文档库 最新最全的文档下载
当前位置:文档库 › 实验三离散系统的零极点分析

实验三离散系统的零极点分析

实验三离散系统的零极点分析
实验三离散系统的零极点分析

实验三离散系统的零极点分析

一、实验目的

1、学会使用MATLAB进行离散系统的Z域分析。

2、进一步掌握系统零极点分布与系统稳定性的关系

二、教学目标

让学生学会用Matlab对离散系统进行分析,学会对仿真结果的分析与总结,通过改变参数观察响应的变化,体会仿真的优越性。

三、实验原理

1、离散系统的零极点分布与系统稳定性

对任意有界的输入序列f(n),若系统产生的零状态响应y(n)也是有界的,则称该离散系统为稳定系统,它可以等效为下列条件:

●时域条件:离散系统稳定的充要条件为

<

∑∞

-∞

=

k

n

h)

(

,即系统单位响应绝对求和。

●Z域条件:离散系统稳定的充要条件为系统函数H(Z)的所有极点位于Z平面的单位

圆内。

2、零极点分布与系统单位响应时域特性的关系

离散系统单位响应h(n)的时域特性完全由系统函数H(z)的极点位置决定。 H(z)的每一个极点将决定h(k)的一项时间序列。显然,H(z)的极点位置不同,则h(n)的时域特性也完全不同。

3、在MATLAB中,利用函数impz可绘出对应H(z) 的单位响应序列h(n)的波形。

三、实验内容

已知离散系统的零极点分布分别如下图所示,试用MATLAB分析系统单位响应h(k)的时域特性。

1、 写出上面6图对应系统的系统函数;

2编辑各系统函数的相应的.m 文件,输出冲激响应波形;

例:对图6-1所示的系统,系统函数为H (z )=11

z ,即系统极点为单位园上实极点,则绘制单位响应时域波形的MA TLAB 命令如下:

a=[1 –1];

b=[1];

impz(b,a)

axis([-5,10,0,1.2])

3分析各系统的稳定性与系统零极点位置的关系。

四、 预习要求

阅读教材相关内容,理解离散系统稳定性的含义,掌握系统函数H (Z )的零极点分布与系统稳定性的关系,预习Matlab 相关命令。

五、 实验报告要求

1、打印程序清单及运行结果。

2、总结分析实验结果。

关于零点和极点的讨论

【转】关于零点和极点的讨论 2011-08-13 19:46 转载自wycswycs 最终编辑hyleon023 一、传递函数中的零点和极点的物理意义: 零点:当系统输入幅度不为零且输入频率使系统输出为零时,此输入频率值即为零点。极点:当系统输入幅度不为零且输入频率使系统输出为无穷大(系统稳定破坏,发生振荡)时,此频率值即为极点。举例:有时你家音响或电视机壳发出一阵阵尖厉嘶嘶声,此时聪明的你定会知道机壳螺丝松了,拧紧螺丝噪声问题就解决了。其实,你所做的就是极点补偿,拧紧螺丝——你大大降低了系统极点频率。当然此处系统是指机械振动系统不是电路系统,但原理一样。抛砖引玉尔,希望更多答案。(这一段有待讨论) 二、每一个极点之处,增益衰减-3db, 并移相-45度。极点之后每十倍频,增益下降20db.零点与极点相反;每一个零点之处,增益增加3db,并移相45度。零点之后,每十倍频,增益增加20db。波特图如下: 以下是极点图,零点图与极点图相反。极点零点一般用于环路的稳定性分析。 附上一个零点图

