文档库 最新最全的文档下载
当前位置:文档库 › 二维相关红外光谱及其应用

二维相关红外光谱及其应用

二维相关红外光谱及其应用
二维相关红外光谱及其应用

二维相关红外光谱及其应用

1 引言

二维相关光谱是一种实验设计与数据处理相结合的分析技术。对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图(图1)。二维相关谱图反映的是样本中各种组成成份或者微观结构单元相应于外界微扰的变化情况,以及这些变化之间相互的联系。目前应用最广泛的是以温度为变量的二维相关红外光谱技术。

2 二维相关光谱的特性

二维相关光谱可用三维立体图或二维等高线图进行可视化显示,便于直观地对二维信息进行解析。在二维相关光谱的等高线图中,z坐标轴值用x-y平面中的等高线表示。同步相关光谱代表两个动态红外信号之间的协同程度,它是关于主对角线对称的。相关峰在对角线和非对角线区域均会出现。在对角线上有一组峰,它是动态红外信号自身相关而得到的,所以称为自动峰。自动峰总是正峰,它的强度代表外扰引起的变化程度。强的自动峰对应于动态谱中强度变化较大的区域,而保持不变的区域则显示出非常小或没有自动峰,这与微观环境对官能团运动的影响是密切相关的。在二维相关图中(见图1),以圆圈的个数代表Φ(ν1,ν2)的绝对值。在坐标(A,A),(B,B),(C,C)和(D,D)处的自动峰分别具有2,1,4和2个圆圈,表明(C,C)处的自动峰最强,而(B,B)处的自动峰最弱。

二维同步相关光谱中位于主对角线以外的峰叫做交叉峰,它显示扰动发生过程中ν1和ν2处的强度变化的相关变化。为了便于观察自动峰和交叉峰的强度的相关变化,可以构造一个相关正方形,把对角线上的自动峰和两侧的交叉峰连贯起来。所以A和C,B和D 是同步相关的(图1a)。交叉峰的符号既可为正也可为负。如果发生在ν1和ν2处的强度变化是同一方向的,那么Φ(ν1,ν2)为正;反之,如果发生在ν1和ν2处的强度变化是沿着相反方向的,那么Φ(ν1,ν2)为负。

图1 二维光谱(a)同步(b)异步

异步光谱代表两个动态红外信号的光谱强度变化顺序。与同步光谱不同的是,异步光谱是主对角线反对称,没有自动峰,完全是由对角线两侧交叉峰组成(图1b)。但可用一对反对称的交峰和对角线上相应的点绘制异步相关正方形。异步交叉峰的产生是由于两个光谱峰的强度变化存在相对的加速度,这种特性可帮我们区分重叠在一起的起源不同的峰。

在一维动态光谱中,因靠得太近而重叠在一起的两个吸收峰,如果是来自不同的官能团,就有可能在二维异步相关光谱中呈现为两个明显的独立峰。二维异步相关分析常用来提高光谱的分辨率,系统中的不同化学组成、相同化学成分的不同相、同相中相同化学成分的不同官能团,在外部干扰下都可能有非同步的响应,从而产生异步相关峰。

异步交叉峰的符号可以是正的,也可以是负的(用阴影表示),可以帮助指认亚分子官能团的变向运动次序,这有助于研究官能团间化学相互作用的机理和动力学。如果当同步相关光谱对应位置的强度为正(Φ(ν1,ν2)>0)时,正的异步交叉峰(ψ(ν1,ν2)>0)表示ν1处的强度变化总是先于ν2处的强度变化,负的表示ν1处的强度变化总是滞后于ν2处的强度变化;当Φ(ν1,ν2)<0时,上述规则正好相反。

3 应用

二维相关谱学反映的是由外界扰动(如温度、压力、浓度等)引起的光谱变化的细微特征,将吸收峰在第二维的尺度上展开,从而提高光谱分辨率,有可能区分在一维光谱上被覆盖的小峰和弱峰,从而提高光谱的解析能力。另外,二维相关谱学还可以提供以下信息:通过谱

峰之间相关性来分析分子内部与分子之间的相互作用;检测光谱强度的变化次序,能有效地对化学反应过程和分子振动的动力学过程进行详细的研究;可以在不同类型的光谱之间(如红外和拉曼光谱)进行相关性分析,从而获得通常光谱所不能获得的信息。

二维红外相关光谱在药物、聚合物、蛋白质、生物学等领域取得了成功的应用,如应用于聚合物材料的结构性能研究,生物蛋白质的次级结构研究,化学反应的反应机理探讨和动力学研究,中草药成分的鉴定区别等。我国在中药二维相关光谱方面做了大量的工作,编辑出版了《中药二维相关红外光谱鉴定图集》,并将温度变化的二维相关红外图谱用于中药鉴别、质量控制和中药变质的机理研究等。

