文档库 最新最全的文档下载
当前位置:文档库 › YASARA分子动力学教程

YASARA分子动力学教程

YASARA分子动力学教程
YASARA分子动力学教程

YASARA混合体系的分子动力学模拟教程

By 临江仙YASARA是一款结合同源模建、分子对接以及分子动力学的综合性分子模拟软件。其功能强大毋庸置疑,具备了View、Model、Dynamics、Structure、NMR Module五个基本模块和一个扩展模块(YASARA/WHAT IF Twinset)。毫不逊色同类软件的可视化界面,同样快捷的计算速度,高轨迹重现性等优点,赢得了我们的青睐。闲暇之际,据笔者近日学习所得,总结出来与大家分享。本次教程以氯仿-水体系为例,所需模块为View、Dynamics和Structure,为大家展示YASARA中本人对于MD模拟的总结,如有不当之处,欢迎指出。

1 预处理

File>Load or Load recent>PDBfile

Edit>clean>All

注:clean>all其目的是为MD进行一系列的准备工作,包括加氢、优化、修正;个别酶的HIS等残基的质子化效果有些不甚理想,应注意观察并修改。

2 MD前期工作

2.1 cell的设置

Simulation>warning is error

Simulation>Define simulation cell, 10A around all atoms

注:若想进行其它定义亦可,如X、Y、Z的设定。

2.2 周期性边界条件和力场选择

Simulation>Cell boundaries>Periodic

Simulation>Force field>Amber03(为例), OK, and if a force field is above, also set its default parameters(建议使用默认参数)

2.2 Cell中和与pKa的预测

Options>cell neutralization and pKa prediction

注:体系中和加满水进行,pH值设为7,massfraction则为0。Wait …

结束后,在HUD中右击water>Delete删除水。

2.3 建立混合溶剂体系

Simulation> Fill cell with water;预先添加水,氯仿-水添加可不分先后;本次教程氯仿-水体积比为100:1,即添加水密度为0.01g/ml。

在HUD中,右击water>Remove>from soup,暂时删除水,并非delete。

File>Load PBDFile,导入氯仿PDB文件

Simulation> Fill cell with Copies of an object,并选择CHCl3,OK;density=1.48x0.99=1.4652.

Edit>Add>to soup>Object, 选择water,and OK。

至此,混合溶剂已添加完成。

2.4 限制蛋白并EM

在HUD中右击蛋白,FIX

Options>Choose experiment>EM, and wait…

HUD中右击蛋白,Free。

File>Save as>YourStructure_solvent.sce`,一定要注意格式准确性xx_solvent.pdb.

3 一键MD

最后的,也是最为关键的一步,一键MD;Options>set target> YourStr_solvent.sce, Options>play macro

注:use your modified ‘md_run’ macro instead, which will automatically load the YourStructure_solvent.sce scene file.

西安未央湖畔

2014-01-03凌晨

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

反应动力学基础第二章复习.

第二章 反应动力学基础 一、化学反应速率的定义 1、均相反应 单位时间内单位体积反应物系中某一组分的反应量。 恒容反应: 连续流动过程: 2、多相反应 单位时间内单位相界面积或单位固体质量反应物系中某一组分的反应量。 二、反应速率方程 1、速率方程(动力学方程):在溶剂及催化剂和压力一定的情况下,定量描述反应速率和温度及浓度的关系。即: 2、反应速率方程的形式主要有两类:双曲函数型和幂级数型。 3、反应级数: ) ,(T f r c =

速率方程中各浓度项上方的指数分别代表反应对组分的反应级数,而这些指数的代数和称为总反应级数。反应级数仅表示反应速率对各组分浓度的敏感程度,不能独立地预示反应速率的大小。 4、反应速率常数: 方程中的k称为速率常数或比反应速率,在数值上等于是各组分浓度为1时的反应速度。它和除反应组分浓度以外的其它因素有关,如温度、压力、催化剂、溶剂等。当催化剂、溶剂等因素固定时,k就仅为反应温度的函数,并遵循阿累尼乌斯 Arrhenius方程: 可分别用分压、浓度和摩尔分率来表示反应物的组成,则相应的反应速率常数分别用k p,k c ,k y来表示;相互之间的关系为: 5、化学平衡常数与反应速率常数之间的关系 三、温度对反应速率的影响 1、不可逆反应 由阿累尼乌斯方程,温度升高,反应速率也升高(例外的极少),而且为非线性关系,即温度稍有变化,反应速率将剧烈改

变。也就是说,反应温度是影响化学反应速率的一个最敏感因素。 2、可逆反应 (1)可逆吸热反应 反应速率将总是随反应温度的升高而增加 (2)可逆放热反应 反应速率在低温时将随反应温度的升高而增加,到达某一极大值后,温度再继续升高,反应速率反而下降。再升高温度,则可能到达平衡点,总反应速率为零。 最优温度与平衡温度关系: 四、复合反应 1、反应组分的转化速率和生成速率 我们把单位之间内单位体积反应混合物中某组分i的反应量叫做该组分的转化速率或生成速率。 2、复合反应包括并列反应、平行反应、连串反应三种基本类型。 3、瞬时选择性 生成目的产物消耗关键组分的速率与关键组分转化速率之比,瞬时选择性将随反应进行而改变。

