文档库 最新最全的文档下载
当前位置:文档库 › 一种语义网络情报分析模型的研究和应用

一种语义网络情报分析模型的研究和应用

一种语义网络情报分析模型的研究和应用
一种语义网络情报分析模型的研究和应用

计算机时代2009年第3期

0引言

复杂网络是复杂系统的抽象,网络中的节点是复杂系统中的个体,节点之间的边则是系统中个体之间按照某种规则而自然形成或人为构造的一种关系。现实世界中包含着各种类型的复杂网络,如社会网络(朋友关系网络及合作网络等)、技术网络(万维网以及电力网等)、生物网络(神经网络、食物链网络以及新陈代谢网络等)。经过近几年的努力,复杂网络的研究取得了许多重要进展,发现了复杂网络的若干统计特征,其中包括小世界性质(即网络中节点之间的平均距离很短,对数依赖于网络中的节点数)、无标度性质(即网络中节点的度分布右偏斜,具备幂函数或指数函数的形式)以及聚集性或网络传递性。

复杂网络的另一个重要特征就是网络中所呈现出的社区结构。大量实证研究表明,许多网络是异构的,即复杂网络不是大批性质相同节点的随机连接,而是许多类型的节点的组合,其中相同类型的节点存在较多的连接,而不同类型节点的连接则相对较少。我们把同一类型节点以及这些节点之间的边所构成的子图称为网络中的社区。

实际网络的社区代表着特定对象的集合,如,社会网络中的社区代表根据兴趣或背景而形成的真实的社会团体;引文网络中的社区代表针对同一主题的相关论文;万维网中的社区就是讨论相关主题的若干网站;而生物化学网络或者电子电路网络中的社区可以是某一类功能单元。发现这些网络中的社区有助于我们更加有效地理解和开发这些网络。

1基于图分解的方法

计算机科学中的一个典型问题,是将一个网络分解成若干节点数基本相等的子网,使得不同子网中的节点之间的连接数最少,称为图分割(Graph Partitioning )。图分割问题(GPP)可应用于对并行计算机处理器作进程的合理分配。1.1Kerighan-Lin 算法

Kerighan-Lin 算法[1]在稀疏图中的时间复杂度是O(n 3)。它是基于贪婪算法原理,将网络划分为两个大小已知的社区的二分法。

首先定义一个效益函数Q:位于子图内部的边数之和减去子图之间的边数。该算法要求必须预先指定2个子图的大小。算法分成以下2步。

⑴考察所有的节点对(节点对中的2个节点分别取自2个子图),交换节点对中2个节点的位置,计算效益函数Q,所产生的变化⊿Q。选择使所产生的变化⊿Q 最大的那对节点进行实际交换。如此重复下去,并且不允许已经交换过的节点再交换。当一个子图中的所有节点均已交换过1次时,第一步完成。

⑵检查第一步中所进行的每一次交换,寻找使得效益函数Q 最大的那一次交换,此即为所求得的图的分割。

此算法应用于对Zachary 网络的研究,取得了较好的效果。20世纪70年代初期,Zachary 用了两年的时间来观察美国一所大学中的空手道俱乐部成员间的相互社会关系。基于这些成员在俱乐部内部及外部的社会关系,他构造了成员们之间的关系网,如图1所示。

1

Karate Club 网络结构

在调查过程中,该俱乐部的主管与校长之间因是否抬高俱乐部收费的问题产生了争执。结果,该俱乐部分裂成了两个分别以主管和校长为核心的小俱乐部。图中的节点1和节点33分别代表了俱乐部主管和校长,而圆形和方形的节点分别代表了分裂后俱乐部的社区成员。利用Kernighan-Lin 算法分析

*基金项目:江西省科技厅工业攻关项目(赣财教[2005]132号);江西省教育厅科技计划项目(GJJ08283)

复杂网络的社区发现算法研究*

王丹,刘发升

(江西理工大学信息工程学院,江西赣州341000)

摘要:复杂网络是对于复杂系统的高度抽象,其中许多性质如小世界性质、无标度性质以及聚集性质等等已经得到了充

分的研究。大量文献表明,复杂网络呈现出的社区结构特性。如何在大型网络中高效地发现社区问题是近年来复杂网络的研究热点。文章讨论了一些关于社区发现方面的概念、理论、算法及应用等,并简述了其发展趋势。关键词:复杂网络;社区发现;边介数;模块度;层次聚类

·

·57

Zachary网络,所得到的结果与原网络的情况完全一致。但是,Kerighan-Lin算法必须预先指定2个社区的大小,否则会得到错误的结果。这使得Kerighan-Lin算法无法应用于大多数真实网络。即使Kerighan-Lin算法的这一缺点得以克服,作为图分割方法,其先天性不足仍然难以解决。

1.2基于图的Laplace矩阵的特征向量的谱二分法

一个包含n个节点的网络的Laplace矩阵是一个n×n维的对称矩阵M。M对角线上的元素m ii是节点i的度k i,而非对角线元素m ij的构成如下:如果节点i与j有边相连,则m ij为-1,否则为0。显然,网络的Laplace矩阵L与网络的连接矩阵A的关系如下:

L=K-A(1-1)其中,K=(k ij)是一个对角矩阵,k ij=k i,i=1,…,N。

M矩阵的所有的行与列的元素之和为0,因此,该矩阵必有一个特征值为0,且对应的特征向量为1=(1,1,…,1)T。而不为零的特征值所对应的特征向量的各元素中,同一个社区内的节点对应的元素是近似相等的。可以证明,除零特征值外,其它特征值均大于零。谱二分法即是根据M的第二个小特征值λ2将网络分为两个社区。λ2被称为图的代数连接度,如果其值越小,谱二分法的效果就越好[2]。虽然计算一个n×n矩阵的全部特征向量的时间复杂度为O(n3),但是,由于实际网络的Laplace 矩阵是一个稀疏矩阵,因此可用LanczoS方法[3]快速计算主要的特征向量。该方法的时间复杂度为m/(λ3-λ2),其中m表示网络中边的边数。