1、由于在CMOS里面一般栅端到地的电容较大,所以一般人们就去取这个极点,也就是说输入信号频率使得节点到地的阻抗无穷大(也就是所谓的1/RC)R为到地电阻,C为到地电容(并联产生极点)零点在CMOS中往往是由于信号通路上的电容产生的,即使得信号到地的阻抗为0,在密勒补偿中,不只是将主极点向里推,将次极点向外推(增大了电容),同时还产生了一个零点(与第三极点频率接近),只不过人们一般只关心前者。 2、经验上来讲,放大器电路中高阻抗的节点都要注意,即使这点上电容很小,都会产生一个很大的极点。零点一般就不那么直观了,通常如果两路out of phase的信号相交就会产生零点,但这不能解释所有的零点。 3、个人觉得零点、极点只是电路分析中抽象出来的辅助方法,可以通过零极点分析电路动作特征,然而既然有抽象肯定有它的物理表现,极点从波特图上看两个作用:延时和降低增益,在反馈系统中作用就是降低反馈信号幅度以及反馈回去的时间,所以如果某个节点存在对地电容,必然会对电容充电,同时电容和前级输出电阻还存在分压,所以这个电容会产生极点!而要保持稳定,则要看在激励情况下反馈信号会不会持续增加?而这就需要分析信号在通过电路的过程中的衰减或增加和加快或者减慢,零极点这就表征了电路的这种特性,所以可能某个节点会产生极点,也可能整个系统不同信号通路相互作用产生零极点。 俺也谈谈我的看法: 1。零/极点的产生与反馈与否似乎没有直接联系。一个电路的小信号模型中存在某一个节点,这个节点有两条通路与其

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告 按要求格式改名(例:09号_张 三_实验七.doc)后,实验室统一 刻盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1.掌握系统差分方程得到系统函数的方法; 2.掌握系统单位脉冲响应获取系统函数的方法; 3.掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB中,可以用函数[z,p,K]=tf2zp (num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+0.7y(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); plot(w/pi,abs(H),'linewidth',2);

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响 我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。这样我们可以更加直观的感受到他们的影响。(在分析的时候选择稳定的原始系统) 在分析的时候我们选择的原系统的闭环传递函数为: 通过matlab 编程和绘图我们可以得到()s G 的单位阶跃响应曲线如下图:

现在我们开始分析加入零点,极点和偶极子对系统性能的影响! 一、零点 为了在方程之中添加一个零点,我们将系统的闭环传递函数变为: 我们可以通过matlab 编程,绘出 () 1s G 和()s G 的响应曲线,通过分析相应的 响应曲线,我们就可以得出相应的结论! matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1); plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')

两者的响应曲线为: 通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t 减小; (3)系统的超调时间p t 减小; (4)系统的超调量 % p 变长; (5)系统的调节时间 s t 变长;

实验Z变换离散系统零极点分布和频率分析

实验三 Z 变换、离散系统零极点分布和频率分析 一、 实验目的 ● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点; ● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ● 学会运用MATLAB 进行离散时间系统的频率特性分析。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验原理及实例分析 (一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例3-1】 利用MATLAB 计算3 21431818 ) (-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为 )()(F iztrans f f ztrans F ==

上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例3-2】求(1)指数序列()n u a n 的Z 变换;(2)()() 2 a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 ) () ()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验2 离散系统的频率响应分析和零、极点分布一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

零点与极点计算和分析

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要 进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例1】 利用MATLAB 计算321431818)(-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为

)()(F iztrans f f ztrans F == 上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 )()()(z X z Y z H = (3-1)

实验z变换、零极点分析

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; (一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例1】 利用MATLAB 计算3 21431818 ) (-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den)

2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为 )() (F iztrans f f ztrans F == 上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()() 2 a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析

电路中极点与零点的产生与影响

请问电路中极点与零点的产生与影响 一、电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗? 它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过 这两条之路后可以互相抵消还是什么?? 极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么? 产生振荡还是什么?? 请大家指教一下。 1.(不能这么简单的理解 其实电路的每个node都有一个极点 只是大部分的极点相对与所关心的频率范围太大而忽略了 运放中我们一般关心开环的0dB带宽那么>10*带宽频率的极点我们就不管了 因为它们对相位裕度贡献太小而被忽略; 只要输入和输出之间有两条通路就会产生一个零点: 同样的高于所关心频率范围的零点也不用管 一个在所关心频率范围内的零点需要看是左半平面还是右半平面的 左半平面的零点有利于环路稳定右半平面的则不利 具体的看拉扎维的书吧写的还是蛮详细的看不懂就多看几遍 自己做个电路仿下) 2.好问题,希望彻底了解的人仔细解答。我也同样疑惑。