第六章分子动力学方法

第六章 分子动力学方法 6.1引言 对于一个多粒子体系的实验观测物理量的数值可以由总的平均得到。但是由于实验体系又非常大,我们不可能计算求得所有涉及到的态的物理量数值的总平均。按照产生位形变化的方法,我们有两类方法对有限的一系列态的物理量做统计平均: 第一类是随机模拟方法。它是实现Gibbs的统计力学途径。在此方法中,体系位形的转变是通过马尔科夫(Markov)过程,由随机性的演化引起的。这里的马尔科夫过程相当于是内禀动力学在概率方面的对应物。该方法可以被用到没有任何内禀动力学模型体系的模拟上。随机模拟方法计算的程序简单,占内存少,但是该方法难于处理非平衡态的问题。

另一类为确定性模拟方法,即统计物理中的所谓分子动力学方法(Molecular Dynamics Method)。这种方法广泛地用于研究经典的多粒子体系的研究中。该方法是按该体系内部的内禀动力学规律来计算并确定位形的转变。它首先需要建立一组分子的运动方程,并通过直接对系统中的一个个分子运动方程进行数值求解,得到每个时刻各个分子的坐标与动量,即在相空间的运动轨迹,再利用统计计算方法得到多体系统的静态和动态特性, 从而得到系统的宏观性质。因此,分子动力学模拟方法可以看作是体系在一段时间内的发展过程的模拟。在这样的处理过程中我们可以看出:分子动力学方法中不存在任何随机因素。 系统的动力学机制决定运动方程的形式: 在分子动力学方法处理过程中,方程组的建立是通过对物理体系的微观数学描述给出的。在这个微观的物理体系中,每个分子都各自服从经典的牛顿力学。每个分子运动的内禀动力学是用理论力学上的哈密顿量或者拉格朗日量来描述,也可以直接用牛顿运动方程来描述。这种方法可以处理与时间有关的过程,因而可以处理非平衡态问题。但是使用该方法的程序较复杂,计算量大,占内存也多。

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

第二章反应动力学基础.

2 反应动力学基础 2.1在一体积为4L 的恒容反应器中进行A 的水解反应,反应前 A 的含量为12.23%(重量),混合物的密度为1g/mL ,反应物A 的分子量为88。在等温常压 解:利用反应时间与组分A 的浓度变化数据,作出C A ~t 的关系曲线,用镜面法求得t=3.5h 时该点的切线,即为水解速率。 切线的斜率为 0.760.125/.6.1 α-==-mol l h 由(2.6)式可知反应物的水解速率为 0.125/.-==dC A r mol l h A dt 2.2在一管式反应器中常压300℃等温下进行甲烷化反应: 2423+→+CO H CH H O 催化剂体积为10ml ,原料气中CO 的含量为3%,其余为N 2,H 2气体,改变进口原料气流量Q 0解:是一个流动反应器,其反应速率式可用(2.7)式来表示 00000(1)(1)-= =-=-=-A A R A A A A A A A A dF r dV F F X Q C X dF Q C dX 故反应速率可表示为: 000 0(/)==A A A A A R R dX dX r Q C C dV d V Q 用X A ~V R /Q 0作图,过V R /Q 0=0.20min 的点作切线,即得该条件下的dX A /d(V R /Q 0)值α。 0.650.04 1.79 0.34 α-== 故CO 的转化速率为 40030.10130.03 6.3810/8.31410573--? ===???A A P C mol l RT

430 0 6.3810 1.79 1.1410/.min (/)--==??=?A A A R dX r C mol l d V Q 2.3已知在Fe-Mg 催化剂上水煤气变换反应的正反应动力学方程为: 20.850.4 /-=?w CO CO r k y y kmol kg h 式中y CO 和y CO2为一氧化碳及二氧化碳的瞬间摩尔分率,0.1MPa 压力及700K 时反应速率常数k W 等于0.0535kmol/kg.h 。如催化剂的比表面积为30m 2/g ,堆密度为1.13g/cm 3,试计算: (1) 以反应体积为基准的速率常数k V 。 (2) 以反应相界面积为基准的速率常数k g 。 (3) 以分压表示反应物系组成时的速率常数k g 。 (4) 以摩尔浓度表示反应物系组成时的速率常数k C 。 解:利用(2.10)式及(2.28)式可求得问题的解。注意题中所给比表面的单位换算成m 2/m 3。 33230.450.45 33 0.45(1) 1.13100.053560.46/.6(2) 1.7810/.3010 11(3)()()0.05350.15080.1013..()8.3110700(4)()(0.05350.333(0.1)ρρρρ-==??=-= = =???==?=??==?=v b w b b g w w v b n p w n c w k k kmol m h k k k kmol m h a kmol k k P kg h MPa m RT k k P km 0.45)().kmol ol kg h 2.4在等温下进行液相反应A+B →C+D ,在该条件下的反应速率方程为: 1.50.5 0.8/min =?A A B r C C mol l 若将A 和B 的初始浓度均为3mol/l 的原料混合进行反应,求反应4min 时A 的 转化率。 解:由题中条件知是个等容反应过程,且A 和B 的初始浓度均相等,即为1.5mol/l ,故可把反应速率式简化,得 1.50.5222 00.80.80.8(1)===-A A B A A A r C C C C X 由(2.6)式可知 00 (1)?? ???? --==-=A A A A A A d C X dC dX r C dt dt dt 代入速率方程式 22 00.8(1)=-A A A A dX C C X dt 化简整理得 00.8(1)=-A A A dX C dt X 积分得 00.81= -A A A X C t X 解得X A =82.76%。

