文档库 最新最全的文档下载
当前位置:文档库 › 大跨度弧形闸门静动力特性分析研究

大跨度弧形闸门静动力特性分析研究

大跨度弧形闸门静动力特性分析研究
大跨度弧形闸门静动力特性分析研究

弧形工作闸门安装方案(最终)

江西省浯溪口水利枢纽工程金属结构制作安装及安装工程 溢流表孔弧形闸门安装方案 批准: 审核: 编写: 湖南水木工程有限公司 2016年9月14日

目录 1、编制依据 0 2、施工概况 0 3、施工需要协调的事项 (1) 4 、吊装方案的选择与计算 (1) 4.1 吊装前的准备工作 (1) 4.2 施工机械的选用 (1) 4.3 索具、吊耳选择 (2) 5、吊装方案 (4) 5.1吊装示意图 (4) 5.2 吊装步骤 (10)

溢流表孔弧形工作闸门安装方案 1、编制依据 1.1 《设备起重吊装工程便携手册》何焯编 1.2 《实用起重工手册》陈兆铭编 1.3 《起重吊装常用数据手册》杨文渊编 1.4 《重型设备吊装工程施工工艺与计算》杨文柱编 1.5 80t汽车式起重机性能参数、单向门机性能参数 1.6 弧门各个部件的重量、吊装高度及其设计尺寸参数 1.7 施工图纸; 1.8 本项目制作安装工程引用下列标准及规程规范(但不限于) 《水利水电工程钢闸门制造、安装及验收规范》GB/T14173—2008 《水工金属结构防腐蚀规范》SL105—2007 《水工金属结构焊接技术条件》SL36-1992 2、施工概况 根据现场实际情况,弧形工作闸门采用“80t汽车吊+单向门机+专用卷扬机系统”的方案进行安装。 弧形工作闸门主要采用低合金Q345B钢材制作,为便于运输及安装,门叶分六节制作,最大尺寸为:2660mm×11940mm×2002mm,最大重约:17.942t。 弧形工作闸门的主要大件

3、施工需要协调的事项 弧门安装前需要协调解决以下问题: 1、从金结厂到坝顶的道路畅通,坝顶公路贯通,坝顶公路桥可承载弧门构件(构件最大重量按18t计算)通过; 2、坝顶单向门机轨道全线铺设完毕; 3、检修门孔口尺寸不出现负偏差,闸墩间距(尤其是检修门门槽与弧门侧轨之间)不出现负偏差; 4、支铰平台及爬梯需形成。 4 、安装方案的选择与计算 4.1 吊装前的准备工作 闸门和支臂吊装前,必须完成以下工作: 1、弧形工作闸门单件(6节门叶,上、下支臂)的拼装、焊接及防腐完毕并检验合格;各对接焊缝无损检测合格; 2、施工人员必须熟习施工图及技术要求,施工措施等。 3、项目部向施工人员进行技术交底,做到施工人员心中有数,保证施工质量。 4、制定安全措施,防止发生人身、设备事故。 5、确定关键高程、坐标控制点,保证安装高程点、位置的正确性。 6、埋件安装完毕,门槽内杂物清理干净; 7、施工电源、电焊机、卷扬机等布置到位; 8、需要协调的事项全部完成。 4.2 施工机械的选用