但是我总觉得极点,零点并不能单单的说是由于前馈,反馈,或者串联并联一个电容产生的。 产生的原因还是和具体的电路结构相关联的。 比如一个H(s)的系统和一个电容并联或串联在输入输出之间,谁能说他一定产生一个极点或零点呢?这因该和H(s)的具体形式有关。 大多书上说的应该大多针对的是运放结构,它的结构具有特殊性。具有以点盖全的嫌疑。 还请达人细说。 3.一般的说,零点用于增强增益(幅度及相位),极点用于减少增益(幅度及相位),电路中一般零点极点是电容倒数的函数(如1/C)。 当C变大时,比如对极点来说,会向原点方向变化,造成增益减少加快(幅度及相位)~一般运放电路的米勒效应电容就是这个原理,当增益迅速下降倒-3dB时,其他的零点极点都还没对系统增益起到啥作用(或作用很小,忽略了),电路就算七窍通了六窍半了~你就可以根据自己的需要补上带宽,多少多大的裕度就KO了 极点是由于结点和地之间有寄生电容造成的,零点是由于输入和输出之间有寄生电容造成的,一般输入和输出之间的零极点考虑多一点,主要是因为输入输出有较大的电阻,造成了极点偏向原点. 4.个人的一点理解 极点决定的是系统的自然响应频率,通常在电路中就是对地电容所看进去的R和对地电容C共同决定的。 零点是由于在输入输出间存在两条信号路径,两个信号路径强度相消即可,通常在电路中表现为反馈或前馈通路。 5.一个电路中有多少个极点和多少个零点取决你的器件模型,

数字信号处理实验报告——离散系统的频率响应分析和零极点分布

实验3 离散系统的频率响应分析和零、极点分布 实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。 实验原理:离散系统的时域方程为 ∑∑==-=-M k k N k k k n x p k n y d 00)()( 其变换域分析方法如下: 频域 )()()(][][][][][ωωωj j j m e H e X e Y m n h m x n h n x n y =?-= *=∑∞-∞= 系统的频率响应为 ωωω ωωωω jN N j jM M j j j j e d e d d e p e p p e D e p e H ----++++++==......)()()(1010 Z 域 )()()(][][][][][z H z X z Y m n h m x n h n x n y m =?-= *=∑∞-∞= 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H ----++++++==......)()()(110110 分解因式 ∏-∏-=∑∑= =-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 111100) 1()1()(λξ ,其中i ξ和i λ称为零、极 点。 在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统转移函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。 实验内容:求系统 12345123450.05280.7970.12950.12950.7970.0528()1 1.8107 2.4947 1.88010.95370.2336z z z z z H z z z z z z ----------+++++=-+-+- 的零、极点和幅度频率响应。

实验 Z变换、零极点分析

实验二 Z 变换、离散系统零极点分布和频率分析 1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; 2.学会运用MATLAB 分析离散时间系统的系统函数的零极点; 3. 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; 4. 学会运用MATLAB 进行离散时间系统的频率特性分析。 (一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例1】 利用MATLAB 计算3 21431818 ) (-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为 实验目的 实验内容

)()(F iztrans f f ztrans F == 上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()() 2 a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 ) () ()(z X z Y z H = (3-1)