其中一个典型的实例是将二维相关红外光谱用于“清开灵”中药针剂的质量检测。清开灵注射剂的主要成分为牛黄、水牛角、黄芩、金银花、栀子等,具有清热解毒、化痰通络、醒神开窍的功效,对于热病身昏、中风偏瘫等疾病有很好的临床效果。图2是清开灵变质前后的红外光谱,两光谱的主要吸收峰非常相近,无法分辨。

图2 清开灵变质前后的红外光谱

图3和图4分别是清开灵变质前后的变温二维相关红外光谱,温度变化范围为30~150℃,间隔20℃。变质前的二维红外同步光谱中出现大量相关峰,可以发现,1611 cm-1实际上是由1572 cm-1,1667 cm-1和1729 cm-1三个吸收峰组成。这三个吸收峰互相关联,且1729 cm-1吸收峰的热敏性与其它两个吸收峰相反。这些吸收峰分别是生物碱、黄酮衍生物、其它羰基化合物吸收引起的。在其异步光谱的信息中,1667 cm-1变化要比1572 cm-1快而比1729 cm-1慢。对比图3和图4可以看出,变质后与未变质的二维红外光谱区别非常明显,变质后的同步光谱中没有发现自动相关峰1667 cm-1和交叉峰(1417 cm-1,1667cm-1),因此推断室温下清开灵的变质主要是因为黄酮的氧化引起。与此同时,与1059 cm-1吸收峰相关的交叉峰也减少了,1059 cm-1是糖苷类物质的特征吸收峰。由此可知,针剂的变质主要是黄酮氧化和糖苷热降解导致。而异步光谱中则主要观察到1729 cm-1,1667 cm-1,1572 cm-1,1417 cm-14组对温度比较敏感的吸收峰的相互变化关系。显然,将二维相关红外光谱结合模式识别技术可实现药品的自动识别,以及其他类似的应用场合,这将是今后该技术的主要研究方向之一。

图3 清开灵变质前的二维相关红外光谱(a)同步相关(b)异步相关

图4 清开灵变质后的二维相关红外光谱(a)同步相关(b)异步相关

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

红外&THz二维相关光谱

红外&THZ二维相关 光谱
Karl Wang 上海迈培光电技术有限公司

二维相关光谱技术
二维红外光谱是超快时间分辨光谱中的一个 重要前沿领域。二维相关光谱的概念最早应用于 核磁共振(NMR)领域,目前已得到广泛应用。 1986年,Noda就二维NMR 技术的理论提出了一 个概念性的突破,把磁实验中的多重射频励磁看 作是一种对体系的外部扰动,并且在1993年破 除了外扰波形的局限,二维相关光谱才深入的应 用于红外光谱,并且逐渐适用于拉曼、荧光、X 射线衍射等其它谱学技术中。这个新的理论被称 为“广义二维相关光谱技术”。

基本原理
体系对外扰的反应经常表现为有特征 的光谱变化,称作动态光谱。二维相关光 谱就是考虑由外扰引起的外扰变量t 在Tmin 和Tmax间变化时光谱强度y (ν, t) 的变化, 也就是动态光谱的变化。外扰变量t可以是 时间,也可以是任意其它合理的物理变量, 如温度、压强、浓度、电压等。光学变量ν 可以是任何合适的光谱量化系数,如拉曼 位移、红外或近红外波数、紫外波长等。

原理示意图
Perturbation
Probe
Dynamic spectra
System
2D correlation spectra
Correlation analysis

典型实验光路图

同步二维相关谱
同步相关谱代表两个动态光学信号之间的协同程度。
对 角 线 对 称 自相关峰出现在对角线上,其 自相关峰 大小代表在相关周期中光谱强度 动态涨落的总程度 同步交叉峰位于对角线之外, 同步交叉峰 代表示不同波数光谱信号的同步 变化,表明基团之间有很强的协 同作用或可能存在强烈的相互作 用;两个基团受激发偶极矩取相 方向相同时,同步交叉峰为正; 若受激发偶极矩取相方向互相垂 直,或两个光谱强度增大与减小 趋势不同时,交叉峰为负
圈是等高线

