数点向右移动两位,再在后面添上“%”,就化成了百分数。

7、小数的分类:

(1)、按整数部分分类:分为“纯小数”和“带小数”两种。“纯小数”:是指整数部分为“0”的小数。例如:0. 8、0.207、等。“带小数”:是指整数部分不为“0”的小数。例如:2.3、300.168等。一般说来,纯小数都小于1,而带小数都大于1或等于1.

(2)按小数部分分类:分为“有限小数”和“无限小数”两种。小数部分的位数有限的小数,叫作有限小数;小数部分的位数是无限的小数,叫作无限小数。

(3)无限小数的分类:在无限小数中又分为无限循环小数和无限不循环小数。无限循环小数:是指一个无限小数,如果从小数部分的某一位起都是由一个或几个数字依照一定的顺序连续不断地重复出现,这样的小数叫作无限循环小数,简称“循环小数”。无限不循环小数:是指一个小数的数位无限多,而且小数部分各数位上的数字是不循环的,这样的小数叫作无限不循环小数。在小学数学中,圆周率(∏)3.1415926……便是一个无限不循环小数(无理数)。(4)循环节:一个小数的小数部分,从第一位或某一位起依次不断重复出现的一个或几个数字,叫作这个循环小数的循环节。

(5)无限循环小数的分类:循环节从小数部分第一位开始的,叫作纯循环小数;循环节不是从小数部分第一位开始循环的,这样的循环小数叫混循环小数。

7、小数的基本性质:小数的末尾添上0或者去掉0,小数的大小不变。

(三)分数

1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫作分数。表示其中一份的数是这个分数的分数单位。

2.分数的分类:真分数(分子比分母小的分数)、假分数(分子比分母大或者分子等于分母的分数)、带分数(一个整数和一个真分数构成一个带分数)。

3.分数大小的比较:真分数、假分数或整数部分相同的带分数,分母相同的分数,分子大的分数比较大;分子相同的分数,分母小的分数比较大;分子和分母都不相同的分数,先化成相同分母的分数,在比较大小或者是化成分子相同的分数,再比较大小;整数部分不同的带分数,整数部分大的分数大。

4. 把假分数化成带分数,要用分子除以分母,不能整除的,商就是带分数的整数部分,余数就是分数部分的分子,分母不变。

5.分数化成小数:用分子除以分母,就能化成小数,除不尽时,通常保留两位小数。

6.分数化成百分数:先将分数写成小数或整数的形式,然后在写成百分数。

7.分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

(四)百分数

1、百分数的定义:像5%、18%、120%,……表示一个数是另一个数的百分之几。这样的分数叫百分数,也叫百分比或百分率。

2. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

3.百分数化成小数的方法:先将百分数后面的%去掉,再将小数点向左移动两位,就化成了小数。

4.百分数化成分数的方法:先将百分数改写成分母是100的分数形式,能约分的要约分。

5、分数和百分数的区别:分数既可以表示一个数,也可以表示两个数的比;而百分数只表示一个数占另一个数的百分比,不能用来表示具体数。所以分数可以有单位,百分数不能有单位。

(五)比

1.比的意义:两个数相除又叫作两个数的比。

2.比的意义的应用:根据比的意义可以求比值,用前项除以后项,得到的结果是一个数(分数或小数,有时是整数)。

3.比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。

4.比的基本性质的应用:应用比的基本性质,可以化简比,把比的前项和后项,同时乘(或除以)相同的数(0除外),使结果是两个互质的整数比(最简整数比),这个化简后的比可以用比号写成整数比的形式,也可以用分数写成比的分数形式(但不是分数)。

5、比例:表示两个比相等的式子叫做比例。如3:6=9:18

6、比例的基本性质:在比例里,两外项之积等于两内项之积。

7、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

8、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的两个数的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

9、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

(六)运算定律

1、加法交换律:两数相加,交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(a+b)×c=a×c+b×c

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:

等式两边同时加上(或减去)一个相同的数,等式仍然成立。

等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、方程:含有未知数的等式叫方程式。

9、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

10、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

11、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

12、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

13、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

14、分数除以整数(0除外),等于分数乘以这个整数的倒数。

15、一个数除以分数,等于这个数乘以分数的倒数。

16、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再按照同分母分数相加减。

分数的乘法法则:用分子相乘的积做分子,用分母相乘的积做分母,结果要化成最

简分数。

17、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

18、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用公因数)

19、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。

20、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

21、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

第二部分:数量关系式

1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间路程÷时间=速度

4 单价×数量=总价总价÷单价=数量总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数商×除数=被除数

