文档库 最新最全的文档下载
当前位置:文档库 › 圆的方程题型总结(按题型,含详细答案)

圆的方程题型总结(按题型,含详细答案)

圆的方程题型总结(按题型,含详细答案)
圆的方程题型总结(按题型,含详细答案)

圆的方程题型总结

一、基础知识

1.圆的方程

圆的标准方程为___________________;圆心_________,半径________.

圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2

2

0Ax

Cy Dx Ey F 表示圆的条件为:

(1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系:

直线0Ax By C ++=,圆2

2

2

()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________;

(2)当______________时,直线与圆相离;

当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系

圆1C :2

2

21

1

1x

a y

b r ; 圆2C :2

2

22

2

2x a y b r

则有:两圆相离? __________________; 外切?__________________;

相交?__________________________; 内切?_________________; 内含?_______________________.

二、题型总结:

(一)圆的方程

☆1.2

2

310x y x y ++--=的圆心坐标 ,半径 . ☆☆2.点(1,2-a a )在圆x 2+y 2

-2y -4=0的内部,则a 的取值范围是( )

A .-1

B . 0

C .–1

5

1

D .-

5

1

2

2

2

0(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称,必有

( )

A .E F =

B .D F =

C .

D

E = D .,,D E

F 两两不相等

☆☆☆4.圆03222

2

2

=++-++a a ay ax y x 的圆心在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

☆ 5.若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是

( )

A. 2

2430x y x y B. 22430x y x y C. 2

2

434

0x

y x y

D. 2

2

438

0x y x y

☆☆6.过圆2

2

4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( )

A. 42x y --2

2

()+()=4 B. 2x y -2

2

+()=4 C. 42x y ++2

2

()+()=5 D. 21x y -+2

2

()+()=5 ☆7.过点1,1A ,1,1B

且圆心在直线20x

y 上的圆的方程( )

A. 2

2

3

14x

y B.2

2

31

4x y

C. 22

1

1

1x y D. 2

2

111x y

☆☆8.圆2

2

2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( )

A .2

2

(7)(1)1x y +++= B .22

(7)(2)1x y +++= C . 2

2

(6)(2)1x y +++=

D .2

2

(6)(2)1x y ++-=

☆9.已知△ABC 的三个项点坐标分别是A (4,1),B (6,-3),C (-3,0),求△ABC 外接圆的方程.

☆10.求经过点A(2,-1),和直线1=+y x 相切,且圆心在直线x y 2-=上的圆的方程.

2.求轨迹方程

☆11.圆2

2

4120x y y +--=上的动点Q ,定点()8,0A ,线段AQ 的中点轨迹方程

________________ .

☆☆☆12.方程()04122=-+-+y x y x 所表示的图形是( ) A .一条直线及一个圆 B .两个点

C .一条射线及一个圆

D .两条射线及一个圆

☆☆13.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半, 求:(1)动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹.

3.直线与圆的位置关系 ☆1

4.圆2

21

1x y 的圆心到直线3

y

x 的距离是( ) A.

1

2

B. 3

C. 1

D. 3

☆☆15.过点2,1的直线中,被2

2

240x

y x y 截得弦长最长的直线方程为 ( )

A. 350x y

B. 370x y

C. 33

0x

y D. 31

0x y

☆☆16.已知直线l 过点),(02-,当直线l 与圆x y x 22

2

=+有两个交点时,其斜率k 的取值范围是(

A. ),(2222-

B. ),(22-

C.

),(4242- D. ),(8

1

81- ☆17.圆042

2=-+x y x 在点)3,1(P 处的切线方程为( )

A .023=-+y x

B .043=-+y x

C .043=+-y x

D .023=+-y x

☆☆18.过点P (2,1)作圆C :x 2

+y 2

-ax +2ay +2a +1=0的切线有两条,则a 取值范围是( )

A .a >-3

B .a <-3

C .-3<a <-

52 D .-3<a <-5

2或a >2 ☆☆19.直线032=--y x 与圆9)3()2(2

2=++-y x 交于E 、F 两点,则EOF ?(O 为原点)的面积

为( )

A .

3

2

B .

3

4

C .

65

D .

35

☆☆20.过点M (0,4),被圆4)1(22=+-y x 截得弦长为32的直线方程为 _ _.

☆☆☆21.已知圆C :()()25212

2=-+-y x 及直线()()47112:+=+++m y m x m l .

