文档库 最新最全的文档下载
当前位置:文档库 › 反应谱与时程比较

反应谱与时程比较

反应谱与时程比较
反应谱与时程比较

反应谱法与时程分析法在设计地震下的比较

摘 要:以反应谱法与时程分析法的原理为依据,结合实际桥梁单墩模型进行抗震分析,从而得出这两种方法的异同以及它们所适用的范围,并结合它们的优缺点,优化结构动力分析方法的优化。 关键词:反应谱;时程分析;单墩模型;设计地震 0 前言

在桥梁抗震计算中,早期采用简化的静力法,5O 年代后发展了动力法的反应谱理论,近2O 年来对重要结构物采用动力法的动态时程分析法和功率谱法进行研究也比较普遍,但目前常用的方法是线弹性反应谱法、弹塑性动力时程分析法和等效静力分析法等几种方法。其中,反应普法和时程分析法在抗震分析中运用最为广泛。 1 反应谱理论 1.1 反应谱法原理

单质点体系在地面运动作用下,运动方程为[18]

..

.

g m x c x kx m x ??

++=- (1)

(1)式中:

m —质点质量;

..

x —质点相对加速度;

.

x —质点相对速度;

x —质点相对位移。

根据单质点体系的振动理论,由Duhamel 积分可知: [][]..0

1

exp ()sin ()t t g x x t t d ξωτωττω=

--?-?

(2)

对上式微分两次可得加速度(在一般情况下,阻尼比ξ的数值很小,可略去

阻尼比的乘积项),得到单质点体系的地震相对加速度反应的表达式。最后得绝对加速度的表达式为:

..

..

..

()0

()()()sin ()t t g a D g D s x t x t x e t d ξωτωτωττ--=+=-? (3)

进而得到作用在质点上的地震力为()a F t m S =?。 1.2 反应普法的优缺点

反应谱法以其概念清晰、计算简单而被广泛应用,至今仍是各国规范的基本计算方法。反应谱法根据规范按四类场地土给出的设计反应谱进行计算,对于量大面广的常规桥梁,只取少数几个低阶振型就可以求得较为满意的结果,计算量少;并且反应谱法将时变动力问题转化为拟静力问题,易于为工程师接受,这些都是反应谱法的优点所在。

由于目前采用的反应谱法对结构地震力采用弹性反应谱理论,反应谱法的最大缺点是假定结构是弹性状态,原则上只适用于弹性结构体系。然而地震是一种不经常发生的偶然荷载,一般允许结构在强烈地震中进入非线性状态,弹性反应谱法不能直接使用。另外,地震反应谱失掉相位信息,经叠加得到的结构反应最大值是一个近似值,尽管可能是一个很好的近似值,但各种叠加方案都有一定的局限性,不是任何情况下都能给出满意的结果。计算结果只能给出最大反应值,而不能给出发生反应的全过程。在抗震设计中最大的内力反应是最受关注的,但相邻截面的最大反应或即使在同一截面上各个内力的最大反应发生的时刻各不相同,在结构强度或应力验算中应取发生在同一时刻的反应值,如最大弯矩相应的轴力和剪力,或最大轴力相应的弯矩和剪力等,这一点反应谱无法做到。 2 时程分析理论 2.1 时程分析原理

动态时程分析方法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。目前,大多数国家除对常用的中小跨度桥梁仍采用反应谱方法计算外,对重要、复杂、大跨度的桥梁抗震计算建议采用动态时程分析法。

动态时程分析方法能够比较准确地确定结构在地震过程中结构的内力和位移随时间的反应,并发现结构在地震时可能存在的薄弱环节和可能发生的震害,它使桥梁的抗震设计从单一的强度保证转入强度、延性(变形)的双重保证,同时使工程师更清楚结构地震力破坏的机理和正确提高桥梁抗震能力的途径。本章主要给出时程分析的理论介绍、时程分析的常用求解方法、时程分析时地震波的选取和ANSYS 时程反应的典型命令流。

在地震反应中,地面振动加速度是复杂的随机函数,同时在弹塑性反应中刚度矩阵和阻尼矩阵亦随时间变化,不可能对振动方程求出解析解。对于这种有较复杂激振力,可采用逐步积分法求动力响应问题。其基本思想是把时间离散化,如把时间区间T 分为t n T ?=/的n 个间隔。由初始状态t=0开始,逐步求出每个时间间隔末??t t T ,,,2 上的状态向量(常由位移、速度和加速度等组成)。最后求出的状态向量就是结构系统的动力响应解。在这种方法中,后次的求解是在前次解已知的条件下进行的。开始是假定t=0时的解(包括位移和速度)为已知,求出t ?时的解,接着再以t ?时刻的已知解计算t ?2时刻的