谱二分法的主要缺点是只能将图分成2个子图,或者说偶数个子图。这使得人们在使用这种方法时,预先不能确定究竟将图分成多少个子图才合适。

2基于社会学的方法

该方法用来分析社会网络之间相似性或边之间连接的强度。根据在网络中增加边还是去除边,有两类算法:凝聚算法和划分算法。

2.1凝聚算法

基本思想是用某种方法计算出各节点对之间的相似性,然后从相似性最高的节点对开始,往一个节点数为n而边的数目为0的原始空网络中添加边。这个过程可以中止于任何一点,而最终形成的网络就认为是社区的集合。从空图到最终图的整个算法的流程也可以用谱系图或树状图来表示,如图2所示。底部的各个圆代表了网络中的各个节点。当水平虚线从树的底端逐步上移,各节点也逐步聚合成为更大的社区。当虚线移到顶部,表示所有节点组成为一个社区。在谱系图的任何一个位置断开,就对应一种社区结构。此算法可分为单连接法与完全连接法等。凝聚算法对很多不同的现实网络有广泛的应用价值。

但是凝聚算法也有缺陷。在某些应用中,当社区数目已经知道时,未必能得到正确的社区结构。另外,凝聚算法倾向于发现社区的核心,而忽略社区的外围。社区的核心部分往往与它周围点联系密切,因而易于发现,而社区的周边部分由于相对来说联系较少,所以很难划分。在一些情况下,某个点仅仅和特定的社区有一条边,凝聚算法很难正确划分该点。

2Karate Club网络结构

2.2划分算法

在划分算法中,一般是从所关注的网络着手,试图找到己连接的相似性最低的节点对,然后移除连接它们的边。重复这一过程,就逐步把整个网络分成越来越小的各个部分。同样地,可以在任何情况下终止,并且把此状态下的网络看作若干网络社区。与凝聚算法类似,利用树状图来表示分类方法的流程可以更好地描述整个网络逐步分解为若干个越来越小的子图这一过程。

3其他经典算法

3.1GN(Girvan-Newman)算法

GN算法[4]是一种分裂方法,它通过迭代从网络中移除介数(Betweenness)最大的边将整个网络分解为各个社区。边的介数定义为网络中经过该边的最短路径的数目。它为区分一个社区内部边和外部边连接提供了一个度量准则。

GN算法的基本流程如下:

(i)计算网络中的所有边的介数;

(ii)找到介数最高的边并将它从网络中移除;

(iii)重复步骤(ii),直到每个节点就是一个退化社区为止。

缺点:在不知道社区数目的情况下,此算法也不能确定迭代的合适步数。

3.2Newman快速算法

由于GN算法的时间复杂度较大,所以对大规模的复杂网络的分析效果并不理想。Newman网在GN算法的基础上提出了一种快速算法,它是基于贪婪算法思想的一种凝聚算法。此算法总的时间复杂度为O(m(m+n))。整个算法完成后可得到一个社区结构分解的树状图,再通过选择在不同位置断开可得到不同的网络社区结构,在这些社区结构中,选择一个对应着局部最大的Q值,就得到最好的网络社区结构。

3.3Radicchi算法

该算法与GN算法相同,都是基于去边,但不是根据边介数选择要去除的边,而是引进了边聚集系数的新指标。整个算法的运行时间为O(m4/n2)。显然,对于稀疏图,其计算速度要比GN算法快一个数量级。

Radicchi等考虑网络中的三角环(即边数为3的闭合路径)。若一个三角环包含一条连接不同社区的边,则该三角环中的另两条边中的某一条仍然连接这两个社区的可能性将很

··58

计算机时代2009年第3期

0引言

嵌入式系统是以应用为中心,计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积功耗严格要求的专用计算机系统。嵌入式系统的硬件和软件都必须高效率地设计,量体裁衣、去除冗余,并和具体应用有机地结合在一起。嵌入式系统的特点之一是必须有很低的功耗。但在嵌入式系统的开发过程中,软件和硬件开发相互牵制,硬件干扰引起的异常行为严重影响软件的调试和测试,并且对系统的功耗也难以预测。仿真开发是摆脱困境的一条有效途径,它使软件开发和系统集成在虚拟平台上进行,避免软硬件开发相互等待,从而提高开发效率,降低风险和成本。本文将介绍一个嵌入式软件仿真开发平台——SkyEye。

SkyEye 是一个指令级模拟器,可模拟多种嵌入式开发板,支持多种CPU 指令集。SkyEye 模仿了一个完整的嵌入式系统,目前包括CPU、内存、I/O 寄存器、时钟、UART、网络芯片、MMU、Cache、LCD 等各种硬件[1]

。SkyEye 从总体上分为用户接

口模块,符号处理模块,目标控制模块,目标模拟模块四个层次。

UART 是计算机硬件中重要的外部设备,本文主要阐述SkyEye 对UART 的模拟与测试。

1SkyEye 目标模拟模块的总体设计

1.1SkyEye 配置选项

SkyEye 模拟的硬件配置和模拟执行行为由配置文件skyeye.conf 中的选项确定。根据功能,SkyEye.conf 的选项分为硬件配置选项和模拟执行选项。目前有以下几种配置选项:

①基本CPU 核配置选项;②具体的开发板配置选项;③内存组配置选项;④网络芯片8019AS 的配置;⑤LCD 的配置;⑥UART 控制选项,UART 选项可以控制SkyEye 在另一个与某个UART 连接的终端上输入/输出字符,格式为uart:fd_in=indevname,fd_out=outdevname,indevname 表示用于输入的设备文件名,outdevname 表示用于输出的设备文件名;⑦log 控制选项[1]。