10、有余数的除法:被除数=商×除数+余数

11、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

第三部分:单位间进率

1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米

1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

1公顷=10000平方米1立方米=1000立方分米1立方分米=1000立方厘米

1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克

1升=1立方分米=1000毫升1毫升=1立方厘米

第四部分:几何知识

三角形的面积=底×高÷2。公式S= a×h÷2

正方形周长=边长×4 公式C=4a 正方形的面积=边长×边长公式S= a×a

正方体表面积=棱长×棱长×6 公式S表=a×a×6

正方体体积=棱长×棱长×棱长公式V=a×a×a

长方形周长=(长+宽)×2 公式C=2(a+b) 长方形的面积=长×宽公式S= a×b 长方体表面积(长×宽+长×高+宽×高)×2 公式S=2(ab+ah+bh)

长方体体积=长×宽×高公式V=abh

平行四边形的面积=底×高公式S= a×h

梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体(或正方体)的体积=底面积×高公式:V=abh

圆的周长=直径×π公式:C=πd=2πr

圆的面积=半径×半径×π公式:S=πr2

圆柱的侧面积=底面的周长乘高。

公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=底面积×高×1/3。公式:V=1/3Sh

平行线:同一平面内,不相交的两条直线叫做平行线

垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

新人教版小学六年级上册数学概念

小学六年级数学十一册概念 ***单元一 位置 1.找位置:先列后行。格式为:(列,行)。 例如:(a ,b )。 2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。 3.平移方法:左右平移,列变行不变;上下平移,行变列不变。 *** 单元二 分数乘法 1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。 例如: b a +b a +b a =b a ×3( b ≠0) 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母 不变。 例如:a ×c b (c b ×a ) =c ab (为了计算简便,能约分的要先约分,然后再乘。) 【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】 3.整数乘分数; ①、分数乘以整数,可以看作是求几个分数相加的和是多少。 例如:b a ×n=b a +b a +b a 、、、、、、( b ≠0) ②、整数乘以分数,可以看作是求整数的几分之几是多少。 例如: n ×b a 的意义是:表示求n 的b a 是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分 母。 例如:b a ×d c =b d ac (b 、d ≠0) 【注:为了计算简便,可以先约分再乘】 5.乘积是1的两个数叫互为倒数。 例如:b a ×a b =1,那b a 和a b 就是互为倒数。 6.求一个数(0除外)的倒数的方法: 把这个分数的分子、分母调换位置。 1的倒数是1。 0没有倒数。 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】 7.一个数(0除外)乘以一个真分数,所得的积小于它本身。 8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。 9.一个数(0除外)乘以一个带分数,所得的积大于它本身。 10.解答分数乘法应用题相关概念: ①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少? ②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。 ③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员” 是“少”的意思;“相当于”、“占”、“是”“等于”的意思。 ④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。 ***单元三 分数除法概念总结

(完整)小学数学总复习讲义

教案 数学复习 六年级 第一部分数与代数 第一章数的认识 第一节整数的知识 知识梳理 1. 自然数 自然数:用来表示物体个数的1、2,3 、4,5...... 叫做自然数。一个物体也没有,用0 表示,0 也是自然数。 0 是最小的自然数。没有最大的自然数。 自然数有双重意义 基数;二是表示事物的次序,称 :一是表示事物的多少称为 为序数。 ”中的“2”, 是序数。 例如“8 个苹果”中的“8”是基数。“第2题 2. 整数的有关知识 序表: (1) 数位顺 序是从右向左依次排列:第一位是个位。依次从上表我们 知道了整数的排列顺 ,亿 叫做个级 ,万级 一级 是十位、百位、千位、万位??从个位起每四位为 。分别 级??个级包括:个位、十位、百位、千位四个数位,级内的数表示多少个一;万 级包括万位、十万位、百万位、千万位四个数位,级内表示多少个万;亿级包括亿 内表示多少个亿 位四个数位,级 。 位、十亿 位、百亿 位、千亿 (2)数位与位数。 位所占的位置叫做数位。 数单 数位:各个不同的计

同时一个数在不同数位的值不同,所表示的数也不同。 位数:指一个数占有数位的个数。也就是指这个数是几位数。 3. 整数的读法写法 整数的读法:读数时,从右到左四位分级,从高位到低位,一级一级地往下读。读亿级或万级时,按照个级的读法,只要在后面加上个“亿”字或“万”字。每级 末尾的0 都不读,其它数位有一个0 或连续有几个0 都只读一个“零”。 整数的写法:写数时,从高位到低位一级一级地往下写,哪一个数位上一个计 数单位也没有,就在哪一个数位上写0。 4. 整数大小的比较 先看位数,位数多的数大,位数相同的从高位看起,相同的数位上的数大那个 数就大。 5. 近似值与准确数 近似值,求一个数的近似数,要看所省略的尾数的左起第一位上的数是不是满 5. 如果不满 5 就把尾数都舍去。如果等于 5 或大于5 都要向前一位进一。这种求近似值的方法叫做四舍五人法。 准确数:表示和实际情况完全一致的准确数称准确值。 6. 整数的加减及相互关系 (1)加法:把两数合并成一个数的运算叫做加法。 减法:已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。 (2 )加、减法各部分之间的关系。 减法是加法的逆运算。 加数+加数=和 一个加数=和-另一个加数 被减数-减数=差 减数=被减数一差 差+减数=被减数 7. 整数乘除及相互关系