2021学年新教材高中生物第三章遗传的分子基础第五节生物体存在表观遗传现象练习2含解析浙科版必修2

第5节生物体存在表观遗传现象 1.可遗传变异是生物的遗传物质发生改变而导致的变异,但是科学家却发现一些特别的变异:虽然DNA的序列没有改变,但是变异却可以遗传给后代,把这种现象称为表观遗传。下列关于基因和性状的关系说法错误的是() A.基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状 B.基因与基因,基因与基因产物,基因和环境之间相互作用,共同调控生物的性状 C.表观遗传中,核内遗传物质在亲子代之间传递不再遵循孟德尔遗传规律 D.表观遗传的一种解释:基因在转录和翻译过程中发生了一些稳定性的改变 【答案】C 【解析】 A、基因可以通过控制蛋白质的结构直接控制生物体的性状,也可以通过控制酶的合成来控制代谢过程进而控制生物体的性状,A正确; B、基因与基因,基因与基因产物,基因和环境之间相互作用共同调控生物的性状,B正确; C、表观遗传中,核内遗传物质在亲子代之间传递仍然遵循孟德尔遗传规律,C错误; D、生物体基因的碱基序列保持不变,但基因表达(转录和翻译)过程中发生变化导致表型发生可遗传变化的现象,叫作表观遗传,D正确。 故选C。 2.下列关于表观遗传的说法不正确的是() A.表观遗传的分子生物学基础是DNA的甲基化等 B.表观遗传现象中,生物表型发生变化是由于基因的碱基序列改变 C.表观遗传现象与外界环境关系密切 D.DNA甲基化的修饰可以遗传给后代,使后代出现同样的表型 【答案】B 【解析】 AB、表观遗传是指生物体基因的碱基序列保持不变,但基因表达和表型发生可遗传变化的现象。这一现象出现的原因是DNA的甲基化、染色体上的组蛋白发生甲基化等,A正确,B错误; C、外界环境会引起细胞中DNA甲基化水平变化,从而引起表观遗传现象的出现,C 正确;

【考试突击】武汉理工大学材料工程基础第三章传热学例题

1.用热电偶测量管道内的空气温度。如果管道内空气温度与管道壁的温度不同,则由于热电偶与管道壁之间的辐射换热会产生测温误差,试计算当管道壁温度t 2=100℃,热电偶读数温度t 1=200℃时的测温误差。假定热电偶接点处的对流换热系数h=46.52W/m 2℃,其发射率ε1=0.9。 解: 热电偶接点与管道壁面相比是很小的, 因此,它们之间的辐射换热可以按下式计算:)(4241112,T T q net -=σε 管道内热空气通过对流换热传递给热电偶接点的热量:)(11,t t h q g c g net -= t g 为空气的真实温度。 热电偶接点达到稳定状态时的热平衡式:1,12,g net net q q = 既是,)()(4 24 111T T t t h g c -=-σε 热电偶的读数误差应为: [] C T T h t t c g t ?=+-+??= -= -=-6.33)100273()200273(1067.552 .469 .0) (44842411 1σεδ 即,管道内空气的真实温度t g =233.6℃。 上例说明,热电偶在管道中测量透热气体温度时,其测温误差较大。 从计算过程中可看出测温误差与下列因素有关: (1) 测温误差与热电偶外套管材料的发射率成正比,因此,宜采用表面比较光滑、发 射率比较小的热电偶外套。 (2) 测温误差与对流换热系数成反比,这说明管道内气流速度愈快,测温误差愈小。 测温时热电偶必须装置在气流速度较快处,在热电偶安装处可造成人为的缩颈,或采用抽气式热电偶。 (3) 测温误差随着差值的减小而减小。为了提高t2温度,可以在管道上装置热电偶的 部分包上绝热层,或在热电偶外加上遮热罩。加上遮热罩后,辐射换热在热电偶与遮热罩之间进行,而遮热罩的温度比管道壁高,因此,加上遮热罩后热电偶的辐射换热损失将减小,测温误差也会减小。 2.为了减少上题中由于辐射换热引起的热电偶读数误差,在热电偶接点周围包上遮热罩。如果空气温度为233.6℃,其它各数据不变化。由遮热罩表面到气流的对流换热系数hc=11.63W/m 2℃,遮热罩发射率ε3=0.8。试求此时热电偶的读数应为多少? 解:(1)设遮热罩温度为t 3,表面积为F 3 , 管道内热空气以对流方式传递给热接点的热量为:)(11t t F h g c -, 管道内热空气以对流方式传递给遮热罩两表面的热量为:)(233t t F h g c -'