解,如此继续下去。在方程)()(t ma x x k x c x m g -=++ 中,{}{}{}x x x ,, 是未知量,如何由前一状态推知下一状态?这可以对{}{}{}x x x

,, 的变化规律给予某种假设。对于不同的假设就形成了不同的方法,如线性加速度法,Wilson-θ法、Newmark-β法等。 2.2 Newmark-β法 2.2.1 基本假定

{}{}(){}{}[]t x x x x t t t t t t ?+-+=?+?+ δδ1 (4)

{}{}{}{}{}22

1t

x x t x x x t t t t t t t ???

????+??

? ??-+?+=?+?+ αα (5)

式中,参数δ控制积分区间的起始加速度和终了加速度对速度变化过程的影响;参数α则控制这两个加速度对位移变化的影响。α和δ的调整影响积分的精度和稳定性。基本假定的实质是将动力方程在时域上离散,对时间作近似的插值化为差分格式。 2.2.2 计算步骤 (1)初始计算

① 形成刚度矩阵[]K ,质量矩阵[]M 和阻尼矩阵[]C 。

② 给定初始值{}{}{}000x

x x 、、。 ③ 选择时间步长?t 参数α和δ,并计算积分常数。

δ≥05. ()2

5.025.0δα+≥ αα021=

?t

αδα1=?t αα21=?t αα3121

=- αδα41=- αδα522=-?t ()

αδ61=-?t ()

αδ7=?t (6)

④ 形成有效刚度[]K ?

[][][][]C M K K 1

?αα++= (7) ⑤ 对刚度矩阵[]K ?作三角分解 [][][][]T

L D L K =?

(8)

(2) 对每一时间步长 ① 计算t t +?时刻的有效荷载

()(

)t t t t t t t t t t x x x C x x

x M R R 541320?αααααα++++++=?+?+

(9)

② 求解t t +?时刻的位移

[][][]{}{}t t t t T R X L D L ?+?+=? (10)

③ 计算t t +?时刻的速度和加速度

{}{}{}(){}{}t t t t t t t x x x x x 320ααα---=?+?+

(11)

{}{}{}{}t t t t t t x x x x ?+?+++= 76αα (12)

若计算结构内力则可以把求得的各时刻位移代入刚度矩阵计算。

Newmark-β法的应用过程开始是选择参数β的数值。纽马克建议取值范围为

2/16/1≤≤β,对于β=1/6,该方法与线加速度法完全相同,并且仅是条件稳

定的。

对β=1/4,该方法与假定时间步长内速度线性变化方法等价,并将在时间步长内要求平均加速度保持常量。在β=1/4的情况下,Newmark-β法是无条件稳定的,并且可以给出满意的精度。

2.3 时程分析法的优缺点

动态时程分析法是随着强震记录的增多和计算机技术的广泛应用而发展起来的,是公认的精细分析方法。目前,大多数国家的抗震规范规定除对常用的中小跨度桥梁仍采用反应谱方法计算外,对重要、复杂、大跨的桥梁抗震计算都建议采用动态时程分析法。动态时程分析法从选定的地震动输入(地震动加速度时程)出发,采用多节点多自由度的结构有限元动力计算模型建立地震动方程,采用逐步积分法对方程进行求解,计算地震过程中每一瞬时结构的位移、速度和加速度反应。动态时程分析法可以精确地考虑地基和结构的相互作用,地震时程相位差及不同地震时程多分量多点输入,结构的各种非线性因素(包括几何、材料、边界连接条件的非线性)。

此外,动态时程分析法可以使桥梁的抗震设计从单一的强度保证转入强度、变形的双重保证,同时使桥梁工程师更清楚结构地震动力破坏的机理和正确提高桥梁抗震能力的途径。

3 反应谱理论和时程分析法的异同及使用范围

与振型分解反应谱法相比,时程分析的产生已将抗震计算理论由等效静力分析进入直接动力分析,是一种飞跃。在工程结构抗震设计中可用以更真实地描述结构地震反应,弥补反应谱法分析的不足。与反应谱方法比较,时程分析的主要进展是:

反应谱法采用的设计反应谱只反映了地震动强度与平均频谱特性,而时程分析则全面反应了地震动强度、谱特性与持续时间三要素。

反应谱是基于弹性假设的,而时程分析直接考虑构件与结构弹塑性特性,可以正确找出结构的薄弱环节,以便控制在罕遇地震作用下结构的弹塑性反应,防止结构倒塌的发生。

反应谱法只能分析最大地震反应,而用时程分析可给出随时间变化的反

应时程曲线,由此可以找出各构件出现塑性铰的顺序,判别结构的破坏机理。

分析方法适用范

评注

反应谱法单振

规则桥

仅对可视为单自由度的结构有效,适用于线弹

性反应问题,方法简单,可手算,为规范基本分析

方法之一。

主要缺点:无法反映地震动持时的影响。

多振

复杂桥

规范采用的主要分析方法,一般需要依靠计算

机程序完成分析,适用于多自由度变线弹性系统。

主要缺点:存在振型组合问题,尚难考虑非一

致激励,其余同上。

等效

线性

一般用

于规则

桥梁

可估计非线性系统的最大反应,一般用于初步

设计,方法简单,可手算,在位移设计法中应用更

广。

主要问题:需更多的实践检验。

动态时程法弹性

复杂桥

规范采用的主要分析方法,可同时计算结构弹

性反应的需求和能力,一般需要靠计算机程序完成

分析。

主要缺点:无法考虑非线性反应。

非弹

特别复

杂或关

键桥梁

可以考虑P- 效应和材料非线性,可同时计算

结构非线性反应的需求和能力,需要靠计算机程序

完成分析。

主要缺点:计算过程复杂,计算结果需分析和

校核。

表1 反应谱理论和时程分析法评价

4 单墩模型算例

4.1高墩的基本参数

某铁路高墩,墩身高为96m,为变截面,横桥向及截面内外均有放坡,墩身为C30号混凝土,纵向钢筋全截面配筋率为1%。采用未开裂截面计算而得的桥墩第1周期为2.21s。桥址位于7度区,50年超越概率10%的设计地震加速度

a=0.15g,Ⅱ类场地,特征周期为0.4s。模型简化如图

1

图1 单墩模型图2 地震动加速度时程曲线

4.2 分析结果

输入图2所示设计安评地震波(峰值加速度0.15g),与反应普结果比较如下

表2 反应谱与时程结果比较

图3 墩顶位移时程曲线图4 墩底横桥向剪力时程曲线

5 结论

用MIDAS结构分析软件进行单墩模型抗震分析,由以上内容可得出结论:反应谱分析结果大于时程分析出的结果,并结合两种方法原理,说明实际算例符合理论分析。

参考文献

[1]范立础,卓卫东,桥梁延性抗震设计[M],北京,人民交通出版社,2001 [2]范立础,桥梁抗震[M],上海,同济大学出版社,1997

[3]李茜,王克海,韦韩,高墩梁桥地震反应分析[J],地震工程与工程振动,2006

[4]卓卫东,范立础,从震害教训中反思我国桥梁抗震设计现状[J],福州大学学报,1999(6):7-1

地震响应的反应谱法与时程分析比较 (1)

发电厂房墙体地震响应的反应谱法与时程分析比较 1问题描述 发电厂房墙体的基本模型如图1所示: 图1 发电厂墙体几何模型 基本要求:依据class 9_10.pdf的最后一页的作业建立ansys模型,考虑两个水平向地震波的共同作用(地震载荷按RG1.60标准谱缩放,谱值如下),主要计算底部跨中单宽上的剪力与弯矩最大值,及顶部水平位移。要求详细的ansys反应谱法命令流与手算验证过程。以时程法结果进行比较。分析不同阻尼值(0.02,0.05,0.10)的影响。 RG1.60标准谱 (1g=9.81m/s2) (设计地震动值为0.1g) 频率谱值(g) 33 0.1 9 0.261 2.5 0.313 0.25 0.047 与RG1.60标准谱对应的两条人工波见文件rg160x.txt与rg160y.txt 2数值分析框图思路与理论简介 2.1理论简介 该问题主要牵涉到结构动力分析当中的时程分析和谱分析。时程分析是用于确定承受任意随时间变化荷载的结构动力响应的一种方法。谱分析是模态分析的扩展,是用模态分析结果与已知的谱联系起来计算模型的位移和应力的分析技术。 2.2 分析框架: 时程分析:在X和Z两个水平方向地震波作用下,提取底部跨中单宽上的剪力、弯矩值和顶部水平位移,并求出最大响应。 谱分析:先做模态分析,再求谱解,由于X和Z两个方向的单点谱激励,因此需进行两次谱分析,分别记入不同的工况最后组合进行后处理得出结够顶部水平位移、底部单宽上剪力和弯矩的最大响应。 3有限元模型与荷载说明 3.1 有限元模型 考虑结构的几何特性建立有限元模型,首先建立平面几何模型,并将模型进行合理的切割,采用plane42单元,使用映射划分网格的方法生产平面单元(XOY平面)。然后,采用solid45