红外光谱技术及其应用进展

红外光谱技术及其应用进展 苏雄200910835319 集宁师范学院化学系09级化学3班内蒙古乌兰察布市 012000 摘要 波数13000~10cm-1或波长0.75~1000μm之间称为红外区,在此范围内的物质吸收红外辐射后,因分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。红外光谱技术的发展进程和红外光谱技术分析速度快,分析效率高,分析成本低,测试重现性好等特点。红外光谱技术在制浆造纸工业中木素的定性和结构分析、木素的定量分析、研究纤维素的结晶结构、测定纸浆Kappa 值等,以及在临床医学和药学方面,农业方面,以及食品方面在食品中农药残留检测、环境科学中水环境监测、固体环境监测、气体环境监测,石油工业中对于油品成分,含量等方面的分析有广泛应用。 关键词 红外光谱;特点;应用 引言 分子振动、转动、或晶格等运动产生偶极矩变化,形成可观测的红外光谱。红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域, 对有机化合 物的定性分析具有鲜明的特征性。因此,红外光谱有化合物“指纹”之称,是鉴定有机化合物和结构分析的重要工具。由于其专属性强各种基因吸收带信息多,固可用于固体、液体和气体定性和定量分析[1]。由于用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,因而被广泛运用,目前红外光谱广泛已应用于制浆造纸工业、临床医学和药学方面、农业方面、食品方面、环境科学、石油工业等学科领域,并随着技术和研究的深入越来越受到重视。 1、红外光谱法的基本原理 红外吸收光谱是由分子振动能级的跃迁同时伴随转动能级跃迁而产生的,因此,红外光谱的吸收峰是有一定宽度的吸收带。物质吸收红外光应满足两个条件,即辐射应具有刚好能满足物质振动能级跃迁时所需的能量;辐射与物质之间有偶合作用。因此当一定频率的红外光照射分子时如果分子中某个基团的振动频率与其一致,同时分子在振动中伴随有偶极矩变化,这时物质的分子就产生红外吸收。

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

红外光谱仪的应用

红外光谱仪的应用 (陕西科技大学材料科学与工程学院西安任莹莹710021) 摘要:傅里叶转换红外光谱(FTIR)是一种用来获得吸收,射出光电导性或固体,液体或气体的拉曼散射的仪器。本文将从红外光谱仪的使用原理,样品制备,结果分析等几个方面对红外光谱仪进行介绍。 关键字:FTIR,原理,样品制备,结果分析 The Application of Infrared Spectrometer (School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an Ren yingying 710021) Abstract:Fourier transform infrared spectroscopy (FTIR) is a kind of instrument, which is used to get absorbed, penetrate photoconductivity or solid, liquid or gas Raman scattering. This article from the principle of the use of infrared spectrometer, sample preparation, the analysis of several aspects, such as the infrared spectrometer is introduced. Key words: FTIR, principle, sample preparation, analysis of the results 一、原理 红外线是波长介于可见光和微波之间的一段电磁波。红外光又可依据波长范围分成近红外、中红外和远红外三个波区,其中中红外区(2.5—5μm;4000—400cm-1)能很好地反映分子内部所进行的各种物理过程以及分子结构方面的特征,对解决分子结构和化学组成中的各种问题最为有效,因而中红外区是红外光谱中应用最广的区域,一般所说的红外光谱大都是指这一范围。 红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率和红外光的频率一样时,分子就吸收能量由原来的基态振动能级跃迁到能量较高的振动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。如图1,辛烷的红外光谱图,纵坐标为透过率,横坐标为波长λ(μm )或波数(cm-1)。

红外光谱法的特点和应用1

红外光谱法的特点和应用1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格?这样才便于与纯化合物的标准光谱或商业光谱进行对照?多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。所用试样应当经过干燥处理③试样浓度和厚度要适当使最强吸收透光度在5~20%之间 3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。因此,红外光谱法是定性鉴定和结构分析的有力工具①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。然后由化学分类索引查找标准光谱对照核实解析光谱之前的准备:?了解试样的来源以估计其可能的范围?测定试样的物理常数如熔沸点、溶解度、折光率、旋光率等作为定性的旁证?根据元素分析及分子量的测定,求出分子式?计算化合物的不饱和度Ω,用以估计结构并验证光谱解析结果的合理性解析光谱的程序一般为:A.从特征区的最强谱带入手,推测未知物可能含有的基团,判断不可能含有的基团B.用指纹区的谱带验证,找出可能含有基团的相关峰,用一组相关峰来确认一个基团的存在C.对于简单化合物,确认几个基团之后,便可初步确定分子结构 D.查对标准光谱核实③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。④鉴定细菌,研究细胞和其它活组织的结构 4.定量分析红外光谱有许多谱带可供选择,更有利于排除干扰。?红外光源发光能量较低,红外检测器的灵敏度也很低,ε<103?吸收池厚度小、单色器狭缝宽度大,测量误差也较大☆对于农药组份、土壤表面水份、田间二氧化碳含量的测定和谷物油料作物及肉类食品中蛋白质、脂肪和水份含量的测定,红外光谱法是较好的分析方法 文章链接:中国化工仪器网https://www.wendangku.net/doc/fb9239081.html,/Tech_news/Detail/4266.html 2.液体样品测试 液体样品是我们红外测试中最常见的样品,定性或定量分析样品中的成分。液体样品测试方法有: ?液体涂膜法,直接将液体样品涂在盐片上测试。该方法仅适合于定性分析;也可以将液体样品涂在其中一片盐片上,将另一个盐片压上去,测试。该方法适合于易挥发的液体样品; ?液体池法,将液体样品用注射器注入液体池测试。该方法适合于定性定量分析; ?ATR法,将液体样品直接滴在ATR晶体表面,用ATR技术测试。该方法适合于定性、半定量分析。 对于吸收光谱来说,吸光度符合比尔定律: A=a×b×c 其中:A,样品的吸光度