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

工程材料第三章知识点

工程材料 第三章金属材料 一、名词解释。 合金钢为了提高钢的性能,在铁碳合金中特意加入合金元素所获得的钢。 回火稳定性淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。 二次硬化某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。这种硬化现象,称为二次硬化,它是由于特殊碳化物析出和(或)由于与奥氏体转变为马氏体或贝氏体所致。 回火脆性250-400和450-650两个温度区间回火后,钢的冲击韧性明显下降。 铸铁碳的质量分数在2.11%以上的铁碳合金 青铜含铝,硅,铅,鈹,锰等的铜基合金 黄铜以锌为主要合金元素的铜合金。 二、填空题。 1、一些含有合金元素Ni 、Cr 和Mn 的钢容易产生第二类回火脆性,为了消除第二类回火脆性,可采用同时含有合金元素Mo和W的钢。 2、合金元素中,碳化物形成元素有Fe 、Mn、Cr 、Mo等。 3、除Co、Al外,几乎所有的合金元素都使Ms、Mf点下降,因此淬火后相同碳质量分数的合金钢比碳钢残余奥氏体少,使钢的硬度变大。 4、促进晶粒长大的元素有Mn、P 等。 5、按钢中合金元素含量,可将合金钢分为低合金钢、中合金钢和高合 金钢三类。 6、合金钢中常用来提高淬透性的合金元素有Cr 、Mn 、Ni 、Si和 B五种,其中作用最大的是Cr 。 7、20钢是优质碳素结构钢,可以制造冲压件及焊接件。 8、20CrMnTi钢是中淬透性合金渗透钢,可以制造汽车、拖拉机上的重要零件。

9、9SiCr是冷作模具钢,可以制造冷作模具。 10、CrWMn是冷作模具钢,可以制造冷作模具。 11、5CrMnMo是热作模具钢,可以制造热锻模钢。 12、Cr12MoV是冷作模具钢,可以制造冷作模具。 13、T12是碳素工具钢,可以制造锉刀、挂刀等刃具。 14、16Mn是低合金高强度结构钢,可以制造桥梁、船舶、车辆等结构钢。 15、40Cr是低淬透性合金调质钢,可以制造一般尺寸的重要零件。 16、60Si2Mn是合金弹簧钢,可以制造汽车、拖拉机上的板簧和螺旋弹簧。 17、GCr15钢铬弹簧钢,可以制造冷冲模、量具、丝锥等。 18、1Cr13是马氏体不锈钢,可以制造韧性要求较高的紧固件、叶片等。 19、1Cr18Ni9Ti是奥氏体不锈钢,可以制造耐酸容器、抗磁仪表、医疗器械。 20、ZGMn13是高锰钢,可以制造车履带、铁轨分道叉。 21、20CrMnTi是中淬透性合金渗透钢,Cr、Mn的主要作用是提高淬透性,Ti 的主要作用是阻碍渗碳时奥氏体晶粒长大;增加渗碳层,提高研磨性,热处理的工艺是渗碳后直接淬火,再低温回火。 22、W18Cr4V是高速钢,碳质量分数是0.73%~0.83%,W的主要作用是提高热硬性,Cr的主要作用是提高淬透性,V的主要作用是形成VC,阻止奥氏体晶粒长大。热处理工艺是球化退火→淬火→回火。最后组织是回火马氏体+碳化物+少量残余奥氏体。 23、0Cr18Ni9Ti是奥氏体钢,Cr、Ni和Ti的作用分别是提高钢的耐蚀性、形成稳定碳化物和防止晶间腐蚀。 24、灰口铸铁中碳主要以石墨的形式存在,可用来制造机床床身、柴油机汽缸。 25、可锻铸铁中石墨的形态为团絮状,可用来制造制造形状复杂、承受冲击和振动载荷的零件,如汽车拖拉机的后桥外壳、管接头、低压阀门等。