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1、震级和烈度有什么区别和联系? 震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。 5.试讨论结构延性与结构抗震的内在联系。 延性设计:通过适当控制结构物的刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大的延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”。延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件的延性,提高抗震性能。 第2章场地与地基 1、场地土的固有周期和地震动的卓越周期有何区别和联系? 由于地震动的周期成分很多,而仅与场地固有周期T接近的周期成分被较大的放大,因此场地固有周期T也将是地面运动的主要周期,称之为地震动的卓越周期。 2、为什么地基的抗震承载力大于静承载力? 地震作用下只考虑地基土的弹性变形而不考虑永久变形。地震作用仅是附加于原有静荷载上

MATLAB弹性时程分析法编程

计算书:课程设计计算书(题一) 根据加速度调幅公式:m i a t a a a /)(max ,00*= )/(29002902s mm Gal a m == 得:58/)(72900/)(3500i i t a t a a =*= )(i t a =[0 600 1100 150021002500 2900350 2050

15001000600200 -700 -1300-1700 -2000 -1800-1500 -700-250200 -100 0 0 0]; 所以经调幅后为0a =[0 72.6 133.1 181.5 254.1 302.5 350.9 42.4 248.1 181.5 121 72.6 24.2 -84.7 -157.3 -205.7 -242 -217.8 -181.5 -84.7 -30.3 24.2-12.1 0 0 0 ] 6.7206.72''1''2=-=-U U 5.60 6.721.133''2''3=-=-U U 依次类推可以求出地面运动加速度的差值。 因为km c 2=ζ,08.0=ζ , m kN k /9000=, m s kN m /2502?= 代入可以算得m s kN c /240?= 一、表格第一行数据计算: t c t m k K i i /3/62++=*, t=0.05s 代入得m N K i /623400 =* )△△2 /3()3/6(''''''''t U U c U t U U m P i i g i *++---=* N 18150-6.72250-=*= **=i i P U K △△ mm K P U i i 03.0623400/18150 /-=-==**△△ 起始时刻时:0=U 0'=U 0''=U 因为'''2''3/6/6i i U t U t U U -*-*=△△ 所以7205.0/)03.0(62''1 -=-*=U △

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

结构抗震设计时程分地震波的选择

(1)设计用地震记录的选择和调整 用规范的确定性方法和地震危险性分析方法所确定的设计地震动参数,是选择天然地震加速度记录的依据。 (一)实际地震记录的选择方法 选择地震记录应考虑地震动三要素,即强度(峰值)、频谱和持续时间。对某一建筑的抗震设计,最好是选用该建筑所在场地曾经记录 到的地震加速度时间过程。但是,这种机会极少。为此,人们只能从现有的国内外常用的地震记录中去选择,尽可能挑选那些在震级、震中距和场地条件等方面都比较接近设计地震动参数的记录。他的文章给出了相应的地震数据的记录目录。 (二)实际地震记录的调整 1.强度调整。将地震记录的加速度值按适当的比例放大或缩小,使其峰值加速度等于事先所确定的设计地震加速度峰值。即令 其中a(为记录的加速度值为调整后的加速度值;A众为设计地震加速度峰值;。为记录的加速度峰值。这种调整只是针对原记录的强度进行的,基本上保留了实际地震记录的特征。也就是所说的(强度修正。将地震波的加速度峰值及所有的离散点都按比例放大或缩小以满足场地的烈度要求)