红外光谱的原理及应用

红外光谱的原理及应用 (一)红外吸收光谱的定义及产生 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱 红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱 (二)基本原理 1产生红外吸收的条件 (1)分子振动时,必须伴随有瞬时偶极矩的变化。对称分子:没有偶极矩,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。非对称分子:有偶极矩,红外活性。 (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。 2分子的振动类型 伸缩振动:键长变动,包括对称与非对称伸缩振动 弯曲振动:键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动 3几个术语 基频峰:由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰; 倍频峰:由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰; 组频:如果分子吸收一个红外光子,同时激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频。 特征峰:凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率。 相关峰:相互可以依存而又相互可以佐证的吸收峰称为相关峰 4影响基团吸收频率的因素 (1 外部条件对吸收峰位置的影响:物态效应、溶剂效应 (2分子结构对基团吸收谱带的影响: 诱导效应:通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。 共轭效应:基团与吸电子基团共轭,使基团键力常数增加,因此基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此基团吸收频率降低。 当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。 (3)偶极场效应:互相靠近的基团之间通过空间起作用。 (4)张力效应:环外双键的伸缩振动波数随环减小其波数越高。 (5)氢键效应:氢键的形成使伸缩振动波数移向低波数,吸收强度增强 (6)位阻效应:共轭因位阻效应受限,基团吸收接近正常值。 (7)振动耦合,(8)互变异构的影响 (三)红外吸收光谱法的解析 红外光谱一般解析步骤 1. 检查光谱图是否符合要求; 2. 了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度; 3. 排除可能的―假谱带‖; 4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U

红外光谱的定量分析

红外光谱的定量分析 红外光谱法在分析和另一应用是对混合物中各组分进行定量分析。红外光谱定量分析是借助于对比吸收峰强度来进行的,只要混合物中的各组分能有一个持征的,不受其他组分干扰的吸收峰存在即可。原则上液体、圆体和气体样品都对应用红外光谱法作定量分析:1.定量分析原理 红外定量分析的原理和可见紫外光谱的定量分析一样,也是基于比耳-朗勃特(Beer-Lambert)定律。 Beer定律可写成:A=abc 式和A为吸光度(absorbance),也可称光密度(optical density),它没有单位。系数a称作吸收系数(absorptivity),也称作消光系数(extinction coeffieient),是物质在单位浓度和单位厚度下的吸光度,不同物质有不同的吸收系数a值。且同一物质的不同谱带其a值也不相同,即a值是与被测物质及所选波数相关的一个系数。因此在测定或描述吸收系数时,一定要注意它的波数位置。当浓度c选用mol·L-1为单位,槽厚b以厘米为单位时,则a值的单位为:L·cn-1·mol-1,称为摩尔吸收系数,并常用ε表示。吸收系数是物质具有的特定数值,文献中的数值理应可以通用。但是,由于所用仪器的精度和操作条件的不同,所得数值常有差别,因此在实际工作中,为保证分析的准确度,所用吸收系数还得借助纯物质重新测定。 在定量分析中须注意下面两点: 1)吸光度和透过率是不同的两个概念、透过率和样品浓度没有正比关系,但吸光度与浓度成正比。 2)吸光度的另一可贵性使它具有加和性。若二元和多元混合物的各组分在某波数处都有吸收,则在该波数处的总吸光度等于各级分吸光度的算术和:但是样品在该波数处的总透过率并不等于各组分透过率的和; 2.定量分析方法的介绍 红外光谱定量方法主要有测定谱带强度和测量谱带面积购两种。此外也有采用谱带的一阶导数和二阶导数的计算方法,这种方法能准确地测量重叠的谱带,甚至包括强峰斜坡上的肩峰。 红外光谱定量分忻可以采用的方沦很多,下面我们介绍几种常用的测定方法。 (1)直接计算法 这种方法适用于组分简单、特征吸收带不重叠、且浓度与吸收度呈线性关系的样品。 应用(4-35)式,从谱图上读取透过率数值,按A=ln(I0/I)(I0为入射光强度,I为透射光强度)的关系计算出A值,再按(4-35)式算出组分含量c,从而推算出质量分数。这一方法的前提是需用标准样品测得a值。分析精度要求不高时,可用文献报导的a值。 (2)工作曲线法 这种方法适用于组分简单.特征吸收谱带重叠较少,而浓度与吸收度不完全呈线性关系的样品。 将一系列浓度的标准样品的湾液.在同一吸收池内测出需要的谱带,计算出吸收度值作为纵坐标,再以浓度为横坐标,作出徊应的工作曲线。由于是在同一吸收池内测量,故可获得A~c的实际变化曲线。