2018年高中生物第三章遗传的分子基础第二节DNA的分子结构和特点学案浙科版必修2

第二节DNA 的分子结构和特点 1.DNA 是由四种不同的(A 、G 、C 、T)脱氧核苷酸聚合而成 的高分子化合物。 2.DNA 分子的双螺旋结构:①脱氧核糖与磷酸相间排列在外侧, 形成两条脱氧核苷酸链(反向平行),构成DNA 的基本骨架;② 两条脱氧核苷酸链之间是碱基对,排列在内侧。 3.DNA 分子中碱基之间一一对应,遵循卡伽夫法则 (碱基互补配 对):A 一定与T 配对,A 和T 的分子数相等;G 一定与C 配对, G 和C 的分子数相等;但A +T 的量不一定等于G +C 的量。依 据卡伽夫法则可以确定是双链DNA 还是单链DNA 。 4.不同生物的DNA 碱基对的数目可能相同,但碱基对的排列顺序 肯定不同。 5.基因是有遗传效应的DNA 片段,基因中脱氧核苷酸的排列顺序 代表了遗传信息。 错误! 1.DNA 的化学组成 (1)基本组成元素:C 、H 、O 、N 、P 五种元素。 (2)基本单元:脱氧核苷酸。 (3)脱氧核苷酸分子组成: 脱氧核苷酸 ??? 脱氧核苷????? 脱氧核糖碱基、T 、G 、磷酸 (4)脱氧核苷酸的种类: ①碱基组成:腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)。 ②种类:腺嘌呤脱氧核苷酸;鸟嘌呤脱氧核苷酸;胞嘧啶脱氧核苷酸;胸腺嘧啶脱氧核苷酸。 2.DNA 分子的结构特点

[巧学妙记 ] DNA 结构的“五、四、三、二、一” 五种元素:C 、H 、O 、N 、P ; 四种碱基:A 、G 、C 、T ,相应的有四种脱氧核苷酸; 三种物质:磷酸、脱氧核糖、含氮碱基; 两条长链:两条反向平行的脱氧核苷酸链; 一种螺旋:规则的双螺旋结构。 1.DNA 分子主要存在于细胞的什么部位? 提示:DNA 分子主要存在于细胞核中的染色体上,在线粒体和叶绿体中有少量分布。 2.双链DNA 分子中,嘌呤碱基数与嘧啶碱基数有什么关系? 提示:嘌呤碱基数=嘧啶碱基数。 3.每个DNA 片段中,游离的磷酸基团数是多少?磷酸数∶脱氧核糖数∶含氮碱基数的比例是多少? 提示:(1)2个;(2)1∶1∶1。 4.两个长度相同的双链DNA 分子,其结构差异主要体现在哪里? 提示:主要体现在碱基对的排列顺序不同。 1.DNA 分子的结构 (1)基本单位——脱氧核苷酸,如图所示: 其中,○表示磷酸基团; 表示脱氧核糖(O 表示氧原子,数字表示碳原子编 号);□表示含氮碱基,构成DNA 分子的含氮碱基共有4种,即A(腺嘌呤)、T(胸 腺嘧啶)、G(鸟嘌呤)、C(胞嘧啶)。 (2)一条脱氧核苷酸单链中,相邻脱氧核苷酸之间的连接如图所示:

材料工程基础复习思考题

《材料工程基础》复习思考题 第一章绪论 1、材料科学与材料工程研究的对象有何异同? 2、为什么材料是人类赖以生存和发展的物质基础? 3、为什么材料是科学技术进步的先导? 4、材料的制备技术或方法主要有哪些? 5、材料的加工技术主要包括哪些内容? 6、进行材料设计时应考虑哪些因素? 7、在材料选择和应用时,应考虑哪些因素? 8、简述金属、陶瓷和高分子材料的主要加工方法。 9、材料设计包括哪几个层次?进行材料设计时应遵循哪些原则? 10、如何区分传统材料与先进材料? 11、工业1.0、2.0、3.0和4.0分别以什么为特征? 12、钢铁材料是如何分类的?其主要发展趋势? 13、有色金属材料分为哪些类别?各有何特点? 14、化工材料主要有哪些? 15、建筑材料有何特点? 16、电子信息材料主要有哪些?其发展特点? 17、航空航天材料的性能特点如何? 18、先进陶瓷材料如何分类?各有何特点? 19、什么是复合材料?如何设计和制备复合材料?

20、新能源材料有哪些?各有何特点? 21、超导材料的三个临界参数是什么?如何区分低温超导与高温超导? 22、纳米材料与纳米技术的异同?它们对科技发展的作用? 22、生物医用材料有哪些?应具备什么特性? 23、什么是生态环境材料?如何对其生命周期进行评价?

1、铸造具有哪些优缺点?适用范围如何?发展方向? 2、金属的铸造性能主要包括哪些? 3、影响液态金属充型能力的因素有哪些?如何提高充型能力? 4、铸件的凝固方式有哪些?其主要的影响因素? 5、什么金属倾向于逐层凝固?如何改变铸件的凝固形式? 6、什么是缩松和缩孔?其形成的基本条件和原因是什么? 7、试分析铸造合金的收缩特性对铸件质量影响的基本规律。 8、铸造应力是怎么产生的?对铸件质量有何影响? 9、试述铸件产生变形和开裂的原因及其防止措施。 10、铸件中的气体和非金属夹杂物对铸件质量有何影响?如何消除? 11、常用的造型材料有哪些?对其性能有何要求? 12、什么是冒口?其作用和设计原则? 13、常见的特种铸造方法有哪些?各有何特点? 14、陶瓷的液态成形方法有哪些?各有何特点? 15、聚合物的液态成形方法有哪些?各有何特点?