基于SkyEye 对UART 模拟的实现

周雪梅1,郭兵1,沈艳2

(1.四川大学计算机学院,四川成都610065;2.电子科技大学机械电子工程学院)

要:利用仿真技术模拟嵌入式硬件系统的真实运行情况,有助于提高嵌入式系统的教学效果。文章采用开放源码

的嵌入式硬件仿真环境SkyEye 实现对UART 的仿真,论述了SkyEye 的总体结构,详细阐述了SkyEye 模拟器的UART 模拟模块的设计与实现方法。嵌入式操作系统μC/OS -II 在SkyEye 上的成功移植与UART 的测试,验证了SkyEye 模拟器的UART 模拟模块的设计是正确的。

关键词:SkyEye ;嵌入式系统;指令级模拟器;UART ;仿真

大。但是由于连接不同社区的边非常稀少,故包含一条给定的连接不同社区的边的三角环不可能很多.因此,将一条边的边聚

集系数定义为包含该边的三角环所占比例:

(2-1)

其中k i ,k j 分别表示节点i 和j 的度,z ij 表示网络中实际包含该边的三角环的个数。上式中的分母表示包含该边的最大可能的三角环的个数。

Radicchi 算法每一步去除的是网络中边聚集系数最小的边,每次去除后,再重新计算每一条边的边聚集系数,如此进行下去,直至网络中不存在任何边。

Radicchi 算法的不足是该算法依赖于网络中的三角环,如果网络中三角环很少,那么该算法将失去意义。实证研究表明,社会网络中三角环的数量比较大,而在非社会网络中,三角环的数量则相对较少。这意味着Radicchi 算法更加适合于社会网络。

4结束语

社区算法虽然已有很多,各种算法都有各自的优缺点及实际应用,但目前的社区算法基本上属于静态的分析算法,其计算复杂性使其很难适应目前网络结构的频繁变化。为了改善静态算法的这一局限性,还应继续进行深入研究。目前,已有人对Radicchi 静态算法加以扩展,提出了一种增量式的社区发现算法。

参考文献:

[1]B.W.Kerighan,S.Lin.An efficient heuristic procedture for partition-ing graphs[J].Bell Systems Technical Journal,1970.49(2).[2]解周,汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005.2(3):1~12

[3]https://www.wendangku.net/doc/fc10722845.html,nezos.An iteration method for the solution of the eigenvalue problem of linear differential and integral operators[J].J Res Nat Bur Stand,1950.45:255~282

[4]M.Girvan,https://www.wendangku.net/doc/fc10722845.html,munity structure in social and biological networks[J].Proc Natl Acad Sci,2001.99(12).

·

·59

语义分析

语义分析 1.语义分析? 机器机和人不一样的地方是人可以直接理解词的意思,文章的意思,机器机不能理解。 人看到苹果这两个字就知道指的是那个圆圆的,挺好吃的东西,搜索引擎却不能从感性上理解。但搜索引擎可以掌握词之间的关系,这就牵扯到语义分析。 可参考:https://www.wendangku.net/doc/fc10722845.html,/dispbbs.asp?boardID=2&ID=74541 2.为什么要使用语义分析? 我国中文自然语言处理普遍采用西基于拉丁语系的“关键词”技术,以此来分析理解中文。然而,中文本身的特点决定它与西语之间巨大的区别,所以从汉语信息处理的需要看,当前急迫需要突破的是语义问题。 可参考: https://www.wendangku.net/doc/fc10722845.html,/dicksong2008/blog/item/88fb751e9ac9501a4134 17f4.html 2.1中文与西语不同决定我们无法采用西语的架构体系来处理中文,具体区别在于: 西语词间有间隔,汉语词间无间隔。众所周知,英文是以词为单位的,词和词之间是靠空格隔开,而中文是以字为单位,句子中所有的字连起来才能描述一个意思。 例如,英文句子I am a student,用中文则为:“我是一个学生”。计算机可以很简单通过空格知道student是一个单词,但是不能很容易明白“学”、“生”两个字合起来才表示一个词。把中文的汉字序列切分成有意义的词,就是中文分词,有些人也称为切词。 “我是一个学生”,分词的结果是:“我是一个学生”。中文分词就成了计算机处理的难题。 汉语形态不发达,句尾没有形态标记。英语动词、名词很清楚,加上词尾可以是副词;西语有时态,过去式、现在式等等非常清楚,中文则依靠词语或者依靠自己的判断来确定时态。 同音字多增加了机器识别的难度。 汉语语义灵活,由于形态不发达,所以语序无规律。在一次学术会议上,一位著名的人工智能专家说:“按…主-谓-宾?或…名-动-名?这一规则,计算机可显出…牛吃草?,也可显出…草吃牛?。从语法格式上看,…草吃牛?也不错,但这句话是说不通的。 人依靠自己的经验可以判断,机器如何来判断呢?