红外吸收光谱法的应用

红外吸收光谱法的 应用

红外吸收光谱法的应用 摘要:简要介绍了红外吸收光谱的情况,并介绍了傅里叶变换红外吸收光谱仪。近十多年来,随着红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。本文重点分别从定性、定量、未知物结构测定等方面分别介绍了红外吸收光谱法的应用,并举出在医学、化学等等方面的最新应用实例。 一、红外吸收光谱 1.1红外吸收光谱的历史 太阳光透过三棱镜时,能够分解成红、橙、黄、绿、蓝、紫的光谱带;1800年,发现在红光的外面,温度会升高。这样就发现了具有热效应的红外线。红外线和可见光一样,具有反射、色散、衍射、干涉、偏振等性质;它的传播速度和可见光一样,只是波长不同,是电磁波总谱中的一部分。(图一)、波长范围在0.7微米到大约1000微米左右。红外区又可以进一步划分为近红外区<0.7到2微米,基频红外区(也称指纹区,2至25微米)和远红外区(25微米至1000微米)三个部分。 1881年以后,人们发现了物质对不同波长的红外线具有不同程度的吸收,二十世纪初,测量了各种无机物和有机物对红外辐射的吸收情况,并提出了物质吸收的辐射波长与化学结构的关系,逐渐积累了大量的资料;与此同时,分子的振动――转动光谱的研究逐步深入,确立了物质分子对红外光吸收的基本理论,为红外光谱学奠定了基础。1940年以后,红外光谱成为化学和物理研究的重要工具。今年来,干涉仪、计算机和激光光源和红外光谱相结合,诞生了计算机-红外分光光度计、傅立叶红外光谱仪和激光红外光谱仪,开创了崭新的红外光谱领域,促进了红外理论的发展和红外光谱的应用。 1.2、红外吸收的本质 红外吸收光谱又称分子振动-转动光谱,是利用物质的分子对红外辐射的吸收,并由其振动或转动引起分子偶极矩的变化,产生分子的振动能级和转动能级从基态到激发态的跃迁,所产生的吸收光谱。它分为近红外光,中红外光,远红外光。其中,中红外光是应用最为广泛的红外光谱区。 物质处于不停的运动状态之中,分子经光照射后,就吸收了光能,运动状态从基态