弧形闸门静动力特性分析研究

弧形闸门静动力特性分析研究 吴琦斌 摘要:建立了某水电站大型弧形闸门的有限元模型,分析和研究了在闭门挡水状态的闸门主要部件的应力状态和变形情况。并对闸门在考虑流固耦合和不考虑流固耦合两种情况下的自振特性(频率和振型)进行研究。为闸门的结构优化设计提供了依据。 关键词:弧形闸门;静力特性;自振特性;流固耦合 The Radial Gate Static And Dynamic Characteristics Analysis Research Wu qibin Abstract:The finite element model of a hydropower station large radial gate was established. The main components stress and deformation state of gate was analyzed and researched in the condition of closed water retaining. Natural vibration characteristics (frequency and vibration mode) of the gate were performed considering fluid-structure coupling and ignoring fluid-structure coupling. The analysis and research provide the basis for structure optimization design of the gate. Key words: radial gate; static characteristics; natural vibration characteristics; fluid-structure coupling 0 引言 弧形闸门被作为水闸中最简单、经济、灵活的一种门型,得到了广泛的应用。然而在我国几十年的使用过程中,还是出现了不少的问题,通过对闸门的破坏事件[1]统计可知:一方面是由于设计及结构布置的不合理,如按平面体系设计时不能准确反应闸门各构件间的相互联系以及非计算构件在闸门上的作用,使得某些关键部位安全富裕度不够、闸门两侧止水漏水引起的闸门自激振动,支臂刚度较差导致的支臂失稳破坏;传统的闸门大多是按平面结构体系方法进行设计,仅在主框架平面内进行计算,不能全面反映闸门的空间受力情况,会造成闸门强度和整体结构的不协调[2]。 另一方面是由于闸门在启闭及局部开启运行中由于外部激励源的作用而产生振动,当激励源的频率与结构的固有频率接近时,结构会发生共振,造成闸门及周围建筑物的破坏。因此对已设计运行的弧形闸门进行静力及动力特性分析是很有必要的[3]。 1 弧形闸门静力特性分析 1.1有限元模型 弧形闸门主体结构主要由门叶、支臂和支铰三大部分组成。门叶主要由主、次横梁、主、次纵 梁、肋板,上下底梁、边梁等构件组成。支臂用于支承主横梁或者主纵梁,主梁与支臂构成主框架, 它们承受由面板和次梁传递来的自重和水压力等荷载,然后将力传递给支铰,最后通过支铰把力传 递给闸墩。 作者简介:吴琦斌(1989-),男,E-mail:wqb10086 @https://www.wendangku.net/doc/fe977108.html,

粘性土的动力特性实验及数值模拟

粘性土的动力特性实验及数值模拟 戴文亭,陈 星,张弘强 吉林大学交通学院,长春 130025 摘要:使用产自日本的DT C-306型多功能电液伺服动态三轴仪,对粉质粘土进行动三轴试验。在试验提供的各种参数和数据的基础上,利用有限元程序A BA Q U S 建立动三轴试件的三维有限元模型,模拟在循环荷载作用下粉质粘土的动力变形特性;并通过与动三轴试验相关数据的大量对比分析,验证了模型的可靠性。然后在建立的三维有限元模型的基础上,进一步用数值模拟的方法研究了土体动力变形与各影响因素间的关系,得出如下结论:初始弹性模量、阻尼系数、受荷形式对土的塑性变形影响最大,应力幅值、围压、频率、加荷周数次之,加载波形的影响最小,不同波形对塑性变形的影响取决于荷载最大值时历时的长短。有限元数值模拟方法在一定程度上可以替代动三轴实验。 关键词:动三轴;循环荷载;动力特性;有限元法;数值模拟;粘性土 中图分类号:P642.11 文献标识码:A 文章编号:1671-5888(2008)05-0831-06 收稿日期:2008-03-07 基金项目:国家/8630项目(2007A A11Z114) 作者简介:戴文亭(1964)),男,江苏丰县人,副教授,博士,主要从事道路岩土工程方面的教学与研究工作,E -ma il:da-i w enting 64@163.co m 。 Experiment and Nu merical Simulation of Dynamic Behavior for Cohesive Soils DAI Wen -ting,CH EN Xing ,ZH A NG H ong -qiang Colleg e of Tr ansportation and Tr af f ic ,J ilin Univ er sity ,Ch angch un 130025,China Abstract:T he dy namic tr-i ax ial instr um ent of DT C -306m ade in Japan is used to make cy clic tr-i ax ial test o f silty clay under dy nam ical loading by lo ad control.On the basis o f various parameters and data offered fr om the test,utilizing comm on finite element procedur e ABAQUS to set up the three -d-i m ensio nal finite element mo del of the dy nam ic tr-i ax ial sam ple,the dynamical defor mation behavior o f silty clay under cy clic load is simulated.T hr oug h a lot of co ntrast analy sis to the dynamic tr-i ax ial test relation data,the r eliability of the m odel is validated.Then based on the finished three -dim ensional f-i nite element m odel,the relationship betw een dy namic deform ation and the influence factors is re -searched,and the results are as follo w s:the first im po rtant influential factors of so il plastic defo rmatio n ar e initial elastic modulus,damping facto r and ty pe of cy clic load,then the m ag nitude of cyclic lo ad,sur -r ounding stress,frequency and the number of cyclic times,and the m inimum influential facto r is type o f load w av e.T he numerical sim ulation method of finite elem ent can substitute the dynamic tr-i ax ial test to a certain ex tent. Key words:dynam ic tr-i ax ial test;cyclic load;dynamical behav io r;finite elem ent method;numer-i cal sim ulation;viscosity soil 第38卷 第5期 2008年9月 吉林大学学报(地球科学版) Jour nal of Jilin U niver sity(Ea rth Science Editio n) Vo l.38 No.5 Sep.2008