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

2019年NC数据加工做语义模型(DOC)

报表语义模型(数据加工:返回结果集方式) 数据加工方式:1.返回查询SQL ; 2.返回结果集DataSet;3.返回数据表。 实现方式基本一致,可以参照系统原有报表语义模型 一、新建报表查询入口类,初始化报表字段 1.数据加工查询业务处理接口的定义: package 票据信息查询/票据池额度查询接口 * * @author 温燕荣WYR * @date 2014-04-15 */ public interface IFbmQueryPaperBillService { /** * 票据信息查询 * @param context * @return * @throws BusinessException */ public DataSet queryPaperBillInfo(IContext context) throws Exception; /** * 票据池额度查询接口 * @param context * @return * @throws BusinessException */ public DataSet queryPaperBillPoolLimit(IContext context) throws Exception; } 2.数据加工入口类,初始化报表字段 package 票据池额度查询入口类 * * @author 温燕荣WYR * @date 2014-04-15 */ public class QueryPaperPoolLimitService {

private static final MetaData metaData; public QueryPaperPoolLimitService(){ super(); } /** * 获得结果集 * * @param context 报表界面查询传进来的参数(查询条件=值,系统一些默认参数等)* @return */ public static DataSet queryPJCAmt(IContext context)throws Exception { ookup DataSet resultDataSet = (context); setPrecision(resultDataSet); return resultDataSet; } etFields()) { if () == { (300); } } } /** * 获得票据池额度元数据(相当于代码写一个元数据) * * @return */ public static MetaData getPJCAmtrMetaData(){ return metaData; } } 二、数据加工业务处理 hangeQueryPaperBillPoolVO(hashmap);

图像语义分析与理解综述

*国家自然科学基金资助项目(N o .60875012,60905005) 收稿日期:2009-12-21;修回日期:2010-01-27 作者简介 高隽,男,1963年生,教授,博士生导师,主要研究方向为图像理解、智能信息处理、光电信息处理等.E m a i:l gao j un @hfut .edu .cn .谢昭,男,1980年生,博士,讲师,主要研究方向为计算机视觉、智能信息处理、模式识别.张骏,女,1984年生,博士研究生,主要研究方向为图像理解、认知视觉、机器学习.吴克伟,男,1984年生,博士研究生,主要研究方向为图像理解、人工智能. 图像语义分析与理解综述 * 高 隽 谢 昭 张 骏 吴克伟 (合肥工业大学计算机与信息学院合肥 230009) 摘 要 语义分析是图像理解中高层认知的重点和难点,存在图像文本之间的语义鸿沟和文本描述多义性两大关键问题.以图像本体的语义化为核心,在归纳图像语义特征及上下文表示的基础上,全面阐述生成法、判别法和句法描述法3种图像语义处理策略.总结语义词汇的客观基准和评价方法.最后指出图像语义理解的发展方向.关键词 图像理解,语义鸿沟,语义一致性,语义评价中图法分类号 T P 391.4 I m age Se m antic Anal ysis and Understandi ng :A R eview GAO Jun ,XI E Zhao ,Z HANG Jun ,WU Ke W ei (S chool of C o m puter and Infor m ation,H e fei University o f T echnology,H efei 230009) ABSTRACT Se m antic ana l y sis is the i m portance and diffi c u lty of high level i n terpretati o n i n i m age understandi n g ,i n wh ich there are t w o key issues of text i m age se m an tic gap and tex t descri p ti o n po lyse m y .Concentrating on se m antizati o n o f i m ages onto logy ,three soph i s tica ted m et h odolog ies are round l y rev ie w ed as generati v e ,d iscri m ina ti v e and descriptive gra mm ar on the basis of conc l u d i n g i m ages se m antic fea t u res and context expression .The ob jective benchm ark and eva l u ation for se m an tic vocabu lary are i n duced as w e l.l F i n ally ,the summ arized directions fo r furt h er researches on se m antics i n i m age understand i n g are discussed i n tensively .K ey W ords I m age Understanding ,Se m antic G ap ,Se m an tic Consistency ,Se m an tic Evalua ti o n 1 引 言 图像理解(I m age Understandi n g ,I U )就是对图像的语义解释.它是以图像为对象,知识为核心,研 究图像中何位置有何目标(what is w here)、目标场景之间的相互关系、图像是何场景以及如何应用场景的一门科学.图像理解输入的是数据,输出的是知 识,属于图像研究领域的高层内容[1-3] .语义(Se 第23卷 第2期 模式识别与人工智能 V o.l 23 N o .2 2010年4月 PR &A I A pr 2010

趋势分析之语义网

趋势分析之语义网 近几年来,语义网越来越频繁地出现在IT报道中,PowerSet、Twine、SearchMonkey、Hakia等一批语义网产品也陆续推出。早在2010年,Google就已经收购了语义网公司Metaweb。对于这次收购Google产品管理主管杰克·门泽尔(Jack Menzel)发文称,该公司可以处理许多搜索请求,但Metaweb的信息可以使其处理更多搜索请求,“通过推出搜索答案等功能,我们才刚刚开始将我们对互联网的理解用于改进搜索体验”,但对于部分搜索仍然无能为力,“例如,‘美国西海岸地区学费低于3万美元的大学’或‘年龄超过40岁且获得过至少一次奥斯卡奖的演员’,这些问题都很难回答。我们之所以收购Metaweb,是因为我们相信,整合Metaweb的技术将使我们能提供更好的答案”。这表明语义网技术经过近10年的研究与发展,已经走出实验室进入工程实践阶段。 语义网热度变化图 语义网(Semantic Web)是一种智能网络,它不但能够理解词语和概念,而且还能够理解它们之间的逻辑关系,可以使交流变得更有效率和价值。语义网实际上是对未来网络的一个设想,现在与Web 3.0这一概念结合在一起,作为3.0网络时代的特征之一。 语义网这一概念是由万维网联盟的蒂姆·伯纳斯-李(Tim Berners-Lee)在1998年提出的一个概念,实际上是基于很多现有技术的,也依赖于后来和text-and-markup与知识表现的综合。其渊源甚至可以追溯到20世纪60年代末期的Collins、Quillian、Loftus等人的研究,还有之后70年代初Simon、Schamk、Minsky等人陆续提出的一些理论上的成果。其中Simon在进行自然语言理解的应用研究时提出了语义网络(Semantic Network,不是现在的Semantic Web)的概念。 下面我们用Trend analysis分析语义网领域内的研究热点。(点击链接即可进入https://https://www.wendangku.net/doc/fc10722845.html,/topic/trend?query=Semantic%20Web)