二维相关可见-近红外光谱结合支持向量机评价猪肉新鲜度

※安全检测食品科学2018, V ol.39, No.18273二维相关可见-近红外光谱结合支持向量机评价 猪肉新鲜度 王文秀,彭彦昆*,孙宏伟,魏文松,郑晓春 (中国农业大学工学院,国家农产品加工技术装备研发分中心,北京 100083)摘?要:为探究二维相关同步光谱优选生鲜肉新鲜度特征变量的可行性,采集生鲜猪肉在1~15 d共58 个样品的可见-近红外反射光谱信息,并参照国标方法测定其挥发性盐基氮值(total volatile basic nitrogen,TVB-N)。然后,以TVB-N为“外界扰动”,选择10 条代表性光谱并进行包络线去除,结合光谱差异选取了7 个子区间。通过对每个子区间作二维相关分析,解析其二维相关同步谱和自相关谱,获取与TVB-N变化密切相关的敏感变量。最后,利用所选特征变量,分别基于原始、标准正态变量变换预处理和归一化预处理的光谱,建立猪肉新鲜度的支持向量机(support vector machine,SVM)判别模型。结果表明,利用二维相关光谱分析共提取到17 个特征波长,仅占总变量个数的1.61%,建立的SVM模型总体正确率分别为94.83%、98.28%和98.28%。这表明所建立的模型具有较好的判别效果,也说明二维相关分析用于筛选与生鲜肉新鲜度相关特征变量的方法是可行的。这有利于解析生鲜肉在腐败变质过程中的光谱特征信息变化,也为近红外光谱分析中变量筛选提供了一种新的思路。 关键词:可见-近红外光谱;二维相关光谱;新鲜度;生鲜肉;判别模型 Evaluation of Pork Freshness Using Two-Dimensional Correlation Visible/Near-Infrared Spectroscopy Combined with Support Vector Machine WANG Wenxiu, PENG Yankun*, SUN Hongwei, WEI Wensong, ZHENG Xiaochun (National Research and Development Center for Agro-Processing Equipment, College of Engineering, China Agricultural University, Beijing 100083, China) Abstract: In order to explore the feasibility of two-dimensional correlation synchronous spectra to select feature variables for meat freshness, visible/near infrared re?ectance spectral information and total volatile basic nitrogen (TVB-N) content of 58 pork samples stored for 1–15 days were obtained. Then TVB-N content was employed as “external?disturbance”?and 10 representative spectra were selected for continuum removal. Seven spectral subregions were chosen according to the spectral difference and used for two-dimensional correlation analysis. By analyzing the synchronization spectra and the autocorrelation spectra, sensitive variables, which were closely related to TVB-N content, were obtained. Finally, using the selected variables, support vector machine (SVM) models for discrimination of pork freshness were established based on the original, standard normal variate preprocessed and normalized spectra, respectively. The results showed that 17 characteristic wavelengths, which accounted for only 1.61% of the total variables, were extracted by two- dimensional correlation spectral analysis, and that the overall accuracy rates of the SVM models were 94.83%, 98.28% and 98.28% respectively, indicating that the models performed well. Hence two-dimensional correlation analysis can be used to screen out the characteristic variables related to meat freshness. The research will be helpful for analyzing the change of spectral characteristics during meat spoilage and also provide new insights into variables selection in near infrared spectroscopy analysis. Keywords: visible/near-infrared spectroscopy; two-dimensional correlation spectrum; freshness; pork; discrimination model DOI:10.7506/spkx1002-6630-201818042 中图分类号:O433 文献标志码:A 文章编号:1002-6630(2018)18-0273-07 收稿日期:2017-10-17 基金项目:“十三五”国家重点研发计划重点专项(2016YFD0401205);国家农产品质量安全风险评估项目(GJFP201701504)第一作者简介:王文秀(1989—),女,博士研究生,研究方向为农产品无损检测技术与装备研发。E-mail:Godlovexiu@https://www.wendangku.net/doc/fb9239081.html, *通信作者简介:彭彦昆(1960—),男,教授,博士,研究方向为农产品无损检测技术与装备研发。E-mail:ypeng@https://www.wendangku.net/doc/fb9239081.html,

二维相关红外光谱及其应用解读

二维相关红外光谱及其应用 1 引言 二维相关光谱是一种实验设计与数据处理相结合的分析技术。对于每一种样品体系,需要根据研究目的,设计合适的实验方案,通过对样品施加特定的微扰(包括机械拉伸力、温度、压力、浓度、磁场、光照等),诱导光谱信号产生动态变化,对一系列的动态谱图进行相关分析计算,便得到二维相关谱图(图1)。二维相关谱图反映的是样本中各种组成成份或者微观结构单元相应于外界微扰的变化情况,以及这些变化之间相互的联系。目前应用最广泛的是以温度为变量的二维相关红外光谱技术。 2 二维相关光谱的特性 二维相关光谱可用三维立体图或二维等高线图进行可视化显示,便于直观地对二维信息进行解析。在二维相关光谱的等高线图中,z坐标轴值用x-y平面中的等高线表示。同步相关光谱代表两个动态红外信号之间的协同程度,它是关于主对角线对称的。相关峰在对角线和非对角线区域均会出现。在对角线上有一组峰,它是动态红外信号自身相关而得到的,所以称为自动峰。自动峰总是正峰,它的强度代表外扰引起的变化程度。强的自动峰对应于动态谱中强度变化较大的区域,而保持不变的区域则显示出非常小或没有自动峰,这与微观环境对官能团运动的影响是密切相关的。在二维相关图中(见图1),以圆圈的个数代表 Φ(ν1,ν2)的绝对值。在坐标(A,A),(B,B),(C,C)和(D,D)处的自动峰分别具有2,1,4和2个圆圈,表明(C,C)处的自动峰最强,而(B,B)处的自动峰最弱。 二维同步相关光谱中位于主对角线以外的峰叫做交叉峰,它显示扰动发生过程中ν1和ν2处的强度变化的相关变化。为了便于观察自动峰和交叉峰的强度的相关变化,可以构造一个相关正方形,把对角线上的自动峰和两侧的交叉峰连贯起来。所以A和C,B和D是同步相关的(图1a)。交叉峰的符号既可为正也可为负。如果发生在ν1和ν2处的强度变化是同一方向的,那么 Φ(ν1,ν2)为正;反之,如果发生在ν1和ν2处的强度变化是沿着相反方向的,那么Φ(ν1,ν2)为负。 图1 二维光谱(a)同步(b)异步 异步光谱代表两个动态红外信号的光谱强度变化顺序。与同步光谱不同的是,异步光谱是主对角线反对称,没有自动峰,完全是由对角线两侧交叉峰组成(图 1b)。但可用一对反对称的交峰和对角线上相应的点绘制异步相关正方形。异步交叉峰的产生是由于两个光谱峰的强度变化存在相对的加速度,这种特性可帮我们区分重叠在一起的起源不同的峰。