弧形闸门安装作业指导书

中国水利水电第十工程局 作业指导书 弧型闸门安装 O一一年四月三十日

批准:曾竟 审核:苏利峰 校核:伍小安 编写:王寿庆 一、前言 本文介绍弧形闸门及其附件安装的施工方法,同时对施工机械、施工材料、施工人员、施工作业环境和安全作业了相应的要求。对施工程序、检验和测试方法及手段、各阶段质量检查、验收标准和记录作出了明确规定。相关的施工质量

验收表格和单元施工质量评定表格作为附件附后。 弧形闸门安装主要分三大部分:埋件安装、门体安装、启闭机安装编写本作业指导书所引用的规范、标准: DL/T 5018-2004 《水利水电工程刚闸门制造、安装及验收规范》SL 27-91《水闸施工规范》 GB 11345-89《钢焊缝手工超声波探伤方法和探伤结果分析》 GB 3323-87《钢熔化焊接接头射线照相或质量分析》 GB 8923-88《涂装前钢材表面锈蚀等级或除锈等级》 SL 105-95《水工金属结构防腐蚀规范》 以下文件,应同时作为安装及质量验收的重要依据: a)合同文件的专门规定。 b)设计图纸及厂家到货的随机图纸资料; c)出厂合格证、检查、验收记录 二、安装流程及工艺措施 1. 安装总流程 该类闸门安装具体施工流程经常受电站整体工期、土建施工进度等因素影响,可具体调整。常规的安装总流程如下:

2.门槽埋件安装 门槽埋件主要由底槛、侧轨、支铰座的支承埋件、门楣(潜孔弧门)侧轨(深孔闸门、门叶导轨)组成。 2.1.安装流程:

22安装工艺措施要求: 技术准备工作,设计图纸校核,根据图纸,绘制测量放点图,配合测量工程师放点,并向各班组进行技术交底后就可以进入安装工作了。 2.2.1.底槛 底槛是埋件中的主要部件,它的安装精度将制约到整个埋件的安装质量,所以必须引起足够的重视。 工器具:水准仪、1m钢板尺、150mm钢板尺、水平尺、划针、粉线、拉紧器、3t压机、手割抢一套、电焊机。 门槽埋件安装主要控制点有:支铰中心在闸墩侧墙上的投影点、里程桩号、孔口中心、、高程及各单件相对尺寸等。底槛安装主要控制点为:底槛中心线、高程、水平度及表面扭曲。 弧形闸门的底槛安装方法与平面闸门相同,但还必须检查底槛中心至支铰中心的半径R值。 2.2.2.侧轨安装: 待土建底槛混凝土浇筑完毕后,检查各项尺寸的变化情况,主要检查底槛 的不平度。然后对底槛重新分线,将测量放的控制点返到底槛上(孔口中心、底槛中心),这样可以减少误差累计。必需仔细进行,多次复查,因为门框安装控制线将根据这

沙湾矮塔斜拉桥静动力特性分析(精)