2.频率调整考虑到场地条件对地震地面运动的影响,原则上所选择的实际地震记录的富氏谱或功率谱的卓越周期乃至形状,应尽量与场地土相应的谱的特性一致。如果不一致,可以调整实际地震记录的时间步长,即将记录的时间轴“拉长”或“缩短”,以改变其卓越周期而加速度值不变也可以用数字滤波的方法滤去某些频率成分,改变谱的形状。另外,为了在计算中得到结构的最大反应,也可以根据建筑结构基本自振周期,调整实际地震记录的卓越周期,使二者接近。这种调整的结果,改变了实际地震记录的频率结构,从物理意义上分析是不合理的。 另外,在测定场地土和建筑结构的卓越周期时,运用不同的测试仪器和测试技术,往往得到不同的结果。即使是对同一个测试结果,在频谱上确定卓越周期时,不同的分析方法也会导致不同的结果。有的选取谱的第一个峰值所对应的周期作为卓越周期,有的选最大峰值时的,也有的取某一段周期等,很不一致。对如何确定地震加速度记录的卓越周期,也是各行其是,有的利用加速度反应谱,有的用伪速度谱,有的用富氏谱,结果当然是不一样的。上述各种作法在工程中引起了一些混乱。 王亚勇认为,用脉动测试方法测定场地土和结构的卓越周期及自振周期时,应采用速度摆型或加速度摆型的地震仪测定地运动和结构振动,然后计算其富氏谱或功率谱,以谱的最大峰值所对应的周期作为卓越周期和自振周期比较合适。反应而相应地根据记录的位移谱或速度谱。 这也就是所谓的滤波修正。可按要求设计滤波器,对地震波进行时域或频域的滤波修正。这样修正的地震资料不仅卓越周期满足要求,功率谱的形状和面积也可控制。卓越周期修正。将地震波的离散步长按人为比例改变,

ANSYS地震反应谱SRSS分析共24页

ANSYS地震反应谱SRSS分析 我在ANSYS中作地震分解反应谱分析,一次X方向,一次Y 方向,他们要求是独立互不干扰的,可是采用直进行一次模态分析的话,他生成的*.mcom文件好像是包含了前面的计算 结果,命令流如下: !进入PREP7并建模 /PREP7 B=15 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ET,1,beam4 !二维杆单元 R,1,0.25,0.0052,0.0052,0.5,0.5 !以参数形式的实参 MP,EX,1,2.0E11 !杨氏模量 mp,PRXY,1,,0.3 mp,dens,1,7.8e3 N,1,-B,0,0 !定义结点 N,2,0,0,0 N,3,-B,0,b

N,4,0,0,b N,5,-B,0,2*b N,6,0,0,2*b N,7,-B,0,3*b N,8,0,0,3*b E,1,3 !定义单元 E,2,4 E,3,5 E,4,6 E,3,4 E,5,6 e,5,7 e,6,8 e,7,8 D,1,ALL,0,,2 FINISH ! !进入求解器,定义载荷和求解 /SOLU D,1,ALL,0,,2 !结点UX=UY=0

sfbeam,1,1,PRES,100000, sfbeam,3,1,PRES,100000, sfbeam,7,1,PRES,100000, SOLVE FINISH allsel NMODE=10 /SOL !* ANTYPE,2 !* MSAVE,0 !* MODOPT,LANB,NMODE EQSLV,SPAR MXPAND,NMODE , , ,1 LUMPM,0 PSTRES,0 !* MODOPT,LANB,NMODE ,0,0, ,OFF

反应谱与时程理论对比

反应谱是在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形。更直观的定义为:一组具有相同阻尼、不同自振周期的单质点体系,在某一地震动时程作用下的最大反应,为该地震动的反应谱。 反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静 力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK= αG 其中α为地震影响系数,即单质点弹性体系在地震时最大反应加速度。另一方面地震影响系数也可视为作用在质点上的地震作用与结构重力荷载代表值之比。 目前,反应谱分析法比较成熟,一些主要国家的抗震规范均将它作为基本设计方法。不过,它主要适合用于规则结构。对于不规则结构以及高层建筑,各国规范多要求采用时程分析法进行补充计算。 地震作用反应谱分析本质上是一种拟动力分析,它首先使用动力法计算质点地震响应,并使用统计的方法形成反应谱曲线,然后使用静力法进行结构分析。但它并不是结构真实的动力响应分析,只是对于结构动力响应最大值进行估算的近似方法,在线弹性范围内,反应谱分析法被认为是高效而且合理的方法。反应谱分为加速度反应谱、速度反应谱和位移反应谱。基于不同周期结构相应峰值的大小,我们可以绘制结构速度及加速度的反应谱曲线。一般情况下,随着周期的延长,位移反应谱为上升曲线,速度反应谱为平直曲线,加速度反应谱为下降曲线,目前结构设计主要依据加速度反应谱。 加速度反应谱在短周期部分为快速上升曲线,并且在结构周期与场地特征周期接近时出现峰值,后面更大范围为逐渐下降阶段。峰值出现的时间与对应的结构周期和场地特征周期有关。一般来说结构自振周期的延长,地震作用将减小。当结构自振周期接近场地特征周期时,地震作用最大。 反应谱分析方法需要先求解一个方向地震作用响应,再基于三个正交方向的分量考虑结构总响应,即基于振型组合求解一个方向的地震响应,再基于方向组合求解结构总响应。 振型组合方法有SRSS法,CQC法。 1.SRSS法 SRSS法是平方和平方根法,这种方法假定所有最大模态值在统计上都是相互独立的,通过求各参与阵型的平方和平方根来进行组合。该法不考虑各振型间的藕联作用,实际上结构模态都是相互关联的,不可避免的存在藕联效应,对那些相邻周期几乎相等的结构,或者不规则结构不适用此法。《抗规》GB50011-2010规定的SRSS法为如下所示:

抗震设计方法概述

本学期的“工程结构抗震分析”课程首先介绍了地震与地震震害以及结构抗震分析的必要性和其方法的发展过程,然后简单回顾了一下结构动力学基础,接下来认识了地震波与强震地面运动的特性,以及地震作用下结构的动力方程,最后重点讲述了几种抗震设计分析方法——反应谱分析法,时程分析法(弹性和弹塑性),和静力弹塑性分析法。通过一个学期的学习,本人对强震地面运动特征和抗震设计原理和方法有了一定的了解和把握。 在进行建筑、桥梁以及其它结构物的抗震设计时,一般都要遵循以下五个步骤:抗震设防标准选定、抗震概念设计、地震反应分析、抗震性能验算以及抗震构造设计,其流程如图1 所示。 本文将着眼于图1流程中的第3个步骤, 从我国现行规范中的3种最常用的结构响应分 析方法出发,简单介绍一下其各自的基本概念 和适应范围(具体原理和计算过程在此不再详 述,读者可另查阅相关课本和规范),以及现有 抗震设计规范中存在的问题,以便初学者对结 构抗震设计分析方法有个初步的认识,也作为 本人对本课程的学习总结。 一.3种最常用的结构响应分析方法 1.底部剪力法 定义:根据地震反应谱理论,以工程结构 底部的总地震剪力与等效单质点的水平地震作 用相等来确定结构总地震作用的一种计算方 法。 底部剪力法适用于基本振型主导的规则和 高宽比很小的结构,此时结构的高阶振型对于 结构剪力的影响有限,而对于倾覆弯矩则几乎 没有什么影响,因此采用简化的方式也可满足 工程设计精度的要求。 高规规定:高度不超过40m、以剪切变形 为主且质量和刚度沿高度分布比较均匀的高层 建筑结构,可采用底部剪力法。 底部剪力法尚有一个重要的意义就是我们可以用它的理念,简化的估算建筑结构的地震响应,从而至少在静力的概念上把握结构的抗震能力,它还是很有用的。 2.振型分解反应谱法 定义:振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 反应谱的振型分解组合法常用的有两种:SRSS和CQC。虽然说反应谱法是将并非同一时刻发生的地震峰值响应做组合,仅作为一个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。一般而言,对于那些对结构反应起重要作用的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太小(工程上一般都可以满足)时,SRSS是精确的,频率稀疏表面上的反应就是结构的振型周期拉的比较开;而对于那些结构

ABAQUS时程分析实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上 修改) 问题描述: 悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 的集中质量。反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。 图1 计算对象 第一部分:反应谱法 几点说明: λ本例建模过程使用CAE; λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱; λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。 λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。 操作过程为: (1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。continue (3)Create lines,在 分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800 mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.