六年级数学总复习概念整理备课讲稿

总复习概念整理 具体内容如下: 总复习概念整理 整数和小数 1.最小的一位数是1,最小的自然数是0 2.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。 3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位…… 4.小数的分类:小数有限小数 无限循环小数 无限小数 无限不循环小数 5.整数和小数都是按照十进制计数法写出的数。 6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍…… 小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……

数的整除 1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。 2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。 3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。 一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。 4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。 5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。 质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。 合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。 最小的质数是2,最小的合数是4 1~20以内的质数有:2、3、5、7、11、13、17、19 1~20以内的合数有“4、6、8、9、10、12、14、15、16、18 6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。 能被5整除的数的特征:个位上是0或者5的数,都能被5整

六年级数学定义

一、【常用的数量关系】 1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度 2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价 3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间 4、加数+加数=和和 -- -个加数=另一个加数 5、被减数-减数=差被减数-差=减数;差+减数=被减数 6、因数×因数=积; 积÷一个因数=另一个因数 7、被除数÷除数=商被除数÷商=除数商×除数=被除数 、【常用单位换算】 换算方法: (1)高级单位→低级单位的方法:高级单位的数×进率 (2)低级单位→高级单位的方法:低级单位的数÷进率 (一)长度单位换算 1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米 (二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米; 1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米 (三)体积(容积)单位换算 :1立方米=1000立方分米; 1立方分米=1000立方厘米; 1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升 (四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分 (六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】;【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】;【闰年:2月有29天;全年有366天】 1日=24小时; 1时=60分=3600秒; 1分=60秒; 四、【基本概念】 第一章数和数的运算一、概念(一)整数

小学六年级数学总复习资料(通用)

2020毕业班小学数学总复习资料 常用的数量关系式 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工 作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形(C:周长 S:面积 a:边长) 周长=边长×4 C=4a 面积=边长×边长S=a×a 2、正方体(V:体积 a:棱长) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形( C:周长 S:面积 a:边长) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体(V:体积 s:面积 a:长 b: 宽 h:高) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形(s:面积 a:底 h:高) 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底三角形底=面积×2÷高 6、平行四边形(s:面积 a:底 h:高) 面积=底×高 s=ah 7、梯形(s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8、圆形(S:面积 C:周长л d=直径 r=半径) (1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л

部编版小学数学总复习资料

平面图形 图形名称图形周长(C)公式面积(S)公式 正方形 (4条对称轴)a 周长=边长×4 C=4a 公式变换:a = C÷4= 4 1 C 面积=边长×边长 S=a×a= a2 长方形 (2条对称轴)b a 周长=长+长+宽+宽=2长+2宽=(长+ 宽)×2 C=(a+b)×2 公式变换: a = C÷2- b b = C÷2-a 面积=长×宽 S=a×b= ab 公式变换: a= S÷b b= S÷a 三角形 (等边△有 3条对称轴;等腰△有1条对称轴)周长=边长a+边长b+边长c C =a+ b+ c 注:等边△周长C=3a 公式变换: a = C÷3 面积=底×高÷2 s=ah÷2= 2 1 ah 公式变换: 三角形高=面积×2÷底 h=2 s÷a 三角形底=面积×2÷高 a =2 s÷h 平行四边形(没有对称轴)周长=边长a+边长a+边长b+边长b =边长a×2+边长b×2 C=2a+2b=2(a+ b) 面积=底×高 s=ah 公式变换: a=s÷h h =s÷a 梯形 (等腰梯形有1条对称轴)周长=边长a+边长b +边长d +边长 e C=a+b+ d+e 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 公式变换: a = 2s÷h -b b = 2s÷h -a 圆形周长=直径×π=2×π×半径 C=πd=2πr 公式变换: d=2r r = d÷2 d = C÷π r = C÷2π ※半圆周长=πr+d 面积=半径×半径×π S =πr2 圆环 周长=C大圆+C小圆 =πD+πd =2πR+2πr =2π(R+r) 面积= S大圆-S小圆 =πR2-πr2 =π(R2-r2)a b h a h b c a b d e h d r 小学1—6年级数学总复习大全