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

红外光谱仪在定量分析中的应用

红外光谱仪在定量分析中的应用 红外光谱仪用红外光谱法进行药物分析时具有多样性,可根据被测物质的性质灵活应用,而且无论是固态、液态或是气体,红外光谱法都可利用自身的技术进行分析,因此拓宽了红外光谱仪的定量分析。同时,红外光谱法不需要对样品进行繁琐的前处理过程,对样品可达到无损伤、非破坏,也大大的突出了它较其他定量方法的优越性。另外,红外光谱中的特征光谱较多,可供选择的吸收峰多,所以能方便对单一组分或是混合物进行分析。目前,随着红外自身技术和化学计量的发展,红外的定量分析方法越来越多,包括峰高法、峰面积法、谱带比值法、内标法、因子分析法、漫反射光谱法、导数光谱法、最小二乘法、偏最小二乘法、人工神经网络等。基于这些优点,红外光谱法在许多领域得到广泛应用,该文主要概述了近几年来红外光谱法气体、共聚物中定量分析的应用进展。 1 红外光谱法在气体定量分析中的应用 由于气体在中红外波段(4000——400cm -1)内有明显的吸收,且分析手段不需要采样、分离,因此中红外光谱法[1]对检测气体,尤其是多组分混合气体来说是一种简便、易行的测量方法。如周泽义[2],郭世菊等[3]采用红外光谱技术确定了苯系物(包括甲苯、二甲苯、苯乙烯、硝基苯)中各组分的特征红外波长,采用美国热电子O M N IC Q uantPad 分析软件建立了低浓度(0——0.5×10-6)苯系物的定量分析方法和校准曲线数据库。 通过粒子群优化技术及BP 神经网络技术相结合,建立三种烃烷(甲烷、乙烷、丙烷)混合气体的红外光谱定量分析模型。该法比单纯采用BP 神经网络进行遍历优化建模所用时间降低5倍以上,模型预测精度水平相当。朱军等[5]通过红外光谱仪测量CO 和CO 2 的红外透过率光谱,采用非线性最小二乘拟合算法对测量光谱进行拟合,得出待测气体的浓度。结果表明CO 测量的相对误差小于5% ,CO 2 的测量分析相对误差小于1% 。 针对5 种(甲烷、乙烷、丙烷、正丁烷、异丁烷)主次吸收峰严重交叠的红外混合气体定量分析问题,提出一种基于高阶累积量的特征提取方法,该方法将重叠的吸收谱线映射到彼此相互分开的四阶累积量谱空间,利用提取的特征向量,提出一种基于正则化统计学习理论的支持向量机的多维数据建模,在小样本下有效地提高了