零极点分布对系统频率响应的影响

实验三 零极点分布对系统频率响应的影响 一. 实验目的 学习用分析零极点分布的几何方法分析研究信号和系统频率响应. 二. 实验原理 1. 对(序列)信号x(n)进行ZT, 得X(z), 从而得到它的零极点分布. 2. 对(离散)系统, 求出它的系统函数H(z) , 也可得到它的零极点分布. 3. 按教材(3.6.13)式, 信号或系统的幅度特性由零点至单位圆周上的矢量长度和极点至单 位圆周上的矢量长度之比. 4. 极点影响频率特性的峰值, 零点影响频率特性的谷值. 零极逾靠近单位圆, 这些特征越 明显. 如有极点410.9j z e π =, 则频率特性曲线在4π ω=处出现峰值. 5. 本实验借助于计算机分析信号或系统的频率响应, 目的是掌握用极、零点分布的几何分 析法分析频率响应, 实验时需并j z e ω=代入相应的X(z) 或H(z) 中, 再在0~2π中等间隔的取点. 如100等分:w=[0:2*pi/100:2*pi], 再用plot 等函数作出|()|j H e ωω 图形. 三. 实验内容 1. 设系统为 ()()(1)y n x n ay n =+-, 试就0.7,0.8,0.9a =, 分别在三种情况下分析系 统的频率特性, 并作出幅度特性曲线., 并作出高, 低通等判断. 2. 假设系统为: () 1.273(1)0.81(2)()(1)y n y n y n x n x n =---++- 试分析它的频率特性, 作出它的幅-频曲线, 估计其峰值频率和谷值频率. 四. 实验报告要求 1. 总结零、极点分布对频率响应的影响; 2. 总结零、极点分布对系统的高通、低通的影响.

离散系统的频域分析与零极点分布——数字信号处理

课程设计报告 课程名称数字信号课程设计 系别:XXXXXXXX 专业班级:XXXXXXXXXXXXXXX 学号:XXXXXXXXXX 姓名:XXXXX 课程题目:离散系统的频域分析与零极点分布 完成日期:2012年6月29日 指导老师:XXXXX 2012 年6 月29 日

离散系统的频域分析与零极点分布 摘要 本课题主要是根据系统函数求出系统的零极点分布图并且求解系统的单位脉冲响应,利用MATLAB软件绘制出系统零极点的分布图,根据零极点在单位圆的分布,判断因果系统的稳定性.再比较不同零极点对系统频率响应特性的影响。从课题研究和设计过程当中对系统稳定性的判断有了清楚的认识,既极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。同时也对系统函数零极点分布对系统频率响应特性的影响有了深入的了解。既极点位置主要影响频率响应的峰值及尖锐程度,零点位置主要影响频率响应的谷点位置及形状。本次课题也对系统的幅频特性曲线和相频特性曲线进行了绘制,并求出了系统的单位脉冲响应以及绘制出了波形图。 关键字:离散系统,频域分析,零极点分布

目录 一、绪论 (1) 二、方案 (1) 实验原理 (1) 三、过程论述及结果分析 (2) 1.分别画出各系统的零极点分布图,并判断系统的稳定性 (2) 2.分别画出系统的幅频特性和相频特性曲线 (5) 3.分别求出系统的单位脉冲响应,并画出其波形 (9) 四、结论 (12) 致谢 (13) 参考文献 (13)

一、绪论 编制Matlab 程序,完成以下功能,根据系统函数求出系统的零极点分布图,并求解系统的单位脉冲响应;根据零极点分布图判断系统的稳定性;比较不同零极点发布对系统频率响应特性的影响;绘制相关信号的波形。具体要求如下: 下面四种二阶网络的系统函数具有相同的极点发布: 112 1 ()1 1.60.9425H z z z --= -+ 1 21210.3()1 1.60.9425z H z z z ----=-+ 1 312 10.8()1 1.60.9425z H z z z ----=-+ 12 412 1 1.60.8()1 1.60.9425z z H z z z -----+=-+ (1)分别画出各系统的零极点分布图,并判断系统的稳定性; (2)分别画出系统的幅频特性和相频特性曲线; (3)分别求出系统的单位脉冲响应,并画出其波形。 二、方案 实验原理 离散系统的时域方程为 ∑∑==-= -M k k N k k k n x p k n y d ) ()( 其变换域分析方法如下: 频域 ) ()()(][][][][][ΩΩ=Ω?-= *=∑∞ -∞ =H X Y m n h m x n h n x n y m 系统的频率响应为 Ω -Ω-Ω -Ω-++++++=ΩΩ=ΩjN N j jM M j e d e d d e p e p p D p H ......)()()(1010