六年级数学毕业总复习知识点

六年级总复习资料 3、 工作效率X 工作时间 =工作总量; 工 作总量十工作时间=工作效率; 工作总量十 工作效率=工作时间; 工作总量十工作效率和 =合作时间 和---个加数=另一个加数 被减数-差=减数; 差+减数=被减数 积十一个因数=另一个因数 被除数十商=除数 商X 除数=被除数 、【小学数学图形计算公式】 ( 三、【常用单位换算】 换算方法: (1) 高级单位T 低级单位的方法:高级单位的数 X 进率 (2) 低级单位T 高级单位的方法:低级单位的数 十进率 一、【常用的数量关系】 1、 速度X 时间=路程; 2、 单价X 数量=总价; 路程十速度=时间; 路程十时间=速度 总价*单价=数量; 总价十数量=单价 4、 加数+加数=和 5、 被减数-减数=差 6、 因数X 因数=积; 7、 被除数十除数=商

第一章数和数的运算 一、概念 (一)整数 1. 自然数、负数和整数 (1) 、自然数:我们在数物体的时候,用来表示物体个数的 1, 2, 3……叫做自然数。 一个物体也没有,用 0表示。0也是自然数。 1 是自然数的基本单位,任何一个自然数都是由若干个 1组成。 是最小的自然数,没有最大的自然数。 (2) 、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。 正整数(1、2、3、4、……) -自然数 零(0既不是正数,也不是负数 )_ 负整数(-1、-2、-3、-4……) 2、零的作用 (1) 表示数位。读写数时,某个单位上一个单位也没有,就用 (2) 占位作用。 (3) 作为界限。如“零上温度与零下温度的界限” 。 3、 计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿 都是计数单位。 每相邻两个计数单位之间的进率都是 10。这样的计数法叫做十进制计数法。 4、 数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、 数的整除:整数a 除以整数b (b 工0 ),除得的商是整数而没有余数,我们就说 a 能被 b 整除,或者说b 能整 除a 。 (1) 如果数a 能被数b (b 丰0 )整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a 的因数)。 (2) 一个数的约数的个数是有限的,其中最小的约数是 1,最大的 约数是它本身。 (3) 一个数的倍数的个数是无限的,其中最小的倍数是它本身。 (4) 个位上是0、2、4、6、8的数,都能被2整除, (5) 个位上是0或5的数,都能被5整除, { (一) 长度单位换算 1 千米=1000米; 1 米=10分米; 1 分米=10厘米; 1 (二) 面积单位换算: 1平方千米=100公顷; 1平方米=100平方分米; (三) 体积(容积)单位换算: 1 立方米=1000立方分米; 1立方分米=1 升; (四) 重量单位换算: 1 吨=1000千克; (五) 人民币单位换算: 1 元=10角; 1 (六) 时间单位换算: 1 世纪=100年; 1 【大月(31 天) 【平年:2月有 1日=24小时; 四、【基本概 米=100厘米; 1 厘米=10毫米 公顷=10000平方米; 平方分米=100平方厘米; 1 立方分米=1000立方厘米; 立方厘米=1毫升; 1 千克=1000克; 1 千克=1公斤 平方厘米=100平方毫米 立方米=1000升 角=10分; 元=100分 年=12月; 3、5、7、8、10、 有:1、 28天;全年有365天】; 1 时=60 分=3600 秒; 念】 12月】;【小月( 【闰年:2月有29天;全年有366天】 1 分=60秒; 30天)有:4、6、9、11月】 0表示。

小学六年级数学公式与概念解析

2019小学六年级数学公式与概念解析 :小朋友们,你们是否有着丰富的知识,是否爱思考,查字典数学网的小编在这里为大家整理了2019小学六年级数学公式与概念解析,希望你们能应用聪明的脑袋,来一起学习吧。 第一部分:概念 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)5=25+45 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有的算式并计算。 10、分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

最新人教版六年级数学总复习资料全

“数学总复习”复习资料(一)整数和小数 1、整数和自然数 像…,-3,-2,-1,0,1,2,3,…这样的数统称为(整数)。整数的个数是(无限)的。 数物体的时候,用来表示物体个数的0,1,2,3…叫做(自然数)。 自然数整数的(一部分)。(“1”)是自然数的单位。最小的自然数是(0 )。 2、小数 小数表示的就是十分之几,百分之几,千分之几……的数,一位小数可表示为十分之几的数,两位小数可表示为百分之几的数,三位小数可表示为千分之几的数……小数点右边第一位是(十分位),计数单位是(十分之一);第二位是(百分位),计数单位是(百分之一)…… 小数部分有几个数位,就叫做几位小数。如 3.305是(三)位小数 3、整数、小数的读法和写法: 读整数时注意先分级再读数。28302006000 读作: 读小数时注意小数部分顺次读出每个数位上的数。 27.036 读作: 写数时注意写好后,一定要读一读仔细校对。