材料工程基础习题

上篇 第一章金属结构 1、试画出纯铁的冷却曲线,分析曲线中出现“平台”的原因。 2、室温和1100°C时的纯铁晶格有什么不同?高温(1000°C)的铁丝进行缓慢冷却时,为什么会发生伸长的现 象? 3、为什么单晶体有各向异性,而实际的金属(未经过塑性变形的)通常是各向同性? 4、指出铁素体、奥氏体、渗碳体在晶体结构、含碳量和性能上有何不同。 5、根据铁碳合金状态图,说明产生下列现象的原因: (1)含碳量为1.0%的钢比含碳量为0.5%的钢的硬度高。 (2)在1100°C,含碳量为0.4%的钢能进行锻造,含碳量为4.0%的白口铁不能锻造。 (3)钢适宜通过压力加工成形,而铸铁适宜通过铸造成形。 6、分析在缓慢冷却条件下,45钢和T10钢的结晶过程和室温组织。 第二章金属的工艺性能 1、什么是结晶过冷度?它对金属的结晶过程、铸件的晶粒大小及铸件的机械性能有何影响? 2、如果其它条件相同,试比较在下列条件下铸件晶粒的大小,并解释原因。 (1)金属型浇注与砂型浇注; (2)铸成薄件与铸成厚件; (3)浇注时采用震动与不采用震动。 3、铅在20°C、钨在1100°C时变形,各属于哪种变形?为什么?(铅的熔点为327°C,钨的熔点为3380°C)10、有四个材料、外形完全一样的齿轮,但制作方法不同,试比较它们中哪种使用效果最好?哪种最差?为什么? (1)铸出毛坯,然后切削加工成形; (2)从热轧厚钢板上取料,然后切削加工成形; (3)从热轧圆钢上取料,然后切削加工成形; (4)从热轧圆钢上取料后锻造成毛坯,然后切削加工成形。 11、金属经冷变形后,组织和性能发生了哪些变化?分析加工硬化存在的利与弊。有何办法来消除加工硬化? 12、提高浇注温度可以提高液态合金的充型能力,但实际中为什么又要防止浇注温度过高? 13、试用图中轨道铸件分析热应力的形成原因,并用虚线表示出铸件的变形方向。 14、“趁热打铁”的含义何在?碳钢的始锻温度和终锻温度是如何确定的? 15、某种钢材的主要化学成分为C=0.12%,Mn=1.5%,V=0.15%,Mo=0.5%,试分析其焊接性及焊接时应采取的工 艺措施。 16、碳钢在锻造温度围变形时,是否会有加工硬化现象?为什么?

2020学年高中生物 第三章 遗传的分子基础 第一节 核酸是遗传物质的证据学案 浙科版必修2

第一节核酸是遗传物质的证据 1.通过“活动:资料分析——噬菌体侵染细菌的实验”,概述噬菌体侵染细菌的过程,体会实验方法与技术的多样性。 2.概述肺炎双球菌的转化实验,感悟实验的严密性和逻辑的严谨性。 3.简述烟草花叶病毒的感染和重建实验,认同使用模型是进行科学研究的重要方法。 [学生用书P39] 一、染色体结构与功能 1.结构:由DNA、RNA和蛋白质组成,其中蛋白质又分为组蛋白和非组蛋白。 2.功能:是遗传物质的载体。 二、DNA是遗传物质的直接证据 1.噬菌体侵染细菌的实验 (1)实验过程(同位素标记法) 用放射性同位素35S标记了一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。然后,用两种被标记的T2噬菌体分别去侵染细菌。当T2噬菌体在细菌体内大量繁殖后,对标记物质进行检测。结果表明,大多数35S标记的噬菌体在感染细菌时,放射性蛋白质附着在宿主细胞的外面;32P标记的噬菌体感染细菌时,放射性同位素主要进入宿主细胞内,并且能在子代噬菌体中检测到32P。 (2)实验结论:DNA是噬菌体的遗传物质。 2.肺炎双球菌的转化实验 (1)活体细菌转化实验 ①过程及现象:把加热杀死的S型菌和活的无毒R型菌混合后一起注射到小鼠体内,发现很多小鼠患败血症致死。从患病致死的小鼠血液中分离出活的S型菌。无论是活的R型菌还是死的S型菌,分别注射到小鼠体内都不能使小鼠患败血症。由此可见,加热杀死的S 型菌中的“转化因子”进入R型菌体内,引起R型菌稳定的遗传变异。 ②结论:加热杀死的S型菌中含有转化因子,能将R型菌转化为活的S型菌。 (2)离体细菌转化实验 ①过程及现象:从活的S型菌中抽提DNA、蛋白质和荚膜物质,分别与活的R型菌混合培养。只有加入DNA时,R型菌才能转化为S型菌,若用DNA酶处理DNA样品,就不能使R 型菌发生转化,并且DNA纯度越高,转化效率就越高。 ②结论:DNA是遗传物质。