离散系统的频率响应分析和零、极点分布

实验2 离散系统的频率响应分析和零、极点分布 一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane (num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 三、实验内容及要求 一个LTI离散时间系统的输入输出差分方程为 y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1) (1)编程求出此系统的单位冲激响应序列,并画出其波形。 (2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。 (3)编程得到系统频响的幅度响应和相位响应,并画图。 (4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。 解答:

传递函数与频域分析

第一章 传递函数与频域分析 2.1 传递函数的概念 我们将系统输出量对于系统输入量的微分方程在零初始条件下取拉普拉斯变换,变换后的输出量的象函数与输入量的象函数之比定义为传递函数。这里的零初始条件是指输入量和输出量的初始值及其高阶以下(含次高阶)各阶导数的初始值都为零(任彦硕,2007)。 拉普拉斯变换是指对定义在时域区间[0,∞)上的时间函数)(t f 完成如下的积分变换: ?∞ -=0)()(dt e t f s F st (2.1) 式(2.1)中,st e -是拉普拉斯变换因子,又称收敛因子;s 是复数,ωσi s +=。式(2.1)完成了将时域函数)(t f 转化成复频域函数)(s F 的积分变换,为下文的频域分析奠定了基础。为了方便应用,将拉普拉斯变换的基本性质和常用拉普拉斯变换用表格的形式列了出来。 表2.1 拉普拉斯变换的基本性质

表2.2 常用拉普拉斯变换

2.2 系统频域分析 2.2.1 系统的稳定性 系统在工作过程中,不可避免的受到来自外界或内部的干扰,使得系统偏 离平衡位置。如果干扰消除后,系统能够逐渐的恢复到原来的平衡位置,则系 统是稳定的;反之,系统在扰动消除后随着时间的增加而越来越偏离平衡位置,则系统是不稳定的;若系统在扰动消除后以平衡位置为中心点做震荡运动,则 系统为临界稳定。系统的输入信号也可以看做是某种扰动,则有系统在输入信 号撤销后,系统能够逐渐的恢复到原来的平衡位置,则系统是稳定的;反之, 系统在输入信号撤销后随着时间的增加而越来越偏离平衡位置,则系统是不稳 定的。

线性系统是否稳定,取决于系统的内部构成与参数,与外部条件无关。造成系统不稳定的原因主要有三方面:系统中存在相位滞后环节,如惯性、延迟环节等;系统存在反馈作用;系统的参数选择不合适。 由于传递函数完全代表了系统的微分方程,因此可以从它的零极点来分析系统响应。特别是系统的极点直接影响了系统响应。设系统有n 个极点 )3,2,1(n i p s i i == (2.2) 由表2.2 可知每一个极点都在时域范围内对应着一个形式如下的分量 t p i i i e C t y =)( (2.3) i C 是由系统所决定的常数。由式(2.2)可知,当极点位于复平面的左半平面时, 即极点具有负实部,式(2.2)是衰减的;当极点位于复平面的右半平面时,即极点具有正实部,式(2.2)是发散的;当极点位于虚轴上时,系统是震荡的。 2.2.2 系统的频率特性 频域分析法是在频率域中研究控制系统的规律,由于频率域ω是复频域s 的子域,所以我们可以令 )()(ωωj T s T j s == (2.4) 这样就可以在频率域中研究系统的传递函数,从而来研究控制系统的规律。 为了更好的研究函数)(ωj T 的响应特性,我们可以在坐标系以ω为自变量作图,这里简要叙述以下奈奎斯特图(Nyquise )和伯德图(bode )的画法,以及我们如何从图中分析系统的稳定性。

相关文档
相关文档 最新文档