沙湾矮塔斜拉桥静动力特性分析 本文以广州东新高速公路沙湾特大桥矮塔斜拉桥为工程背景,开展矮塔斜拉桥结构性能的分析研究,通过计算沙湾大桥在施工过程中和成桥运营阶段的静、动力响应,掌握了该大桥的受力状态,总结归纳了矮塔斜拉桥的一些结构特性。本文主要工作包括以下几点:(1)运用大型桥梁结构分析软件桥梁博士 V3.03建立沙湾大桥全桥平面梁单元结构模型,详细计算该桥在施工、运营阶段的结构静力力学行为。(2)分析混凝土收缩、徐变等主要时间效应因素对成桥后期结构的影响,计算分析运营阶段活载、风荷载、体系温度变化、温度梯度等各单独工况作用及各种组合下桥梁静力响应。(3)运用大型桥梁结构分析软件MIDAS2006建立沙湾大桥全桥空间梁单元结构模型,计算大桥的自振频率与周期;采用程序的反应谱分析功能计算大桥的振型,完成大桥的初步抗震分析工作。(4)沙湾特大桥采用二次调索施工措施,使得斜拉索在施工阶段的最大应力和最小应力比较均匀。在荷载作用下斜拉索的安全系数接近1.67,小于常规斜拉桥,提高了拉索的利用率。(5)沙湾特大桥的一阶自振周期为3.546s,远小于同等跨度斜拉桥的基本周期。矮塔斜拉桥的自振频率介于连续梁(刚构)与常规斜拉桥之间,属于刚柔相济的桥型。本文通过对沙湾特大桥的静、动力分析,较全面地掌握了该矮塔斜拉桥的力学特性,提出了该类桥梁设计中应注意的关键细节,为今后同类桥梁的设计和施工提供了良好的参考和借鉴。 同主题文章 [1]. 李黎,陈伟,龙晓鸿,胡亮. 四渡河特大悬索桥静力非线性分析' [J]. 华中科技大学学报(城市科学版). 2006.(02) [2]. 何新平. 矮塔斜拉桥的设计' [J]. 公路交通科技. 2004.(04) [3]. 赵卫东. 浅谈做好施工阶段投资控制的方法' [J]. 建筑设计管理. 2010.(01) [4]. 权刚. 特征值区域控制原理及其在电力系统稳定控制中的应用' [J]. 吉林电力. 1988.(Z1) [5]. 王治钧. 谈给排水工程的施工管理' [J]. 广东科技. 2009.(24) [6]. 王俊,刘立新,赵静超. 折线先张预应力混凝土梁施工阶段性能试验研究' [J]. 中外公路. 2009.(06) [7]. 季智敏. 建筑工程施工阶段成本管理与控制探讨' [J]. 中国高新技术

世界十大跨径拱桥排行榜

世界十大跨径拱桥排行榜 NO.1朝天门大桥 朝天门大桥进入上部结构施工阶段,与两江隧道一起连接解放碑、江北城、弹子石三大中央商务区 朝天门大桥夜景效果图中港二航局朝天门大桥工程项目部提供 船近重庆城,穿过由“解放碑”桥墩和大桥桥面构成的“城市之门”,繁华的渝中半岛近在眼前。朝天门大桥2008年6月28日竣工通车之后,这样的场景会给每一位坐船上水来重庆的客人留下深刻的印象。 记者昨日从中港二航局朝天门大桥工程项目部获悉,这座被称为重庆又一个标志性建筑的大桥,已正式进入上部结构施工阶段。 号称世界第一拱桥 虽然名叫“朝天门大桥”,但大桥的实际位置是在离朝天门还有1.7公里的溉澜溪青草坪。朝天门大桥从设计之初就定位为重庆的江上门户。“方案最终选定了简洁大气的钢桁架拱桥形式”,项目部负责人说,大桥只有两座主墩,主跨达552米,比世界著名拱桥———澳大利亚悉尼大桥的主跨还要长,成为“世界第一拱桥”。 灯饰要花千万元 解放碑和朝天门,这两张重庆的城市名片,也在大桥上实现了巧妙的融合。“大桥的两个主墩,被设计成解放碑的样子,一剖两半,分成四个柱子,托起大桥。”项目部负责人说。 该方案定名为“城市之门”,已获得市政府批准。“解放碑”桥墩上都有观景台,将成为观赏朝天门两江汇流和山城夜景的绝佳位置。 白天,大桥除桥墩外通体红色;入夜,大桥华灯齐放,倒映于江面上。据悉,仅灯饰工程,预算就在千万元左右。 据介绍,建成后的大桥,分为上下两层。上层为双向六车道,行人可经两侧人行道上桥;下层则是双向轻轨轨道,并在两侧预留了2个车行道,可保证今后大桥车流量增大时的需求。 大桥西接江北区五里店立交,东接南岸区渝黔高速公路黄桷湾立交,全长4.158公里,是主城一条东西向快速干道。 朝天门大桥与规划中的两江过江隧道一起,将把解放碑、江北城、弹子石三个中央商务区构成一张立体的交通网