五亿零8千写作: 三百八十点零三六写作: 为了读写方便,常常把较大的数改写成用“万”或“亿”作单位的数。 如只要求“改写”,结果应是准确数。768000000 =()亿 如要求“省略”万(亿)后面的尾数,结果应是近似数。768000000≈()亿 4、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变. 5、小数点向右(左)移动一位、两位、三位……原来的数就扩大(缩小)10倍、100倍、1000倍…… 6、正数、负数 0既不是正数也不是负数,0是正数和负数的分界点。负数<0<正数 两个负数比较,负号后面的数越大这个数反而越小。-6.8<-0.4 -2>-10 (二)因数和倍数 1、因数和倍数 一个数的最小因数是1,最大的因数是它本身。一个数的因数的个数是有限的。 一个数的最小倍数是它本身,没有最大倍数。一个数的

【新版】新人教版小学数学总复习知识概念大全

新人教版小学数学总复习知识概念大全 第一单元数与代数 (一)数的认识 0、负数】 1、一个物体也没有,用0表示。没有最小的整数,也没有最大的整数。整数 的个数是无限的。自然数的个数是无限的。0和1、2、3……都是自然数。 自然数是整数的一部分,自然数是等于或大于0的整数。 2、最小的一位数是1,最小的自然数是0。 3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读 作负四。+4也可以写成4。 》 4、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是 负数。 5、0既不是正数,也不是负数。正数都大于0,负数都小于0。 6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。 7、通常情况下,盈利用正数表示,亏损用负数表示。 8、通常情况下,上车人数用正数表示,下车人数用负数表示。 9、通常情况下,收入用正数表示,支出用负数表示。 10、通常情况下,上升用正数表示,下降用负数表示。 > 1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之 几,两位小数表示百分之几,三位小数表示千分之几…… 2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、 百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。 3、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。 4、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。 5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。 6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分 位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。 7、【数的改写】把多位数改写成用“万”或“亿”作单位的数时,先把原数的 小数点想左移动4位或8位,再在数的后面添写“万”字或“亿”字。 8、【省略尾数改写小数近似数的一般方法】

小学数学1-6年级必备的数学概念

小学数学1-6年级必背的数学概念 (包含口决、定义分类) 1、什么是图形的周长? 围成一个图形所有边长的总和就是这个图形的周长。 2、什么是面积? 物体的表面或围成的平面图形的大小叫做他们的面积。 3、加法各部分的关系: 一个加数=和-另一个加数 4、减法各部分的关系: 减数=被减数-差被减数=减数+差 5、乘法各部分之间的关系: 一个因数=积÷另一个因数 6、除法各部分之间的关系: 除数=被除数÷商被除数=商×除数 7、角 (1)什么是角? 从一点引出两条射线所组成的图形叫做角。 (2)什么是角的顶点? 围成角的端点叫顶点。 (3)什么是角的边? 围成角的射线叫角的边。 (4)什么是直角? 度数为90°的角是直角。 (5)什么是平角? 角的两条边成一条直线,这样的角叫平角。 (6)什么是锐角? 小于90°的角是锐角。 (7)什么是钝角? 大于90°而小于180°的角是钝角。 (8)什么是周角? 一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°. 8、垂直问题 (1)什么是互相垂直?什么是垂线?什么是垂足? 两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 (2)什么是点到直线的距离? 从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。 9、三角形 (1)什么是三角形? 有三条线段围成的图形叫三角形。 (2)什么是三角形的边?

围成三角形的每条线段叫三角形的边。 (3)什么是三角形的顶点? 每两条线段的交点叫三角形的顶点。 (4)什么是锐角三角形? 三个角都是锐角的三角形叫锐角三角形。 (5)什么是直角三角形? 有一个角是直角的三角形叫直角三角形。 (6)什么是钝角三角形? 有一个角是钝角的三角形叫钝角三角形。 (7)什么是等腰三角形? 两条边相等的三角形叫等腰三角形。 (8)什么是等腰三角形的腰? 有等腰三角形里,相等的两个边叫做等腰三角形的腰。 (9)什么是等腰三角形的顶点? 两腰的交点叫做等腰三角形的顶点。 (10)什么是等腰三角形的底? 在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。 (11)什么是等腰三角形的底角? 底边上两个相等的角叫等腰三角形的底角。 (12)什么是等边三角形? 三条边都相等的三角形叫等边三角形,也叫正三角形。 (13)什么是三角形的高?什么叫三角形的底? 从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。 (14)三角形的内角和是多少度? 三角形内角和是180°. 10、四边形 (1)什么是四边形? 有四条线段围成的图形叫四边形。 (2)什么是平等四边形? 两组对边分别平行的四边形叫做平行四边形。 (3)什么是平行四边形的高? 从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。 (4)什么是梯形? 只有一组对边平行的四边形叫做梯形。 (5)什么是梯形的底? 在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。 (6)什么是梯形的腰? 在梯形里,不平等的一组对边叫梯形的腰。 (7)什么是梯形的高? 从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。 (8)什么是等腰梯形?