ANSYS地震分析实例

ANSYS地震分析实例 土木工程中除了常见的静力分析以外,动力分析,特别是结构在地震荷载作用下的受力分析,也是土木工程中经常碰到的题目。结构的地震分析根据现行抗震规范要求,一般分为以下两类:基于结构自振特性的地震反应谱分析和基于特定地震波的地震时程分析。 本算例将以一个4质点的弹簧-质点体系来说明如何使用有限元软件进行地震分析。更复杂结构的分析其基本过程也与之类似。 关键知识点: (a) 模态分析 (b) 谱分析 (c) 地震反应谱输进 (d) 地震时程输进 (e) 时程动力分析 (1) 在ANSYS窗口顶部静态菜单,进进Parameters菜单,选择Scalar Parameters选项,在输进窗口中填进DAMPRATIO=0.02,即所有振型的阻尼比为2% (2) ANSYS主菜单Preprocessor->Element type->Add/Edit/Delete,添加Beam 188单元 (3) 在Element Types窗口中,选择Beam 188单元,选择Options,进进Beam 188的选项窗口,将第7个和第8个选项,Stress/Strain (Sect Points) K7, Stress/Strain (Sect Nods) K8,从None 改为Max and Min Only。即要求Beam 188单元输出积分点和节点上的最大、最小应力和应变 (4) 在Element Types 窗口中,继续添加Mass 21集中质量单元 (5) 下面输进材料参数,进进ANSYS主菜单Preprocessor->Material Props-> Material Models菜单,在Material Model Number 1中添加Structural-> Linear-> Elastic->Isotropic 属性,输进材料的弹性模量EX和泊松比PRXY分别为210E9和0.3。 (6) 继续给Material Model Number 1添加Density属性,输进密度为7800。 (7) 继续给Material Model Number 1添加Damping属性,采用参数化建模,输进阻尼类型为Constant,数值为DAMPRATIO

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

水工建筑物抗震设计规范

中华人民共和国行业标准 SL203-97 水工建筑物抗震设计规范 Specificatins for seismic design of hydraulic structures 1997-08-04发布 1997-10-01实施 中华人民共和国水利部发布 中华人民共和国行业标准 主编单位:中国水利水电科学研究院 批准部门:中华人民共和国水利部施行日期:1997年10月1日 中华人民共和国水利部 关于发布《水工建筑物抗震设计规范》SL203-97的通知 水科技[1997]439号 根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释. 本标准文本由中国水利水电出版社出版发行.一九九七年八月四日 前言 本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规范》进行修订而成. 本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿. 本规范为强制性行业标准,替代SDJ10-78. 本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容. 希望有关单位在执行本规范的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑. 本规范由原能源部,水利部水利水电规划设计总院提出修订. 本规范由水利部水利水电规划设计管理局归口.

时程分析法

第九章时程分析法 第一节时程分析法的概念 振型分解法仅限于计算结构在地震作用下的弹性地震反应。时程分析法是用数值积 分求解运动微分方程的一种方法,在数学上称为逐步积分法。这种方法是从t=0时刻开始,一个时段接着一个时段地逐步计算,每一时段均利用前一时段的结果,而最初时段应根 据系统的初始条件来确定初始值。即是由初始状态开始逐步积分直至地震终止,求出结 构在地震作用下从静止到振动、直至振动终止整个过程的地震反应。 时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。时程分 析法能给出结构地震反应的全过程,能给出地震过程中各构件进入弹塑性变形阶段的内 力和变形状态,因而能找出结构的薄弱环节。 时程分析法分为弹性时程分析法和弹塑性时程分析法两类。 第一阶段抗震计算“小震不坏”中,采用时程分析法进行补充计算,这时计算所采用 的结构刚度和阻尼在地震作用过程中保持不变,称为弹性时程分析。 在第二阶段抗震计算“大震不倒”中,采用时程分析法进行弹塑性变形计算,这时结 构刚度和阻尼随结构及其构件所处的非线性状态,在不同时刻可能取不同的数值,称为 弹塑性时程分析。弹塑性时程分析能够描述结构在强震作用下在弹性和非线性阶段的内力、变形,以及结构构件逐步开裂、屈服、破坏甚至倒塌的全过程。 第二节时程分析法的适用范围 一、时程分析法的适用范围 时程分析法是根据选定的地震波和结构恢复力特性曲线,对动力方程进行直接积分,采用逐步积分的方法计算地震过程中每一瞬时的结构位移、速度和加速度反应,从而可观察到结构在强震作用下弹性和非弹性阶段的内力变化以及构件开裂、损坏直至结构倒塌的全过程。但此法的计算工作十分繁重,须借助计算机,费用较高,且确定计算参数尚有许多困难,目前仅在一些重要的、特殊的、复杂的以及高层建筑结构的抗震设计中应用。《建筑抗震设计规范》对时程分析法的适用范围规定如下:

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

地震反应谱的绘制

地震时程曲线与反应谱的绘制 ①地震反应谱的意义 地震反应谱表示的是在一定的地震动下结构的最大反应,是结构进行抗震分析与设计的重要工具。 由于同一结构在遭遇不同的地震作用时的反应并不相同,单独一个地震记录的反应谱不能用于结构设计。但是地震记录的反应谱又有一定的相似性,我们可以将具有普遍特性记录的反应谱进行平均和平滑处理,以用于抗震设计。现在,地震反应谱不但是工程抗震学中最重要的概念之一,还是整个地震工程学中最重要的概念之一。 ②地震反应谱的计算方法 反应谱的计算方法涉及到时域分析方法和频域分析方法。 时域分析方法中的Duhamel 积分,是现在公认精度最高的方法。 绝对加速度反应谱公式如下:(推导略) 但由于实际结构系统的阻尼比ξ通常都小于0.1,所以有阻尼系统和无阻尼系统的自振 周期ω近似相等即由ωζω21-=d (精确度≥99.5%)简化成ωω=d ,实际计算中通常按无阻尼系统的自振周期确定。 从而上式可以简化为 ()()()max 00max sin )(?-==--t t a d t e x t a S ττωτωτζω ③用matlab 画地震时程曲线与绝对加速度反应谱: 所需准备软件: excel ,notepad2,matlab 以NINGHE 地震波为例 Code : %NINGHE 地震波时程曲线 % 加载前用excel 和notepad 对数据进行规整

load NINGHE.txt; % 数据放在安装文件的work目录下 NUMERIC=transpose(NINGHE); % matlab read the data by column, ni=reshape(NUMERIC,numel(NUMERIC),1);% make the date one column t_ni=0:0.002:(length(ni)-1)*0.002; % determine the time plot(t_ni,ni); ylabel('Acceleration'); xlabel('time'); title('NINGHE') %NINGHE绝对加速度反应谱 load NINGHE.txt; NUMERIC=transpose(NINGHE); ni=reshape(NUMERIC,numel(NUMERIC),1);%make the date one column d=0;%d is damping ratio for k=1:600; t(k)=0.01*k;%规范的加速度反应谱只关心前6秒的值 w=6.283185/t(k); t_ni=0:0.02:(length(ni)-1)*0.02; Hw=exp(-1*d*w*t_ni).*sin(w*t_ni); y1=conv(ni,Hw).*(0.02*w);y1=max(abs(y1));%卷积积分 c(k)=y1*10; end;plot(t,c,'black')

时程分析法

时程分析法 定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。 概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。 是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。 时程分析法是世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等。至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。 “时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。 “时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。 地震动输入对结构的地震反应影响非常大。目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV 类场地的宁河波等。

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是朿要的计算由结构动力特性所产生共振效应的方法。它的书 面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应利加速度反应随 质点自振周期变化的曲线。用作计算在地震作用I、?结构的内力和变形”,反应谱理论占虑了结构动 力特性与地震动特性z间的动力关系,通过反应谱来计算由结构动力持性(n 掠周期、振型和阻尼)所 产生的共振效应,但人计算公式仍保留了早期静力理论的形式。地虑时结构所受的最大水平基底剪 力,即总水平地震作用为: FEK 二kp(T)G 式中,k为地震系数,B(T)则是加速度反应谱Sa仃)与地経动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 B(T)二Sa(T)/a 反应谱理论建立在以卜?基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行撮型组合;2)结构物所有支承处的地震动完全柑同:3)结构物故不利地震反应为其最人地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用卜?建筑结构各构件的内力。一般而言,求解建筑结构在地喪作用卜构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决丁?动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员來说,这种方法不易掌握:第二种方法是根据地爲作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地農影响的等效力,即地飛作用,然后进行抗喪计算,抗焦规范实际上釆用了第二种方法,即地篦作用反应谱法。丈践也证明此方法更适合工稈技术人员采用。 由于目前抗震规范中的地窓作用反应谱仅考堪结构发生弹性变形情况下所得的反应谱,因此为结构某比部位发生非线性变形时,抗農规范中的反应谱就不能适用,而布弟用弹塑性反应谱来进行计算。因此选用合适的弹型性反应诰并提出适当的地震作用计算方法在我国抗震设计中只令巫要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数卩,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)Z间的函数关系。抗震规范中所采用的弹性反应谱如图1所示???,它是在计算了大量地而运动加速度的基础上,确定地孫影响系数a与特征周期T之间关系的曲线

相关文档
相关文档 最新文档