弧形闸门安装技术措施

弧形闸门安装技术措施 一、弧形闸门门叶安装 (一)弧形闸门门叶安装工艺程序 施工准备→测量控制点设置→支铰整体吊装、调整紧固→检查支臂吊装→支臂位置调整→门叶分节吊装→门叶、支臂连接→门叶接缝焊接→支臂接缝焊接→支臂连接安装、侧轮安装→弧门启闭试验→焊缝补焊,底、侧止水件安装→启闭试验→检查、验收→清理、油漆 (二)弧形闸门门叶安装工艺 1. 将已在制造厂组装出厂的支铰座运至其闸室工作平台,用汽车吊卸车并卧放在平台上,检查、清理支铰座并核对其尺寸及中心线,组装标记。 2. 利用汽车吊及千斤顶调整支铰座两装配面平行,同时用型钢可靠地临时固定。 3. 清扫、检查支铰座座板表面及螺栓,核对中心线及组装标记,上述工作完成后,用卸扣将吊具挂装在支铰座吊耳上,并将吊具另一端挂装在吊车吊钩上。随后将支铰座起升离开地面,对吊具、吊车的可靠性、稳定性进行检查,确认无误后利用吊装吊具的可调吊索调整支铰座的倾角及门叶关闭状态下支铰座的倾角一致,然后将支铰座吊移至安装位置,利用吊车及可调吊索调整支铰座及支铰座座板的相对位置,将支铰座及座板相连的一端喂入座板上的螺栓内,随即将螺母拧入以稳定支铰座。紧固支铰座装配面四个角上的螺母,使两组装面的

间隙在2mm左右,用吊车及辅助千斤顶调整两组合面中心线及组装标记重合,正确后从中心向四周对称将全部螺母按规定的力矩拧紧固定铰座。 4. 支臂运至闸墩一侧底平台上,用吊具分别将其吊装就位在用型钢搭设的支臂组装临时平台上各支臂段的中心位置。先进行下支臂及支臂头的组装,用千斤顶调整其底板中心及各支臂中心及组装平台上的大样中心线重合,且支臂头调整水平并垫实,并在支臂头四周焊接定位挡板将其临时固定,然后调整下支臂及支臂头接口的对接缝,调整下支臂中心线及平台上的大样中心重合,且接口处中心及装配标记重合,中心高程误差小于1mm,各组装尺寸确认合格后,在接口焊缝四周对称进行点固焊,点固焊焊道长60~80mm、间距300mm、厚8mm,同时在支臂两侧的组装平台型钢上焊接定位挡块,临时固定已组装完成的支臂。 5. 按上述工艺进行中间支臂和上支臂的组装,全部完成后对支臂组装尺寸进行全面检测,以防止支臂的吊装变形。 6. 上述工作完成且支臂组装尺寸检测合格后,进行支臂组装接头的焊缝,每一支臂接口由两名合格焊工对称进行施焊,每一焊缝由中间向两边分段退步对称施焊,且两名焊工应采用相同的焊接工艺参数同时焊接相同部位。施焊时由专人对变形情况进行监测,发现异常变形及时调整焊接顺序,纠正支臂的异常变形。 7. 焊缝焊接完成后,对焊缝进行打磨清理,然后对焊缝进行无损探伤,合格后打磨焊缝区并涂刷防腐涂料,并对支臂各部尺寸进行检测、