语义分析与中间代码生成程序的设计原理与实现技术__实验报告与源代码_北京交通大学

语义分析及中间代码生成程序设计原理与实现技术 XXX 1028XXX2 计科1XXX班 1.程序功能描述 完成以下描述赋值语句和算术表达式文法的语法制导生成中间代码四元式的过 程。 G[A]:A→V:=E E→E+T∣E-T∣ T→T*F∣T/F∣F F→(E)∣i V→i 说明:终结符号i 为用户定义的简单变量,即标识符的定义。 2. 设计要求 (1)给出每一产生式对应的语义动作;(2)设计中间代码四元式的结构(暂不与符号表有关)。(3)输入串应是词法分析的输出二元式序列,即某算术表达式“实验项目一”的输出结果。输出为输入串的四元式序列中间文件。(4)设计两个测试用例(尽可能完备),并给出程序执行结果四元式序列。 3.主要数据结构描述: 本程序采用的是算符优先文法,文法以及算符优先矩阵是根据第四次实验来修改的,所以主要的数据结构也跟第四次差不多,主要为文法的表示,FirstVT集和LastVT 集以及算符优先矩阵:

算符优先矩阵采用二维字符数组表示的: char mtr[9][9]; //算符优先矩阵 4.程序结构描述: 本程序一共有8功能函数: void get(); //获取文法 void print(); //打印文法 void fun(); //求FirstVT 和LastVT void matrix(); //求算符优先矩阵 void test(); //测试文法 int cmp(char a,char b); 比较两个运算符的优先级 1 0 -1 void out(char now,int avg1,int avg2); //打印四元式 int ope(char op,int a,int b); //定义四元式计算方法 5.实验代码 详见附件 6.程序测试 6.1 功能测试 程序运行显示如下功能菜单:

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.wendangku.net/doc/fc10722845.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

人工智能报告分析

江苏大学 《人工智能》报告 设计题目人工智能报告 学生姓名叶澔鹏 指导老师赵跃华 学院计算机科学与通信工程学院专业班级信息安全1202班 学号 3120604053 完成时间2015年10月25日

摘要:知识处理是人工智能这一科学领域的关键问题。本文对知识处理的核心问题之——识的表示进行了全面的综述,目前流行的知识表达方式不下十种,在此只介绍一阶谓词逻辑、产生式、语义网络、框架、混合等目前最常用的知识表示方法。并对其进行了优缺点分析及简单对比。最后对知识表示的发展趋向作出了展望。 关键词:知识人工智能(AI)知识表达式一阶谓词逻辑产生式语义网络框架 一.知识的概念 知识(Knowledge)是人们在改造客观世界的实践中形成的对客观事物(包括自然的和人造的)及其规律的认识,包括对事物的现象、本质、状态、关系、联系和运动等的认识。 经过人的思维整理过的信息、数据、形象、意象、价值标准以及社会的其他符号产物,不仅包括科学技术知识----知识中最重要的部分,还包括人文社会科学的知识、商业活动、日常生活和工作中的经验和知识,人们获取、运用和创造知识的知识,以及面临问题做出判断和提出解决方法的知识。 知识是把有关的信息关联在一起,形成的关于客观世界某种规律性认识的动态信息结构。 知识=事实+规则+概念 事实就是指人类对客观世界、客观事物的状态、属性、特征的描述,以及对事物之间关系的描述。 规则是指能表达在前提和结论之间的因果关系的一种形式; 概念主要指事实的含义、规则、语义、说明等。 (1) 知识只有相对正确的特性。 常言道:实践出真理。只是源于人们生活、学习与工作的实践,知识是人们在信息社会中各种实践经验的汇集、智慧的概括与积累。 只是爱源于人们对客观世界运动规律的正确认识,是从感知认识上升成为理性认识的高级思维劳动过程的结晶,故相应于一定的客观环境与条件下,只是无疑是正确的。然而当客观环境与条件发生改变时,知识的正确性就接受检验,必

复杂网络模型的matlab实现

function [DeD,aver_DeD]=Degree_Distribution(A) %% 求网络图中各节点的度及度的分布曲线 %% 求解算法:求解每个节点的度,再按发生频率即为概率,求P(k) %A————————网络图的邻接矩阵 %DeD————————网络图各节点的度分布 %aver_DeD———————网络图的平均度 N=size(A,2); DeD=zeros(1,N); for i=1:N % DeD(i)=length(find((A(i,:)==1))); DeD(i)=sum(A(i,:)); end aver_DeD=mean(DeD); if sum(DeD)==0 disp('该网络图只是由一些孤立点组成'); return; else figure; bar([1:N],DeD); xlabel('节点编号n'); ylabel('各节点的度数K'); title('网络图中各节点的度的大小分布图'); end figure; M=max(DeD); for i=1:M+1; %网络图中节点的度数最大为M,但要同时考虑到度为0的节点的存在性 N_DeD(i)=length(find(DeD==i-1)); % DeD=[2 2 2 2 2 2] end P_DeD=zeros(1,M+1); P_DeD(:)=N_DeD(:)./sum(N_DeD); bar([0:M],P_DeD,'r'); xlabel('节点的度 K'); ylabel('节点度为K的概率 P(K)'); title('网络图中节点度的概率分布图'); 平均路径长度 function [D,aver_D]=Aver_Path_Length(A) %% 求复杂网络中两节点的距离以及平均路径长度 %% 求解算法:首先利用Floyd算法求解出任意两节点的距离,再求距离的平均值得平均路