2019_2020学年高中生物第三章遗传的分子基础章末过关检测(三)浙科版必修2

章末过关检测(三) [学生用书P119(单独成册)] (时间:45分钟,满分:100分) 一、选择题(本题包括10小题,每小题6分,共60分) 1.根据碱基互补配对原则,以下碱基间不能配对的是( ) A.A与T B.A与U C.G与C D.G与T 解析:选D。根据碱基互补配对原则,DNA分子中A与T配对、G与C配对,RNA分子中A与U配对、G与C配对。 2.下列关于核酸的叙述中,正确的是( ) A.DNA和RNA中的五碳糖相同 B.组成DNA和ATP的元素种类不同 C.T2噬菌体的遗传信息贮存在RNA中 D.双链DNA分子中嘌呤数等于嘧啶数 解析:选D。DNA含的五碳糖是脱氧核糖,RNA含的五碳糖是核糖,A错误;组成DNA 和ATP的元素种类都是C、H、O、N、P,B错误;T2噬菌体的遗传信息贮存在DNA中,C错误;DNA中A与T配对、G与C配对,故双链DNA分子中嘌呤数等于嘧啶数,D正确。 3.下面是4位同学拼制的DNA分子部分平面结构模型,正确的是( ) 解析:选C。根据DNA分子的结构特点可知,每条链都是由脱氧核糖和磷酸基团结合形成基本骨架,碱基位于主链内侧,所以A、B两项错误。由DNA结构可知,两个磷酸应结合在五碳糖的不同部位,所以D错误,选项C正确。 4.科学家们通过实验研究控制生物遗传的物质基础。下面有关分析正确的是( ) A.R型活菌注射到小鼠体内,小鼠正常;将S型活菌注射到小鼠体内,小鼠死亡。实验结论:S型细菌的荚膜有毒 B.将杀死后的S型菌与活的R型菌混合后,注射到小鼠体内,小鼠死亡。实验结论:R 型细菌有毒 C.从S型细菌中提取蛋白质、多糖和DNA,分别与R型活菌混合培养。从实验结果可以得出:DNA是遗传物质 D.用15N和32P这两种同位素标记烟草花叶病毒,然后侵染烟草叶片。通过示踪观察可以得出:RNA是烟草花叶病毒的遗传物质,而蛋白质不是 解析:选C。A项中只能说明S型细菌体内存在有毒的物质;B项杀死的S型菌其DNA

高二生物遗传的分子基础单元练习题及答案

第三章遗传的分子基础单元练习 一、选择题 1、如果用32P和35S分别标记噬菌体的DNA和蛋白质外壳,当它侵染到细菌体内后,经多次复制,所释放出来的子代噬菌体() A.不含32P B.含少量32P C.含大量32P D.含少量35S 2、噬菌体侵染大肠杆菌实验不能说明的是() A.DNA能主要的遗传物质B.DNA能自我复制 C.DNA是遗传物质D.DNA能控制蛋白质合成 3、肺炎双球菌最初的转化实验结果说明() A.加热杀死的S型细菌中的转化因子是DNA B.加热杀死的S型细菌中必然含有某种促进转化的转化因子 C.加热杀死的S型细菌中的转化因子是蛋白质 D.DNA是遗传物质,蛋白质不是遗传物质 4、肺炎双球菌中的S型具有多糖类荚膜,R型则不具有。下列叙述错误的是() A.培养R型活细菌时加S型细菌的DNA,能产生具有荚膜的细菌 B.培养R型活细菌时加S型细菌的蛋白质,不能产生具有荚膜的细菌 C.培养R型活细菌时加S型细菌的多糖类物质,能产生一些具有荚膜的细菌 D.培养R型活细菌时加S型细菌DNA的完全水解产物,不能产生具有荚膜的细菌 5、下列有关DNA是双螺旋结构主链特征的表述中,哪一项是错误的() A.两条主链方向相同且保持平行B.由脱氧核糖与磷酸交互排列而成 C.两条主链排在外侧且极为稳定D.两条主链按一定的规则盘绕成双螺旋 6、双链DNA分子的一个片段中,含有腺嘌呤520个,占碱基总数20%,则这个片段中含胞嘧啶() A.350个B.420个C.520个D.780个 7、在一个DNA分子中,腺嘌呤和胸腺嘧啶之和占全部碱基数的42%,若其中一条链中的胞嘧啶占该链碱基总数的24%,胸腺嘧啶占30%,则在其互补链上,胞嘧啶和胸腺嘧啶分别占() A.12%和34% B.21%和24% C.34%和12% D.58%和30% 8、在下列四种化合物的化学组成中,“○”中所对应的含义最接近的是() A.①和②B.②和③C.③和④D.①和④ 9、骨骼肌细胞中合成mRNA及多肽链的场所分别是() A.细胞质和细胞核B.细胞核和线粒体 C.内质网与核糖体D.细胞核与核糖体 10、在胰蛋白质酶的合成过程中,决定它性质的根本因素是() A.mRNA B.tRNA C.DNA D.核糖体 11、一段信使RNA上有30个碱基,其中A和G有12个,转录出该信使RNA的一段DNA中的C和T的个数以及翻译合成多肽时脱去的水分子数分别是()A.30、10 B.30、9 C.18、9 D.12、10