()R m ∈

(1)证明:不论m 取什么实数,直线l 与圆C 恒相交;

(2)求直线l 与圆C 所截得的弦长的最短长度及此时直线l 的方程.

☆☆☆22.已知圆x 2

+y 2

+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且以PQ 为直径的圆恰过坐标原点,求实数m 的值.

4.圆与圆的位置关系

☆23.圆2

2

20x y x +-=与圆2

2

40x y y ++=的位置关系为

☆24.已知两圆01422:,10:222221=-+++=+y x y x C y x C .求经过两圆交点的公共弦所在的直线方程

_______ ____.

☆25.两圆x 2

+y 2

-4x +6y =0和x 2

+y 2

-6x =0的连心线方程为( ) A .x +y +3=0 B .2x -y -5=0

C .3x -y -9=0

D .4x -3y +7=0

☆26.两圆221:2220C x y x y +++-=,22

2:4210C x y x y +--+=的公切线有且仅有( )

A .1条

B .2条

C .3条

D .4条

☆☆☆27.已知圆1C 的方程为0),(=y x f ,且),(00y x P 在圆1C 外,圆2C 的方程为

),(y x f =),(00y x f ,则1C 与圆2C 一定( )

A .相离

B .相切

C .同心圆

D .相交

☆☆28.求圆心在直线0x y +=上,且过两圆2

2

210240x y x y +-+-=,2

2

x y +2280x y ++-=交点的圆的方程.

5.综合问题

☆☆29.点A 在圆2

2

2x y y +=上,点B 在直线1y x =-上,则AB 的最小 ( )

1 B 1-

☆☆30.若点P 在直线23100x y ++=上,直线,PA PB 分别切圆2

2

4x y +=于,A B 两点,则四边形

PAOB 面积的最小值为( )

A 24

B 16

C 8

D 4

☆☆31. 直线b x y +=与曲线2

1y x -=有且只有一个交点,则b 的取值范围是( ) A .2=

b

B .11≤<-b 且2-=b

C .11≤≤-b

D .以上答案都不对

☆☆32.如果实数,x y 满足2

2

410x y x +-+=求:

(1)

y

x

的最大值; (2)y x -的最小值;

(3)22x y +的最值.

☆☆33.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km 处,受影响的范围是半径长30 km 的圆形区域.已知港口位于台风正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响

圆的方程题型总结 参考答案

1. 3122(-,)

2

;;;;;;;; 9.解:解法一:设所求圆的方程是2

2

2

()()x a y b r -+-=. ① 因为A (4,1),B (6,-3),C (-3,0)都在圆上,

所以它们的坐标都满足方程①,于是

222222222(4)(1),(6)(3),(3)(0).

a b r a b r a b r ?-+-=?-+--=?

?--+-=?

可解得21,3,25.a b r =??=-??=?

所以△ABC 的外接圆的方程是2

2

(1)(3)25x y -++=.

解法二:因为△ABC 外接圆的圆心既在AB 的垂直平分线上,也在BC 的垂直平分线上,所以先求AB 、

BC 的垂直平分线方程,求得的交点坐标就是圆心坐标.

∵31

264AB k --=

=--,0(3)1363

BC k --==---, 33

(,)22

-, 线段AB 的中点为(5,-1),线段BC 的中点为

∴AB 的垂直平分线方程为1

1(5)2

y x +=-, ①

BC 的垂直平分线方程33

3()22

y x +=-. ②

解由①②联立的方程组可得1,

3.

x y =??

=-?∴△ABC 外接圆的圆心为E(1,-3),

半径22||(41)(13)5r AE ==-++=.

故△ABC 外接圆的方程是2

2

(1)(3)25x y -++=.

10.解:因为圆心在直线x y 2-=上,所以可设圆心坐标为(a ,-2a ),据题意得:

2

|

12|)12()2(22--=

+-+-a a a a , ∴ 222)1(2

1

)21()2(a a a +=

-+-,

∴ a =1, ∴ 圆心为(1,-2),半径为2, ∴所求的圆的方程为2)2()1(2

2=++-y x .

11.41x y --2

2

()+()=4;;

13.解:(1)设动点M (x ,y )为轨迹上任意一点,则点M 的轨迹就是集合 P 1

{|||||}2

M MA MB ==

. 由两点距离公式,点M 适合的条件可表示为 22221(2)(8)2

x y x y -+=-+,

平方后再整理,得 2

2

16x y +=. 可以验证,这就是动点M 的轨迹方程.