从视频到语义:基于知识图谱的 视频语义分析技术

Computer Science and Application 计算机科学与应用, 2019, 9(8), 1584-1590 Published Online August 2019 in Hans. https://www.wendangku.net/doc/fc10722845.html,/journal/csa https://https://www.wendangku.net/doc/fc10722845.html,/10.12677/csa.2019.98178 From Video to Semantic: Video Semantic Analysis Technology Based on Knowledge Graph Liqiong Deng*, Jixiang Wu, Li Zhang Air Force Communication NCO Academy, Dalian Liaoning Received: Aug. 6th, 2019; accepted: Aug. 19th, 2019; published: Aug. 26th, 2019 Abstract Video understanding has attracted much research attention especially since the recent availability of large-scale video benchmarks. In order to fill up the semantic gap between video features and understanding, this paper puts forward a video semantic analysis process based on knowledge graph, and adopts random walk to quantify semantic consistency between semantic labels. Then video semantic reasoning based-on knowledge graph is studied. The experimental results prove that knowledge graph can improve semantic understanding effectively. Finally, a constructed mul-tilevel video semantic model supports applications in video classifying, video labeling and video abstract, which has some guiding significance for information organization and knowledge man-agement of media semantic. Keywords Knowledge Graph, Video, Classify, Semantic Analysis 从视频到语义:基于知识图谱的 视频语义分析技术 邓莉琼*,吴吉祥,张丽 空军通信士官学校,辽宁大连 收稿日期:2019年8月6日;录用日期:2019年8月19日;发布日期:2019年8月26日 *通讯作者。

贝叶斯语义分析

基于语义特征关联的贝叶斯网络分类 孟宇龙,印桂生,徐东 哈尔滨工程大学计算机科学与技术学院,哈尔滨(150001) E-mail:mengyulong@https://www.wendangku.net/doc/fc10722845.html, 摘要:为将数据的语义特征体现在数据分类过程中,提出语义特征关联的贝叶斯网络分类法。该方法在分析数据的多语义异构性基础上进行分类学习。与传统贝叶斯网络分类相比,可在不损失分类精度情况下将具有语义特征的数据进行分类。 关键词:语义特征;数据分类;贝叶斯网络 中图分类号:TP391 1.引言 对数据分类而言,数据分类标准以及数据分类精度满意度的评价与所选择的数据分类任务相关。分类后的数据应该具有子类内数据以及类间关系的高度凝聚性。朴素贝叶斯分类器[1](Naive Bayesian Classifier,NBC)是一种基于贝叶斯理论的简单分类方法[2][3]。独立关系是贝叶斯网络中最基本、最重要的理论关系,即在满足独立性的条件下,贝叶斯分类器才能有很好的表现。文献[4]的研究表明,当训练数据集属性间的独立性提高后,应用贝叶斯分类器并不能明显地提高分类效果。即贝叶斯分类模型的表现和独立性是否满足没有必然联系,通过策略降低属性关联关系,提高独立关系,可以降低分类的时间、空间复杂度,同时并不会影响贝叶斯分类器的分类满意度。所以朴素贝叶斯分类器仍然是一种非常实用的分类方法。例如对一个网络安全事件进行评估,显然忽略带宽、传输速率与攻击强度之间的相互关系是错误的。即使在这样一种人为假定下(假定彼此无关),朴素贝叶斯分类器仍然有很满意的分类表现[6][7]。大量研究和实验表明,在不满足条件独立性要求情况下,朴素贝叶斯分类器也能取得比较满意的分类结果。针对此特性,为将数据的语义特征体现在分类过程,本文在研究贝叶斯定理及朴素贝叶斯分类器基础上,引入贝叶斯网络[5],提出一种具有语义特征的基于贝叶斯网络的数据语义分类算法——语义特征关联的贝叶斯网络分类,利用网络节点间的关联表示语义,而其它非语义关联则全部忽略。在不损失分类精度情况下将具有多语义特征的数据进行分类。经仿真实验验证可获得满意的分类精度。 2.贝叶斯网络分类器 2.1朴素贝叶斯分类模型(小四号,宋体,加粗) 朴素贝叶斯分类模型将训练实例I分解为特征向量A和决策类别变量C,该模型根据类独立条件构造,朴素贝叶斯分类模型如图1所示。 图1 朴素贝叶斯分类模型 基金项目:水下机器人国家重点实验室基金

人工智能(部分习题答案)..知识讲解

人工智能(部分习题答 案)..

1.什么是人类智能?它有哪些特征或特点? 定义:人类所具有的智力和行为能力。 特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。 2.人工智能是何时、何地、怎样诞生的? 解:人工智能于1956年夏季在美国Dartmouth大学诞生。此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。 3.什么是人工智能?它的研究目标是? 定义:用机器模拟人类智能。 研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 4.人工智能的发展经历了哪几个阶段? 解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。 5.人工智能研究的基本内容有哪些? 解:知识的获取、表示和使用。 6.人工智能有哪些主要研究领域? 解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。 7.人工智能有哪几个主要学派?各自的特点是什么? 主要学派:符号主义和联结主义。 特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。 8.人工智能的近期发展趋势有哪些? 解:专家系统、机器人学、人工神经网络和智能检索。 9.什么是以符号处理为核心的方法?它有什么特征? 解:通过符号处理来模拟人类求解问题的心理过程。 特征:基于数学逻辑对知识进行表示和推理。 11.什么是以网络连接为主的连接机制方法?它有什么特征? 解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。 特征:研究神经网络。 1.请写出用一阶谓词逻辑表示法表示知识的步骤。 步骤:(1)定义谓词及个体,确定每个谓词及个体的确切含义;(2)根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值;(3)根据所要表达的知识的语义用适当的联接符号将各个谓词联接起来,形成谓词公式。 2.设有下列语句,请用相应的谓词公式把它们表示出来: (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词如下: Like(x,y):x喜欢y。 Club(x):x是梅花。 Human(x):x是人。 Mum(x):x是菊花。 “有的人喜欢梅花”可表达为:(?x)(Human(x)∧Like(x,Club(x))) “有的人喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Mum(x))) “有的人既喜欢梅花又喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Club(x))∧ Like(x,Mum(x))) (1)他每天下午都去玩足球。 解:定义谓词如下: PlayFootball(x):x玩足球。 Day(x):x是某一天。 则语句可表达为:(?x)(D(x)→PlayFootball(Ta)) (2)太原市的夏天既干燥又炎热。 解:定义谓词如下:

语义分析器

重庆大学课程设计报告课程设计题目:简单编译器的设计与实现 学院:计算机学院 专业班级:计算机科学与技术2班 年级:2010级 姓名:唐允恒,张楠 学号:20105208,20105333 完成时间:2013 年 6 月12 日成绩: 指导教师:张敏 重庆大学教务处制

指导教师评定成绩: 指导教师签名:年月日

指导教师评定成绩: 指导教师签名:年月日

重庆大学本科学生课程设计任务书

简单编译器设计与实现 目录 (一)目录 (1) (二)简单编译器分析与设计 (2) (1)简单编译器需求分析 (3) (2)词法分析器的设计 (3) 1.词法表设计 (3) 2.token串取法简单流程图 (3) (3)语法分析器的设计 (4) 1.算符优先文法设计 (4) 2.符号优先表 (6) (4)语义分析器的设计 (6) 1.简单四元式分析 (6) 2.简单四元式的实现 (6) (三)关键代码以及算法 (7) (1)词法分析器的关键算法 (7) (2)语法分析器的关键算法 (7) (3)四元产生式的关键算法 (8) (四)系统测试 (9) (1)用例测试 (9) (2)差错处理 (10) (3)设计自我评价 (10) (五)运行效果 (11) (六)总结 (13)

简单编译器分析与设计 简单编译器需求分析 编写目的 《编译原理》是一门实践性较强的软件基础课程,为了学好这门课程,必须在掌握理论知识的同时,加强上机实践。本课程设计的目的就是要达到理论与实际应用相结合,使同学们能够根据编译程序的一般原理和基本方法,通过具体语言的编译程序的编写,掌握编译程序的主要实现技术,并养成良好的程序设计技能。 设计背景 此项目是开发一个C++语言编辑器,完成编辑C++语言源程序,对C++语言源程序进行高亮显示、错误处理、代码重排版、显示当前文件的函数列表和跳转、成对括号、语句块标识的功能,同时描述了编译器执行每个步骤流程。 在词法分析,语法分析和语义分析等方面加深对课程基本内容的理解。同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。 对一个c++语言的子集编制一个编译程序,主要包括以下步骤: 词法分析 设计、编制并调试简单的C++语言的词法分析程序 语法分析 编制一个语法分析程序,实现对词法分析程序所提供的单词序列进行语法检查和结构分析。 语义分析 采用语法制导翻译原理,将语法分析所识别的语法成分变换成四元式形式的中间代码序列。

语义模型红皮书

用友软件股份有限公司 商业分析平台语义模型红皮书 版本:V6.0.0.20120227

目录 一、前言 (3) 1.概念 (3) 2.定位 (3) 二、结构 (3) 1.应用模型 (3) 2.语义模型 (4) a) 定义形态 (4) b) 执行流程 (6) c) 数据形态 (6) 3.语义提供者 (7) a) 接口 (7) b) 扩展 (9) 4.函数 (13) a) 函数解析 (13) b) 函数扩展 (13) 5.参数 (15) a) 参数定义 (16) b) 参数引用 (16) c) 参数设置 (16) 6.宏变量 (18) 7.描述器 (19) 8.数据加工 (20) 9.物化策略 (23) 10.复合语义模型 (24) 11.语义上下文 (28) 三、语义模型的管理 (31) 1.对象管理 (31) 2.环境配置 (34) 四、功能扩展 (41) 1.扩展语义提供者 (41) 2.扩展业务函数 (42) 3.使用数据加工 (42) 4.自定义执行策略 (42) 五、附录 (43) 1.入门 (43) 2.语义模型API (48) 3.语义函数 (50) 4.其他函数 (50) 5.脚本引擎 (52) 6.针对查询引擎的改进 (52)

一、前言 1.概念 SMART,即Semantic Modeling for Analysis Report Toolkit, 分析报表语义建模工具。 2.定位 语义模型把面向技术的数据,组织成面向业务的数据,供业务人员查询分析使用 二、结构 1.应用模型

上图为语义模型应用结构图。语义模型通过语义提供者,可以将多个数据源的数据进行整合。 2. 语义模型 定义形态 下图展示了语义模型的内部结构, 语义模型主要由以下几部分构成: 1.1 元数据

语义分析实验报告

云南大学编译原理实验报告 实验题目:语义分析 学院:信息学院 专业:计算机科学与技术 学号:20091060064 姓名:刘继远

目录 一、实验目的 (1) 二、实验内容 (1) 三、源程序分析 (2) 1、程序采用的BNF (2) 2、根据语义要求得到对应的翻译模式 (3) 3、实现原理 (4) 4、文法的属性分析 (4) 5、过程设计 (5) 6、子程序说明 (6) 四、设计的基本思想(包括修改之后的属性文法、属性类型分析、翻译模式) (6) 1、增加除法运算 (6) 2、禁止同名重复声明 (8) 五、结果及分析 (8)

一、实验目的 进一步理解递归下降分析原理和实现方法,理解语义分析的基本机制,掌握语义子程序的构造方法。 二、实验内容 将带变量声明的表达式翻译为四元式序列,其中包括以下要求: ●非终结符号D实现定义两种类型int, real变量的声明; ●非终结符号S实现变量之间的*,+,: =(赋值运算) ●两个关键字int 和real ●变量之间的*,+,: =(赋值) 运算只能使用声明过的变量,所以要检查 使用的变量是否声明过。 ●对每个*,+,: =(赋值) 运算生成一条四元式如(*,A,B,T1),其 中T1是临时变量 ●*优先级别高于+,*满足左结合规则