小学六年级数学总复习建议

小学六年级数学总复习建议 一、总复习的任务 1.系统地整理知识,形成知识网络。 2.全面巩固所学知识,从掌握达到烂熟。 3.查漏补缺,以弥补知识上的缺陷。 4.进一步提高能力,实现从“学会”到“会学”的转化。 二、总复习的原则 1.要重基础,不要搞偏题、难题、怪题。 2.要重视知识间的联系,不要就题讲题。 3.要抓重点,不要搞面面俱到。 4.要面向全体,狠抓中差生,不要搞“一刀切”。 5.要精选练习题,不要搞题海战术。 三、总复习的方法 第一轮:分类复习,过好基础关。 第二轮:知识穿线,过好综合关。 第三轮:考前练兵,过好考试关。 四、总复习的建议 1.制订复习计划。 教科书中虽然对整理与复习做了较系统的安排,但是由于各班的基础例外,教学前还应根据本班的详尽情况,制订本班的详尽复习计划。制订计划时,可以根据小学数学教学的目的和任务,学生理解和掌握数学基础知识的情况以及能力发展的情况进行一次全面的分析研究,找出学生学习中的缺陷、薄

弱环节以及存在的其他问题,在此基础上结合本单元教材的编排,拟定复习的顺序、重点、课时分配。教材中有不够的地方,在制订复习计划时可以合适补充统统。 2.重视基础知识的复习,注意知识间的联系。 进行每一部分知识的整理与复习时,要重视使学生把所学的基本概念、法则、性质等搞清楚,务求使学生真正理解和掌握,防止机械地背诵教科书中的结语。 必须熟记的法则、公式、计量单位间的进率等,要在理解的基础上要求学生记熟。 整理和复习特别要注意沟通知识间的联系,使学生获得的概念、法则、性质系统化。对于有联系而又简易混淆的内容,注意通过比较,使学生弄清它们之间的联系与区别。 3.注意培养能力。在复习数学基础知识的同时,要注意继续培养能力。在四则计算方面,既要注意提高学生计算的正确率,又要注意培养学生善于运用简易算法合理地、灵敏地进行计算的能力。混合运算式题的计算步数合宜过多,以两步为主,大凡不超过三步。在复习量的计量和几何初步知识时,要注意发展学生的空间观念,巩固测量和画图的技能。在复习应用题时,要留意训练学生在认真审题、分析数量关系的基础上寻求合理的、简易的解答方法;还要注意培养学生综合运用所学知识解决简单的实际问题的能力。复习时如发现教科书中的应用题不够,可以合适补充,但是在难度和计算步数上要注意与教科书的题目大体相当,避免补充一些超过范围的难题。 4.注意启发、引导学生主动地进行整理和复习。 最后的总复习是把已学的数学基础知识加以回忆,并进行系统的整理,不是讲授新知识。因此,教学时要注意通过启发提问引导学生回忆所学的知识,共同把所学的知识加以整理,使之系统化。在回忆和整理时,要多让学生发言,互相补充,逐步形成系统的、统统的、明确的知识网络。这样易于使学生对所学的知识加深理解,印象深刻,同时使学生感到通过整理和复习确实有所提高,从而调动学生复习的积极性,提高复习的效果。本单元教材中对某些知

小学六年级数学总复习题库(概念)

六年级数学总复习系列三(概念) 小学数学公式大全(苏教国标版综和专题总复习1) 姓名班级等第 一、数的读法和写法 1、概念:数位位数计数单位 2、数位顺序表: 3、注意:读数、写数的顺序零的读法 二、数的改写和大小比较 1、注意:“数的改写”和“写成近似数”的区别。“数的改写”只是把一个数改写成和原数相等而计数单位不同的数 例如:235800=23.58万(改写成用“万”作单位的数) “写成近似数”是根据需要,省略这个数某一位后面的尾数,写成近似数。 例如:235800≈24万(省略万位后面的尾数) 4.62975≈4.630(保留三位小数或精确到千分位) 2、分数小数与百分数之间的互化 注意:有些分数化成小数或百分数,还可以采取一些比较简便的方法。