(2)设动点N 的坐标为(x ,y ),M 的坐标是(x 1,y 1).

由于A (2,0),且N为线段AM 的中点,所以 122x x +=

, 1

02

y y +=.所以有122x x =-,12y y = ① 由(1)题知,M 是圆2

2

16x y +=上的点,

所以M 坐标(x 1,y 1)满足:22

1116x y +=②

将①代入②整理,得22

(1)4x y -+=.

E

x

y O

C

B

A

所以N 的轨迹是以(1,0)为圆心,以2为半径的圆(如图中的虚圆为所求).

14.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,

在直角三角形AOM 中,若设),(y x Q ,则)2

,2(b

y a x M ++. 由2

2

2

OA AM

OM =+,即

22222])()[(4

1

)2()2(

r b y a x b y a x =-+-++++, 也即)(22

2

2

2

2

b a r y x +-=+,这便是Q 的轨迹方程.

解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22

12

1r y x =+,2

2

22

2r y x =+.

又2

2AB PQ =,即

)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①

又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即

)(22)()(2121222y y x x r b y a x ++=+++ ②

①+②,有)(22

2

2

2

2

b a r y x +-=+. 这就是所求的轨迹方程.

;; ;; ;;=0或15x +8y -32=0;

22.解:(1)直线方程()()47112:+=+++m y m x m l ,可以改写为()0472=-++-+y x y x m ,所以直线必经过直

线04072=-+=-+y x y x 和的交点.由方程组??

?=-+=-+04,072y x y x 解得?

??==1,

3y x 即两直线的交点为A )1,3( 又

因为点()1,3A 与圆心()2,1C 的距离55<=d ,所以该点在C 内,故不论m 取什么实数,直线l 与圆C 恒相交.

(2)连接AC ,过A 作AC 的垂线,此时的直线与圆C 相交于B 、D .BD 为直线被圆所截得的最短弦长.此

时,545252,5,5=-===BD BC AC 所以.即最短弦长为54.

又直线AC 的斜率2

1-=AC k ,所以直线BD 的斜率为2.此时直线方程为:().052,321=---=-y x x y 即

23.解:由01220503206222=++-????=-+=+-++m y y y x m y x y x ??

???+==+∴51242121m y y y y 又OP ⊥OQ , ∴x 1x 2+y 1y 2=0,而x 1x 2=9-6(y 1+y 2)+4y 1y 2= 5

274-m

05

125274=++-m

m 解得m =3. 24.相交; 25.02=-+y x ;;; ;

29.解法一:(利用圆心到两交点的距离相等求圆心)

将两圆的方程联立得方程组

2222

2102402280x y x y x y x y ?+-+-=?+++-=?,

解这个方程组求得两圆的交点坐标A (-4,0),B (0,2).

因所求圆心在直线0x y +=上,故设所求圆心坐标为(,)x x -,则它到上面的两上交点 (-4,0)和(0,2)的距离相等,故有2222(4)(0)(2)x x x x --++=++,

即412x =-,∴3x =-,3y x =-=,从而圆心坐标是(-3,3).

又22(43)310r =-++=, 故所求圆的方程为2

2

(3)(3)10x y ++-=.

解法二:(利用弦的垂直平分线过圆心求圆的方程) 同解法一求得两交点坐标A (-4,0),B (0,2),弦AB 的中垂线为230x y ++=, 它与直线0x y +=交点(-3,3)就是圆心,又半径10r =,

故所求圆的方程为2

2

(3)(3)10x y ++-=.

解法三:(用待定系数法求圆的方程) 同解法一求得两交点坐标为A (-4,0),B (0,2).

设所求圆的方程为2

2

2

()()x a y b r -+-=,因两点在此圆上,且圆心在0x y +=上,所以得方程组

222

222

(4)(3)0a b r a b r a b ?--+=?+-=??+=?,解之得3310

a b r ?=-?=??=?,

故所求圆的方程为2

2

(3)(3)10x y ++-=.

解法四:(用“圆系”方法求圆的方程.过后想想为什么)

设所求圆的方程为

222221024(228)0x y x y x y x y λ+-+-++++-=(1)λ≠-,

即 222(1)2(5)8(3)

0111x y x y λλλλλλ

-+++-

+-=+++. 可知圆心坐标为15(

,)11λλ

λλ

-+-++. 因圆心在直线0x y +=上,所以15011λλ

λλ

-+-=++,解得2λ=-.