工程材料第三章答案

工程材料习题与辅导(第四版)朱张校姚可夫 3.2 习题参考答案 1. 解释名词热硬性、石墨化、孕育(变质)处理、球化处理、石墨化退火、固溶处理、时效 答: 热硬性: 热硬性是指钢在高温下保持高硬度的能力(亦称红硬性)。热硬性与钢的回火稳定性和特殊碳化物的弥散析出有关。 石墨化: 铸铁中碳原子析出并形成石墨的过程称为石墨化。 孕育(变质)处理: 在液体金属中加入孕育剂或变质剂,以细化晶粒和改善组织的处理工艺。 球化处理: 在铁水中加入球化剂,以获得球状石墨的处理工艺称为球化处理。 石墨化退火: 使白口铸铁中的渗碳体分解成为团絮状石墨的退火过程。 固溶处理: 把合金加热到单相固溶体区,进行保温使第二相充分溶解,然后快冷(通常用水冷却),得到单一的过饱和固溶体组织的热处理工艺。固溶处理可以使奥氏体不锈钢获得单相奥氏体组织,提高奥氏体不锈钢的耐蚀性。固溶处理也在有色金属合金中得到应用。有色金属合金(如铝合金)先进行固溶处理获得过饱和固溶体,然后再进行时效处理,析出细小、均匀、弥散分布的第二相,提高合金的强度和硬度。 时效: 固溶处理后得到的过饱和固溶体在室温下或低温加热时析出细小、均匀、弥散分布的第二相,合金硬度和强度明显升高的现象称为时效或时效硬化。 2. 填空题 (1) 20是(优质碳素结构)钢,可制造(冲压件、焊接件、渗碳零件,如齿轮、销) . (2) T12是(优质碳素工具)钢,可制造(锉刀、刮刀等刃具及量规、样套等量具) . (3) 按钢中合金元素含量,可将合金钢分为(低合金钢) 、(中合金钢)和(高合金钢)几类。 (4) Q345(16Mn)是(低合金结构)钢,可制造(桥梁、船舶、车辆、锅炉等工程结构) . (5) 20CrMnTi是(合金渗碳)钢,Cr、Mn的主要作用是(提高淬透性、提高经热处理后心部的强度和韧性) , Ti的主要作用是(阻止渗碳时奥氏体晶粒长大、增加渗碳层硬度、提高耐磨性) ,热处理工艺是(渗碳后直接淬火、再低温回火) . (6) 40Cr是(合金调质)钢,可制造(重要调质件如轴类件、连杆螺栓、进汽阀和重要齿轮等) . (7) 60Si2Mn是(合金弹簧)钢,可制造(汽车板簧) . (8) GCr15是(滚珠轴承)钢,1Cr17是(铁素体型不锈)钢,可制造(硝酸工厂设备以及食品工厂设备) . (9) 9SiCr是(低合金刃具)钢,可制造(板牙、丝锥、钻头、铰刀、齿轮铰刀、冷冲模、冷轧辊等) . (10) CrWMn是(冷作模具)钢,可制造(冷冲模、塑料模) . (11) Cr12MoV是(冷模具)钢,可制造(冷冲模、压印模、冷镦模等) . (12) 5CrMnMo是(热模具)钢,可制造(中型锻模) . (13) W18Cr4V是(高速)钢,碳质量分数是(0.70%以上) , W的主要作用是(保证高的热硬性) , Cr的主要作用是(提高淬透性) , V的主要作用是(形成颗粒细小、分布均匀的碳化物,提高钢的硬度和耐磨性,同时能阻止奥氏体晶粒长大,细化晶粒) 。热处理工艺是(1220~1280℃淬火+(550~570) ℃三次回火) ,最后组织是(回火马氏体、碳化物和少量残余奥氏体) . (14) 1Cr13是(马氏体型不锈)钢,可制造(抗弱腐蚀性介质、能承受冲击载荷的零件) . (15) 0Cr18Ni9Ti是(奥氏体型不锈)钢,Cr、Ni和Ti的作用分别是(提高钢基体的电极

分子动力学模拟

分子动力学模拟 The Standardization Office was revised on the afternoon of December 13, 2020

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法)1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。

相关文档
相关文档 最新文档