例如:)(或)(或%.%.12120100 12425432535050100552051201==××===××= 3、想一想:怎样判断一个分数能不能化成有限小数? 4、怎样比较整数、小数的大小?怎样比较分数的大小? 三、数的整除 1、整除部分有关概念的意义和关系 2、小数、分数(除法)、比的基本性质的一致性 概念:小数的基本性质 分数的基本性质(商不变的性质) 比的基本性质 五、四则运算的意义和法则 1、运算定律与简便运算 2、四则混合运算 ⑴ 运算顺序: 第一级运算:加、减法 第二级运算: 乘、除法 & 在没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。 & 在一个有括号的算式里,要先算小括号里面的,再算中括号里面的…… ⑵ 运算过程:混合运算要注意以下几点:

六年级数学概念 一

六年级上册数学概念 一、方程 1、数量关系 小强的年龄×3 + 4 岁= 小强爸爸的年龄小瓶的容量×4 - 0.9 升= 大瓶的容量 三角形的面积=底×高÷2 长方形的周长=(长+宽)×2 梯形的面积=(上底+下底)×高÷2 速度和×相遇时间=总路程小华走的路程+ 小明走的路程= 甲、乙两地之间的路程 3 个排球的价钱+营业员找回的钱=付给营业员的钱 华氏温度(°F )=摄氏温度(°C )×1.8+32 二、长方体和正方体 1、两个面相交的线叫做棱,三条棱相交的点叫做顶点。 2、同一顶点的三条棱的长度,分别叫做它的长、宽、高。长方体的12 条棱有3 组,每组的四条棱长度相等。长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4 4、长方体的表面积就是长方体六个面的总面积。由于相对的面完全相同,所以可以先求出前面、后面和下面三个面的面积,再乘以2,就可以求出表面积了。 长方体的表面积= 长×宽×2+长×高×2+宽×高×2 长宽=(长×宽+长×高+宽×高)×2 (正方体的六个面完全相同,所以计算时只要算出其中的一个面,再乘 6 就可以了)。 棱长×棱长×正方体的表面积= 棱长×棱长×6 5、在解决一些问题时,要充分考虑实际情况,想清楚要算几个面。在解答时,可以把这几个面的面积分别算出来,再相加,也可以先算出六个面的面积总和,再减去不需要的那个(些)面。一个抽屉有5 个面,分别是前面、后面、左面、右面、底面。所以做这样一个抽屉所需要的木板,只要算出这 5 个面的面积就可以了。通风管顾名思义是通风用的,没有底面。所以只要算四个侧面就可以了。(1)具有六个面的长方体、正方体物品:油箱、罐头盒、纸箱子等;(2)具有五个面的长方体、正方体物品:水池、鱼缸等;(3)具有四个面的长方体、正方体物品:水管、烟囱等。