将2λ=-代入所设方程并化简,求圆的方程2

2

6680x y x y ++-+=. ; ; ;

33.(1)3;(2)62--;(3)()

22

min

43x y

+= ;()

22max

743x y +=+.

34解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得

1-=?OQ OP k k ,即

12

2

11-=?x y x y ,也即:02121=+y y x x . ① 另一方面,),(11y x 、),(22y x 是方程组??

?=+-++=-+0

60

322

2

m y x y x y x 的实数解,即1x 、2x 是方程

02741052=-++m x x ②

的两个根.

∴221-=+x x ,5

27

421-=

m x x . ③ 又P 、Q 在直线032=-+y x 上,

∴])(39[4

1

)3(21)3(2121212121x x x x x x y y ++-=-?-=

. 将③代入,得5

12

21+=m y y . ④

将③、④代入①,解得3=m ,代入方程②,检验0>?成立, ∴3=m .

解法二:由直线方程可得y x 23+=,代入圆的方程062

2

=+-++m y x y x ,有

0)2(9

)6)(2(31222=++-+++y x m

y x y x y x ,

整理,得0)274()3(4)12(2

2

=-+-++y m xy m x m .

由于0≠x ,故可得

012)3(4))(274(2=++-+-m x

y

m x y m .

∴OP k ,OQ k 是上述方程两根.故1-=?OQ OP k k .得

127

412-=-+m m

,解得3=m .

经检验可知3=m 为所求.

35解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.

∵10=AB ,∴)0,5(-A ,)0,5(B .

设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件: 价格+A 地运费≤价格+B 地的运费

即:2

2

2

2

)5()5(3y x a y x a +-≤++. ∵0>a ,

∴2

2

2

2

)5()5(3y x y x +-≤++

化简整理得:222)4

15

()425(≤++

y x ∴以点)0,4

25

(-

为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货. 说明:实际应用题要明确题意,建议数学模型.

圆与方程测试题及答案(推荐文档)

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

圆的方程知识点总结和典型例题

圆的方程知识点总结和经典例题 1.圆的定义及方程 注意点 (1)求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程. (2)对于方程x 2 +y 2 +Dx +Ey +F =0表示圆时易忽视D 2 +E 2 -4F >0这一条件. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2 +(y -b )2 =r 2 的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2 +(y 0-b )2 >r 2 . (2)若M (x 0,y 0)在圆上,则(x 0-a )2 +(y 0-b )2 =r 2 . (3)若M (x 0,y 0)在圆内,则(x 0-a )2 +(y 0-b )2 <r 2 . 3.直线与圆的位置关系 (1)直线与圆的位置关系的判断方法 设直线l :Ax +By +C =0(A 2 +B 2 ≠0), 圆:(x -a )2 +(y -b )2 =r 2(r >0), d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的 判别式为Δ.

相离 d >r Δ<0 2.代数法:根据直线方程与圆的方程组成的方程组解的个数来判断. 3.直线系法:若直线恒过定点,可通过判断点与圆的位置关系来判断直线与圆的位置关系,但有一定的局限性,必须是过定点的直线系. (2)过一点的圆的切线方程的求法 1.当点在圆上时,圆心与该点的连线与切线垂直,从而求得切线的斜率,用直线的点斜式方程可求得圆的切线方程. 2.若点在圆外时,过这点的切线有两条,但在用设斜率来解题时可能求出的切线只有一条,这是因为有一条过这点的切线的斜率不存在. (3)求弦长常用的三种方法 1.利用圆的半径r ,圆心到直线的距离d ,弦长l 之间的关系r 2 =d 2 +? ?? ? ?l 22 解题. 2.利用交点坐标 若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间距离公式计算弦长. 3.利用弦长公式 设直线l :y =kx +b ,与圆的两交点(x 1,y 1),(x 2,y 2),将直线方程代入圆的方程,消元后利用根与系数的关系得弦长l = 1+k 2|x 1-x 2|= 1+k 2 [ x 1+x 2 2 -4x 1x 2]. 4. 圆与圆的位置关系 (1)圆与圆位置关系的判断方法 设圆O 1:(x -a 1)2 +(y -b 1)2 =r 2 1(r 1>0), 圆O 2:(x -a 2)2 +(y -b 2)2 =r 2 2(r 2>0). 方法位置关系 几何法:圆心距d 与r 1,r 2 的关系 代数法:两圆方程联立组成方 程组的解的情况

高三总复习直线与圆的方程知识点总结及典型例题.