三、源程序分析 这是一个简单的包含词法、语法、语义分析的程序:语义分析.h和语义分析.cpp。实现的基本原理是自顶向下分析,单遍扫描,以语法分析为核心,调用词法分析,并实现语义分析。 1、程序采用的BNF P→ DS. D→B; D D→ε B→int L | real L L→id | L,id S→ V := E H H→;S | ε E→E+T | T T→T*F|F F→( E ) F→id V→id 消除左递归之后的等价文法 start→ DS. D→B; D D→ε B→int L | real L L→id A A→ ,idA A→ε

人工智能化(部分习题答案解析)

1.什么是人类智能?它有哪些特征或特点? 定义:人类所具有的智力和行为能力。 特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。 2.人工智能是何时、何地、怎样诞生的? 解:人工智能于1956年夏季在美国Dartmouth大学诞生。此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。 3.什么是人工智能?它的研究目标是? 定义:用机器模拟人类智能。 研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 4.人工智能的发展经历了哪几个阶段? 解:第一阶段:孕育期(1956年以前);第二阶段:人工智能基础技术的研究和形成(1956~1970年);第三阶段:发展和实用化阶段(1971~1980年);第四阶段:知识工程和专家系统(1980年至今)。 5.人工智能研究的基本内容有哪些? 解:知识的获取、表示和使用。 6.人工智能有哪些主要研究领域? 解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。 7.人工智能有哪几个主要学派?各自的特点是什么? 主要学派:符号主义和联结主义。 特点:符号主义认为人类智能的基本单元是符号,认识过程就是符号表示下的符号计算,从而思维就是符号计算;联结主义认为人类智能的基本单元是神经元,认识过程是由神经元构成的网络的信息传递,这种传递是并行分布进行的。 8.人工智能的近期发展趋势有哪些? 解:专家系统、机器人学、人工神经网络和智能检索。 9.什么是以符号处理为核心的方法?它有什么特征? 解:通过符号处理来模拟人类求解问题的心理过程。 特征:基于数学逻辑对知识进行表示和推理。 11.什么是以网络连接为主的连接机制方法?它有什么特征? 解:用硬件模拟人类神经网络,实现人类智能在机器上的模拟。 特征:研究神经网络。 1.请写出用一阶谓词逻辑表示法表示知识的步骤。 步骤:(1)定义谓词及个体,确定每个谓词及个体的确切含义;(2)根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值;(3)根据所要表达的知识的语义用适当的联接符号将各个谓词联接起来,形成谓词公式。 2.设有下列语句,请用相应的谓词公式把它们表示出来: (1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词如下: Like(x,y):x喜欢y。 Club(x):x是梅花。 Human(x):x是人。 Mum(x):x是菊花。 “有的人喜欢梅花”可表达为:(?x)(Human(x)∧Like(x,Club(x))) “有的人喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Mum(x))) “有的人既喜欢梅花又喜欢菊花”可表达为:(?x)(Human(x)∧Like(x,Club(x))∧ Like(x,Mum(x))) (1)他每天下午都去玩足球。 解:定义谓词如下: PlayFootball(x):x玩足球。 Day(x):x是某一天。 则语句可表达为:(?x)(D(x)→PlayFootball(Ta)) (2)太原市的夏天既干燥又炎热。 解:定义谓词如下: Summer(x):x的夏天。 Dry(x):x是干燥的。 Hot(x):x是炎热的。 则语句可表达为:Dry(Summer(Taiyuan))∧Hot(Summer(Taiyuan)) (3)所有人都有饭吃。

复杂网络理论及其研究现状

复杂网络理论及其研究现状 复杂网络理论及其研究现状 【摘要】简单介绍了蓬勃发展的复杂网络研究新领域,特别是其中最具代表性的是随机网络、小世界网络和无尺度网络模型;从复杂网络的统计特性、复杂网络的演化模型及复杂网络在社会关系研究中的应用三个方面对其研究现状进行了阐述。 【关键词】复杂网络无标度小世界统计特性演化模型 一、引言 20世纪末,以互联网为代表的信息技术的迅速发展使人类社会步入了网络时代。从大型的电力网络到全球交通网络,从Internet 到WWW,从人类大脑神经到各种新陈代谢网络,从科研合作网络到国际贸易网络等,可以说,人类生活在一个充满着各种各样的复杂网络世界中。 在现实社会中,许多真实的系统都可以用网络的来表示。如万维网(WWW网路)可以看作是网页之间通过超级链接构成的网络;网络可以看成由不同的PC通过光缆或双绞线连接构成的网络;基因调控网络可以看作是不同的基因通过调控与被调控关系构成的网络;科学家合作网络可以看成是由不同科学家的合作关系构成的网络。复杂网络研究正渗透到数理科学、生物科学和工程科学等不同的领域,对复杂网络的定性与定量特征的科学理解,已成为网络时代研究中一个极其重要的挑战性课题,甚至被称为“网络的新科学”。 二、复杂网络的研究现状 复杂网络是近年来国内外学者研究的一个热点问题。传统的对网络的研究最早可以追溯到18世纪伟大数学家欧拉提出的著名的“Konigsberg七桥问题”。随后两百多年中,各国的数学家们一直致力于对简单的规则网络和随机网络进行抽象的数学研究。规则网络过于理想化而无法表示现实中网络的复杂性,在20世纪60年代由Erdos和Renyi(1960)提出了随机网络。进入20世纪90年代,人们发现现实世界中绝大多数的网络既不是完全规则,也不是完全随机

相关文档