小学六年级数学总复习分类练习题

填空 1、一个数,它的亿位上就是9,百万位上就是7,十万位上与千位上都就是5,其余各位都就是0,这个数写作( ),读作( ),改写成以万作单位的数( ),省略万后面的尾数就是( )万。 2、把4、87的小数点向左移动三位,再向右移动两位后,这个数就是( )。 3、9、5607就是( )位小数,保留一位小数约就是( ),保留两位小数约就是( )。 4、最小奇数就是( ),最小素数( ),最小合数( ),既就是素数又就是偶数的就是( ),20以内最大的素数就是( )。 5、把36分解质因数就是( )。7、如果x6 就是假分数,x7 就是真分数时,x=( )。 6、因为a=2×3×7,b=2×3×3×5,那么a与b的最大公约数就是( ),最小公倍数就是( )。 8、甲数扩大10倍等于乙数,甲、乙的与就是22,则甲数就是( )。 9、三个连续偶数的与就是72,这三个偶数就是( )、( )、( )。 10、x与y都就是自然数,x÷y=3(y≠0),x与y的最大公约数就是( ),最小公倍数就是( )。 11、一个数,千位上就是最小的质数,百位上就是最小的自然数,个位上就是最小的合数,百分位上就是最大的数字,其余数位上的数字就是0,这个数写作( ),读作( )。 12、三个连续奇数的与就是129,其中最大的那个奇数就是( ),将它分解质因数为( )。 13、两个数的最大公约数就是1,最小公倍数就是323,这两个数就是( )与( ),或( )与( )。 14、用3、4或7去除都余2的数中,其中最小的就是( )。0、045里面有45个( )。 15、分数的单位就是18 的最大真分数就是( ),它至少再添上( )个这样的分数单位就成了假分数。 17、把一根5米长的铁丝平均分成8段,每段的长度就是这根铁丝的( ),每段长( )。 18、分数单位就是111 的最大真分数与最小假分数的与就是( )。 19、a与b就是互质数,它们的最大公约数就是( ),[a、b]=( )。 20、小红有a枝铅笔,每枝铅笔0、2元,那么a枝铅笔共花( )元。 21、甲仓存粮的34 与乙仓存粮的23 相等,甲仓:乙仓=( ):( )。已知两仓共存粮360吨,甲仓存粮( )吨,乙仓存粮( )吨。 22、如果7x=8y,那么x:y=( ):( )。把5克盐放入50克水中,盐与盐水的比就是( )。 23、大圆的半径就是8厘米,小圆的直径就是6厘米,则大圆与小圆的周长比就是( ),小圆与大圆的面积比就是( )。 25、甲、乙二人各有若干元,若甲拿出她所有钱的20%给乙,则两人所有的钱正好相等,原来甲、乙二人所有钱的最简整数比就是( )。 26、如果x÷30=0、3,那么2x+1=( );有三个连续偶数,中间的一个就是m,那么最小的偶数就是( )。 27、采用24时记时法,下午3时就就是( )时,夜里11时就就是( )时,夜里12时就是( )时,也就就是第二天的( )时。 28、某商店每天9:00-18:00营业,全天营业( )小时。 29、15米40厘米=( )米=( )厘米6400毫升=( )升=( )立方分米 5、4平方千米=( )公顷=( )平方米3小时45分=( )小时 834 立方米=( )立方分米1立方米50立方分米=( )立方米 3吨500千克=( )千克 1.5升=( )毫升=( )立方厘米 3、25千米=( )千米( )米0.65米=( )分米( )厘米 30、一个圆柱的体积就是60立方厘米,与它等底等高的圆锥体的体积就是( )立方厘米。

六年级数学概念

数学有关公式与概念 1.计算公式: 三角形的面积=底×高÷2,公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a或者S=a2 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 多边形内角和=(边数-2)×1800 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa或者V=a3 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。 公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法法则:用分子的积做分子,用分母的积做分母。 分数的除法法则:除以一个数等于乘以这个数的倒数。 2.定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2 + 4)×5=2×5 + 4×5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子 叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数, 等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数 (0除外),分数的大小不变。 20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

小学六年级数学总复习试卷及答案

六年级数学总复习 练习卷 (限时:80分) 姓名_________ 成绩________ 一、填空。 1、五百零三万七千写作( ),7295300省略“万”后面的尾数约就是( )万。 2、1小时15分=( )小时 5、05公顷=( )平方米 3、在比例尺1:30000000的地图上,量得A 地到B 地的距离就是3、5厘米,则A 地到B 地的实际距离就是( )。 4、在1、66,1、6,1、7%与4 3中,最大的数就是( ),最小的数就是( )。 5、一个两位小数,若去掉它的小数点,得到的新数比原数多47、52。这个两位小数就是( )。 6、甲乙两数的与就是28,甲与乙的比就是3:4,乙数就是( ),甲乙两数的差就是( )。 7、A 、B 两个数就是互质数,它们的最大公因数就是( ),最小公倍数就是( )。 8、在边长为a 厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比就是 ( )。 9、小红把2000元存入银行,存期一年,年利率为2、68%,利息税就是5%,那么到期时可得利息( )元。 10、一种铁丝21米重3 1千克,这种铁丝1米重( )千克,1千克长( )米。 11、一个圆柱与一个圆锥体积相等,底面积也相等。已知圆柱的高就是12厘米,圆锥的高就是( )。 12、已知一个比例中两个外项的积就是最小的合数,一个内项就是 6 5,另一个内项就是( )。 13、一辆汽车从A 城到B 城,去时每小时行30千米,返回时每小时行25千米。去时与返回时的速度比就是( ),在相同的时间里,行的路程比就是( ),往返AB 两城所需要的时间比就是( )。 二、判断题,对的打勾,错的打叉。 1、把一根长为1米的绳子分成5段,每段长15 米。( ) 2、任何一个质数加上1,必定就是合数。( )

小学数学总复习必备知识点汇集(全)

小学数学必须掌握的 基本概念、数理规律及基本应用总归集 第一章数和数的运算 一、基本概念 (一)整数 1、整数的意义:自然数和0都是整数。 2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。一个物体也没有,用0表示。0也是自然数。 3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。 6、倍数和约数:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 基本规律: 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。 (1)2的倍数:个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。 (2)5的倍数:个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 (3)3的倍数:一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 7、偶数与奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。 8、质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 9、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。 如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

相关文档
相关文档 最新文档