直线与圆的方程 、直线的方程 已知 L 上两点 P 1( x 1,y 1) P 2( x 2,y 2 ) 当 x 1 = x 2 时, =900 , 不存在。当 0 时, =arctank , <0 时, = ②任何一个关于 x 、y 的二元一次方程都表示一条直线。 5、直线系:(1)共点直线系方程: p 0(x 0,y 0)为定值, k 为参数 y-y 0=k (x-x 0) 特别: y=kx+b ,表示过( 0、 b )的直线系(不含 y 轴) ( 2)平行直线系:① y=kx+b ,k 为定值, b 为参数。 ② AX+BY+ 入=0 表示与 Ax+By+C=0 平行的直线系 ③ BX-AY+ 入 =0 表示与 AX+BY+C 垂直的直线系 ( 3)过 L 1,L 2交点的直线系 A 1x+B 1y+C 1+入( A 2X+B 2Y+C 2)=0(不含 L2) 6、三点共线的判定:① AB BC AC ,②K AB =K BC , ③写出过其中两点的方程,再验证第三点在直线上。 、两直线的位置关系 k= y 2 y 1 x 2 x 1 20 2 已知 方程 说明 斜截式 K 、b Y=kx+b 不含 y 轴和行平 于 y 轴的直点斜式 P 1=(x 1,y 1) k y-y 1=k(x-x 1) 不含 y 轴和平 行 于 y 轴的直线 两点式 P 1(x 1,y 1) P 2(x 2,y 2) y y 1 x x 1 不含坐标辆和 平行于坐标轴 的直线 y 2 y 1 x 2 x 1 截距式 a 、b xy 1 ab 不含坐标轴、平 行于坐标轴和 过原点的直线 一般式 Ax+by+c=0 A 、 B 不同时为 0 3、截距(略)曲线过原点 横纵截距都为 0。 4、直线方程的几种形式 几种特殊位置的直 线 ①x 轴: y=0 ② y 轴: x=0 ③平行于 x 轴: y=b ④平行于 y 轴: x=a ⑤过原点: y=kx y 的二元一 次方程。 1、倾斜角: 0< < k 0 2 = 不存在 2 +arctank 2、斜

圆的方程测试题及答案

圆的方程专项测试题 一、选择题 1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( ) <a <7 <a <4 <a <3 <a <19 2.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) 个 个 个 个 3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2) C.(4,1) D.(2 +2,2-3) 4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A. 2 2 B .1 C.2 5.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B ) A .2 1± B .22± C .2221-或 D .2221或- 6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) B.4 2 2 7.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=2 9.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1 B.|a |< 5 1 C.|a |< 12 1 D.|a |< 13 1 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) =0,且A=C≠0 =1且D 2+E 2-4AF >0 =0且A=C≠0,D 2+E 2-4AF≥0 =0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.( 3 14 ,5) B.(5,1) C.(0,0) D.(5,-1) 12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) 5 1 <k <-1 5 1 <k <1

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

圆与方程单元测试题及答案

第四章单元测试题 (时间:120分钟总分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是( ) A.相离B.相交 C.外切D.内切 2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为( ) A.3x-y-5=0 B.3x+y-7=0 C.x+3y-5=0 D.x-3y+1=0 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为( ) A.1,-1 B.2,-2 C.1 D.-1 4.经过圆x2+y2=10上一点M(2,6)的切线方程是( ) A.x+6y-10=0 x-2y+10=0 C.x-6y+10=0 D.2x+6y-10=0 5.点M(3,-3,1)关于xOz平面的对称点是( ) A.(-3,3,-1) B.(-3,-3,-1) C.(3,-3,-1) D.(3,3,1) 6.若点A是点B(1,2,3)关于x轴对称的点,点C是点D(2,-2,5)关于y轴对称的点,则|AC|=( ) A.5 C.10 7.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为( ) 或- 3 和-2 8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是( ) A.4 B.3 C.2 D.1 9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是( ) A.2x-y=0 B.2x-y-2=0 C.x+2y-3=0 D.x-2y+3=0