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

大跨度拱桥

大跨度拱桥 以承受轴向压力为主的拱圈或拱肋作为主要承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。拱桥可用砖、石、混凝土等抗压性能良好的材料建造;大跨度拱桥则用钢筋混凝土或钢材建造,以承受发生的力矩。按拱圈的静力体系分为无铰拱、双铰拱、三铰拱。前二者为超静定结构,后者为静定结构。无铰拱的拱圈两端固结于桥台,结构最为刚劲,变形小,比有铰拱经济,结构简单,施工方便,是普遍采用的形式,但修建无铰拱桥要求有坚实的地基基础。双铰拱是在拱圈两端设置可转动的铰支承,结构虽不如无铰拱刚劲,但可减弱桥台位移等因素的不利影响,在地基条件较差和不宜修建无铰拱的地方,可采用双铰拱桥。三铰拱则是在双铰拱的拱顶再增设一铰,结构的刚度更差些,拱顶铰的构造和维护也较复杂,一般不宜作主拱圈。拱桥按结构形式可分为板拱、肋拱、双曲拱、箱形拱、桁架拱。拱桥为桥梁基本体系之一,一直是大跨径桥梁的主要形式。拱桥建筑历史悠久,20世纪得到迅速发展,50年代以前达到全盛时期。古今中外名桥遍布各地,在桥梁建筑中占有重要地位,适用于大、中、小跨径的公路桥和铁路桥,更因其造型优美,常用于城市及风景区的桥梁建筑。其中按照规范跨度大于四十米的拱桥就称为大跨度拱桥,按照目前技术水平,跨度大于100米的拱桥才称得上大跨度拱桥。在大跨度拱桥中按照拱轴线的型式可分为:圆弧拱桥、抛物线拱桥、悬链线拱桥。 圆弧拱桥:拱圈轴线按部分圆弧线设置的拱桥。优点构造简单,石料规格最少,备料、放样、施工都很简便;缺点是受荷时拱内压力线偏离拱轴线较大,受力不均匀。 如图所示,有一座拱桥圆弧形,它的跨度为60米,拱高为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施? 解:不采取紧急措施。其理由如下:设半径OA=∵AB=60 PM=18∴AM=30 OM=18∴在Rt△AOM中,由勾股定理,得:

110kV耐张角钢塔ANSYS静动力特性分析

110kV耐张角钢塔ANSYS静动力特性分析 随着输电线路电压等级的提高,对输电线路杆塔系统的静态和动态稳定性提出了更高的要求。本文基于已有设计杆塔图纸中角钢类型繁多,建模复杂等特点。为了缩短建模周期,提高建模质量,本文运用新的建模方式对架空输电杆塔进行建模。通过对华南沿海区域110kV耐张角钢塔的有限元建模和动静力分析,证明了该有限元建模方法的有效性和可行性。 标签:输电杆塔;角钢;有限元建模 随着我国经济建设的快速发展[1],电力作为我国一项基本工业,其发展的速度直接影响、制约着其他产业的发展。现阶段,架空输电杆塔已经成为各国电力供应最重要的载体。作为高负荷的电能输送载体的输电线路体系,对国家经济生产和维持人民群众的日常生活正常运行担负着非常重要作用。 1、输电杆塔ANSYS建模 1.1输电杆塔建模的基本步骤 该110J2J604型耐张输电杆塔塔高41.3m,根开9.8m,结构全采用角钢。此输电塔共采用了2种钢材,分别为Q235,Q345。 本文采用桁梁混合模型对输电杆塔进行建模。由于模型中角钢种类多达30余种,不适合直接将输 电杆塔几何模型直接导入有限元软件。 有限元建模具体的实施步骤如下: a)根据设计的施工图纸建立三维几何模型,并获取几何模型的节点坐标; b)通过关键点在ANSYS中建立输电杆塔有限元模型; c)加载求解。 1.2采用的单元类型[2] 杆单元用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不能承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应力刚化(也称几何刚度、初试应力刚度等)等功能。 LINK180无实常数型初应变,但可以输入初应力文件,可考虑附加质量;

弧形闸门安装技术措施

弧形闸门安装技术措施-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

弧形闸门安装技术措施 一、弧形闸门门叶安装 (一)弧形闸门门叶安装工艺程序 施工准备→测量控制点设置→支铰整体吊装、调整紧固→检查支臂吊装→支臂位置调整→门叶分节吊装→门叶、支臂连接→门叶接缝焊接→支臂接缝焊接→支臂连接安装、侧轮安装→弧门启闭试验→焊缝补焊,底、侧止水件安装→启闭试验→检查、验收→清理、油漆 (二)弧形闸门门叶安装工艺 1. 将已在制造厂组装出厂的支铰座运至其闸室工作平台,用汽车吊卸车并卧放在平台上,检查、清理支铰座并核对其尺寸及中心线,组装标记。 2. 利用汽车吊及千斤顶调整支铰座两装配面平行,同时用型钢可靠地临时固定。 3. 清扫、检查支铰座座板表面及螺栓,核对中心线及组装标记,上述工作完成后,用卸扣将吊具挂装在支铰座吊耳上,并将吊具另一端挂装在吊车吊钩上。随后将支铰座起升离开地面,对吊具、吊车的可靠性、稳定性进行检查,确认无误后利用吊装吊具的可调吊索调整支铰座的倾角与门叶关闭状态下支铰座的倾角一致,然后将支铰座吊移至安装位置,利用吊车及可调吊索调整支铰座与支铰座座板的相对位置,将支铰座与座板相连的一端喂入座板上的螺栓内,随即将螺母拧入以稳定支铰座。紧固支铰座装配面四个角上的螺