聚乙烯亚甲基面内摇摆振动二维红外光谱研究

第37卷 第2期 红 外 技 术 V ol.37 No.2 2015年2月 Infrared Technology Feb. 2015 161 〈红外应用〉 聚乙烯亚甲基面内摇摆振动二维红外光谱研究 常 明1,武玉洁2,张海燕2,程 瑶2,张 凡1,马胜杰1,于宏伟1 (1. 石家庄学院 化工学院,河北 石家庄 050035;2. 河北一品制药有限公司,河北 石家庄 050035) 摘要:在293~393 K 范围内,分别测定聚乙烯的一维红外光谱、二阶导数红外光谱、四阶导数红外 光谱和去卷积红外光谱来确定聚乙烯分子结构。进一步采用二维红外光谱研究了聚乙烯亚甲基面内 摇摆振动模式(2 CH ρ)。研究发现,聚乙烯分子中同时存在晶区和非晶区。随着测定温度的升高,聚乙烯分子中2 CH ρ红外吸收强度变化快慢顺序为:720 cm -1(2(CH )ρcrystalline )>731 cm -1(2(CH )ρcrystalline )>725 cm -1 (2(CH )ρamorphous )。此项研究显示出二维红外光谱在高分子材料热变性分析中的重大作用。 关键词:聚乙烯;一维红外光谱;二阶导数红外光谱;四阶导数红外光谱;去卷积红外光谱;二维 红外光谱 中图分类号:O434.3,O433 文献标识码:A 文章编号:1001-8891(2015)02-0161-05 Two-dimensional Infrared Spectroscopy Study of Polyethylene CH 2 Rocking Vibration CHANG Ming 1,WU Yu-jie 2,ZHANG Hai-yan 2,CHENG Yao 2,ZHANG Fan 1,MA Sheng-jie 1,YU Hong-wei 1 (1.School of Chemical Engineering , Shijiazhuang University , Shijiazhuang 050035, China ; 2.Hebei yipin pharmaceutical Co ., LTD , Shijiazhuang 050035, China ) Abstract :In the temperature range from 293 K to 393 K, the polyethylene molecular structure has been studied by one-dimensional infrared spectroscopy, second derivative infrared spectroscopy, fourth derivative infrared spectroscopy and deconvolution infrared spectroscopy. The polyethylene CH 2 rocking vibration (2 CH ρ)was researched by two-dimensional infrared spectroscopy. The ordered crystalline region and disordered amorphous region were also found. Two-dimensional infrared spectroscopy of polyethylene were studied to determine the sequence of intensity changes. It has been found that the sequence of intensity changes was 720 cm -1( 2(CH )ρcrystalline )>731 cm -1(2(CH )ρcrystalline )>725 cm -1(2(CH )ρamorphous ). The study demonstrated the key roles of two-dimensional infrared spectroscopy in the analysis of thermal denaturation of the polymer materials. Key words :polyethylene ;one-dimensional infrared spectroscopy ;second derivative infrared spectroscopy ;fourth derivative infrared spectroscopy ;deconvolution infrared spectroscopy two-dimensional infrared spectroscopy ; 0 引言 聚乙烯具有优良的理化性能而广泛用于制造 各种薄膜、中空制品、管材、纤维和各类杂品等领 域[1-4]。聚乙烯的理化性能与其特殊结构有关。 研究聚乙烯结构的方法[5-7]主要有X 射线衍射法、热重 分析法、透射电镜法、固体NMR 法,红外光谱法等。其中红外光谱是研究聚乙烯结构的主要方法之一。但是常规的红外光谱(一维红外光谱)中的谱峰重叠现象严重,而二阶导数红外光谱,四阶导数红外光谱和去卷积红外光谱通常是基于一定的数学模型和假设[8-12]。二维红外光谱则是完全客观地、清晰地显示了未重叠谱峰的位置,因此可大大增加原谱图的分辨率,具有重要的理论研究价值。本文

第十六章 二维光谱 NOESY

N C H U - N M R 第十六章 二維光譜NOESY NOESY-Nuclear Overhauser Effect Spectroscopy 第一節參數介紹 l NOESY的參數表 ACQUISION SAMPLE PROCESSING2D PROCESSING s f r q 400.451date Feb 3 1999lb not used lb1 not used t n H1solvent cdcl3sb not used sb1 not used a t0.177f i l e exp gf 0.096gf1 0.013 n p1024gfs not used gfs1 not used s w2894.6DECOUPLING awc not used awc1 not used s s81sfid not used p r o c1f t b s8d n H1phfid not used f n12048 t p w r49d o f0wtfile wtfilel p w30d m n p r o c f t FLAGS d1 1.000d m m c f n2048i l y d20d p w r30m a t h f i n n p r e s a t0h o m o n werr d p y m i x0.8 2DACQUISITION wexp h s yn tof -1230.4sw1 2894.6wbs s s p u l y n t32n i128wnt SPECIAL c t0phase arraye d temp not used l Acquisition 欄參數介紹 l sw:光譜之偵測範圍,sw1= sw l pw:表示欲觀察核種的90。Pulse的值。 l d1: is the relaxation delay l mix: is the mixing time for magnetization exchange

相关文档