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

高中数学--圆的方程知识点题型归纳

第一讲圆的方程 一、知识清单 (一)圆的定义及方程 1 (1)将圆的标准方程(x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为: (x+D 2) 2+(y+ E 2) 2= D2+E2-4F 4 ①当D2+E2-4F>0时,该方程表示以(-D 2,- E 2)为圆心, 1 2D 2+E2-4F为半径的圆; ②当D2+E2-4F=0时,方程只有实数解x=-D 2,y=- E 2,即只表示一个点(- D 2,- E 2);③当D 2+ E2-4F<0时,方程没有实数解,因而它不表示任何图形. 2、圆的一般方程的特征是:x2和y2项的系数都为1 ,没有xy 的二次项. 3、圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.(二)点与圆的位置关系 点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系: (1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2. (2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2. (3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2

高中数学必修二《直线与方程及圆与方程》测试题-及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( ) A .32- B .32 C .2 3 - D . 2 3 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A . 23 B .32 C .32- D . 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3 C 、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x 对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y+5=0 D 、3x-2y-5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ( ) A . 2 2 B .2 C .2 D .22 11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; 13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是 14、两平行直线0962043=-+=-+y x y x 与的距离是 。 15空间两点M1(-1,0,3),M2(0,4,-1)间的距离是 L 1 L 2 x o L 3

圆知识点总结及归纳

第一讲 圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2-r 2=0, 取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为: (x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心,1 2D 2+E 2-4F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2 ,- E 2 );③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. (二)点与圆的位置关系

(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.

(2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

直线与圆的方程测试题(含答案)

直线与圆的方程测试题 (本试卷满分150分,考试时间120分钟) 一、单项选择题(本大题共18小题,每小题4分,共72分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分. 1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( ) A.-9 B.-1 C.-9或-1 D. 12 2. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( ) A.5 B. -5 C. 1 D. -1 3. 直线的倾斜角是3 2π,则斜率是( ) A.3-3 B.3 3 C.3- D.3 4. 以下说法正确的是( ) A.任意一条直线都有倾斜角 B. 任意一条直线都有斜率 C.直线倾斜角的范围是(0,2 π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( ) A. 2x+y+2=0 B.2x-y-5=0 C. 2x+y+5=0 D. 2x+y-5=0 6. 过点(2,0)且与y 轴平行的直线方程是( ) A.x=0 B.y=0 C.x=2 D.y=2 7. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( ) A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=0 8. “B ≠0”是方程“Ax+By+C=0表示直线”的( ) A.充分非必要条件 B.必要非充分条件 C.充分且必要条件 D.非充分非必要条件 9. 直线3x-y+2 1=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直 10.下列命题错误.. 的是( ) A. 斜率互为负倒数的两条直线一定互相垂直 B. 互相垂直的两条直线的斜率一定互为负倒数 C. 两条平行直线的倾斜角相等 D. 倾斜角相等的两条直线平行或重合 11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( ) A. 2x+y+2=0 B. 2x-y-2=0 C. 2x-y+2=0 D.2x+y-2=0 12. 直线ax+y-3=0与直线y=2 1x-1垂直,则a=( ) A.2 B.-2 C. 21 D. 2 1- 13. 直线x=2与直线x-y+2=0的夹角是( ) A.30° B. 45° C. 60° D. 90°

圆知识点总结及归纳

圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x -a )2+(y -b )2=r 2 展开并整理得x 2+y 2-2ax -2by +a 2+b 2- r 2=0,取D =-2a ,E =-2b ,F =a 2+b 2-r 2,得x 2+y 2+Dx +Ey +F =0. (2)将圆的一般方程x 2+y 2+Dx +Ey +F =0通过配方后得到的方程为: (x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2+E 2-4F >0 时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的 圆; ②当 D 2+ E 2-4 F =0 时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2 ,- E 2 );③当D 2+E 2-4F <0时,方程没有实数解,因而它不表示任何图形.

2、圆的一般方程的特征是:x2和y2项的系数都为1 ,没有xy 的二次项. 3、圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了. (三)直线与圆的位置关系 方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4切 5含 (五)圆的参数方程

(六)温馨提示 1、方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是: (1)B =0; (2)A =C ≠0; (3)D 2+E 2-4AF >0. 2、求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上. (3)两圆切或外切时,切点与两圆圆心三点共线. 3、中点坐标公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x = 122x x + ,y =12 2 y y + . 考点一:有关圆的标准方程的求法 ()()()2 2 20x a y b m m +++=≠的圆心是 ,半径是 . 【例2】 点(1,1)在圆(x -a )2+(y +a )2=4,则实数a 的取值围是( ) A .(-1,1) B .(0,1)

相关文档
相关文档 最新文档