母,使两组装面的间隙在2mm左右,用吊车及辅助千斤顶调整两组合面中心线与组装标记重合,正确后从中心向四周对称将全部螺母按规定的力矩拧紧固定铰座。 4. 支臂运至闸墩一侧底平台上,用吊具分别将其吊装就位在用型钢搭设的支臂组装临时平台上各支臂段的中心位置。先进行下支臂与支臂头的组装,用千斤顶调整其底板中心及各支臂中心与组装平台上的大样中心线重合,且支臂头调整水平并垫实,并在支臂头四周焊接定位挡板将其临时固定,然后调整下支臂与支臂头接口的对接缝,调整下支臂中心线与平台上的大样中心重合,且接口处中心及装配标记重合,中心高程误差小于1mm,各组装尺寸确认合格后,在接口焊缝四周对称进行点固焊,点固焊焊道长60~80mm、间距300mm、厚8mm,同时在支臂两侧的组装平台型钢上焊接定位挡块,临时固定已组装完成的支臂。 5. 按上述工艺进行中间支臂和上支臂的组装,全部完成后对支臂组装尺寸进行全面检测,以防止支臂的吊装变形。 6. 上述工作完成且支臂组装尺寸检测合格后,进行支臂组装接头的焊缝,每一支臂接口由两名合格焊工对称进行施焊,每一焊缝由中间向两边分段退步对称施焊,且两名焊工应采用相同的焊接工艺参数同时焊接相同部位。施焊时由专人对变形情况进行监测,发现异常变形及时调整焊接顺序,纠正支臂的异常变形。 7. 焊缝焊接完成后,对焊缝进行打磨清理,然后对焊缝进行无损探伤,合格后打磨焊缝区并涂刷防腐涂料,并对支臂各部尺寸进行检

弧形闸门安装作业指导书

中国水利水电第十工程局作业指导书 弧型闸门安装 二O一一年四月三十日

批准:曾竟审核:苏利峰校核:伍小安编写:王寿庆

一、前言 本文介绍弧形闸门及其附件安装的施工方法,同时对施工机械、施工材料、施工人员、施工作业环境和安全作业了相应的要求。对施工程序、检验和测试方法及手段、各阶段质量检查、验收标准和记录作出了明确规定。相关的施工质量验收表格和单元施工质量评定表格作为附件附后。 弧形闸门安装主要分三大部分:埋件安装、门体安装、启闭机安装。 编写本作业指导书所引用的规范、标准: DL/T 5018-2004《水利水电工程刚闸门制造、安装及验收规范》 SL 27-91 《水闸施工规范》 GB 11345-89 《钢焊缝手工超声波探伤方法和探伤结果分析》 GB 3323-87 《钢熔化焊接接头射线照相或质量分析》 GB 8923-88 《涂装前钢材表面锈蚀等级或除锈等级》 SL 105-95 《水工金属结构防腐蚀规范》 以下文件,应同时作为安装及质量验收的重要依据: a)合同文件的专门规定。 b)设计图纸及厂家到货的随机图纸资料; c)出厂合格证、检查、验收记录 二、安装流程及工艺措施 1.安装总流程 该类闸门安装具体施工流程经常受电站整体工期、土建施工进度等因素影响,可具体调整。常规的安装总流程如下:

2.门槽埋件安装 门槽埋件主要由底槛、侧轨、支铰座的支承埋件、门楣(潜孔弧门)、侧轨(深孔闸门、门叶导轨)组成。 2.1.安装流程:

2.2.安装工艺措施要求: 技术准备工作,设计图纸校核,根据图纸,绘制测量放点图,配合测量工程师放点,并向各班组进行技术交底后就可以进入安装工作了。 2.2.1.底槛 底槛是埋件中的主要部件,它的安装精度将制约到整个埋件的安装质量,所以必须引起足够的重视。 工器具:水准仪、1m钢板尺、150mm钢板尺、水平尺、划针、粉线、拉紧器、3t压机、手割抢一套、电焊机。 门槽埋件安装主要控制点有:支铰中心在闸墩侧墙上的投影点、里程桩号、孔口中心、、高程及各单件相对尺寸等。底槛安装主要控制点为:底槛中心线、高程、水平度及表面扭曲。 弧形闸门的底槛安装方法与平面闸门相同,但还必须检查底槛中心至支铰中心的半径R值。 2.2.2.侧轨安装: 待土建底槛混凝土浇筑完毕后,检查各项尺寸的变化情况,主要检查底槛

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析 黎波含 华北科技学院 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。关键词:ANSYS;钢桁架桥;模态分析;动力特性 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。 1工程简介 某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见

图2 图1 图2 刚桁架桥简图 所用的桁架杆件有三种规格,见表1 表1 钢桁架杆件规格 杆件截面号形状规格 端斜杆 1 工字形400X400X16X16 上下弦 2 工字形400X400X12X12 横向连接梁 3 工字形400X400X12X12 其他腹杆 4 工字形400X300X12X12 所用的材料属性见表2 表2 材料属性 参数钢材混凝土弹性模量EX 2.1×1011 3.5×10 泊松比PRXY 0.3 0.1667 密度DENS 78502 2500 2 模型构建 将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、

闸门安装施工技术方案

1、工程概况 1.1、概述 1.2、导流洞闸井工程量 本工程金属结构设备安装主要工作内容如下: 2、设备的运输、吊装与存放 2.1运输与吊装设备 (1)闸门及启闭机设备的运输采用载重汽车由生产厂家运输到施工现场的存放场。 (2)安装现场吊装设备:闸门、启闭机用25t吊车进行安装。(3)吊装方案:根据制造厂家提供的设备吊点图、设备总成及零部件的不同情况和要求,施工前将制定详细的运输起吊方案,其内容包括采用的起重设备的选定,工作位置,工作半径的确定,大件起吊吊点的布置,车辆的选用,设备的支撑与捆绑,坡度行驶中的特殊措施,确保设备运输过程中不变形以及吊装的安全。 2.2设备的保管 (1)启闭设备存放:启闭设备存放,应符合DL/T5019-94中的有关规定。对细长零部件的存放,应有两处以上的多处支撑,支撑点应受力均匀。 (2)闸门及其埋件存放:闸门及其埋件采用露天存放,为了防止受

潮、锈蚀和风沙等,使用防雨布遮盖,为防止设备变形,结构下面用枕木等支撑垫平。闸门及其埋件的加工面妥善防护,以免碰伤或锈蚀。 3、埋件安装 3.1 埋件安装要求 (1)埋件安装前,门槽中的模板等杂物必须清除干净。一、二期混凝土的结合面应全部凿毛,二期混凝土的断面尺寸及预埋锚栓和锚板的位置应符合图纸要求; (2)闸门埋件安装的允许公差和偏差应符合规范DL/T5018的规定;(3)埋件就位调整完毕,应按图纸要求与一期混凝土中的预埋插筋焊牢。严禁将加固材料直接焊接在轨道、门楣等的工作面上或水封座板上。 (4)埋件上所有不锈钢材料的焊接接头,必须使用相应的不锈钢焊条进行焊接。 (5)埋件所有工作表面上的连接焊缝,应打磨平整,并涂上黄油加以保护。 (6)埋件工作面对接接头的错位均应进行缓坡处理,过流面及工作面的焊疤和焊缝余高应铲平磨光,凹坑应补焊平并磨光; (7)门槽埋件二期混凝土浇注应符合设计要求。 (8)埋件安装完,经检查合格,应在5~7d内浇筑二期混凝土。如过期或有碰撞,应予复测,复测合格,方可浇筑混凝土。混凝土一次浇筑高度不宜超过5.0m,浇筑时注意防止撞击,并采取措施捣实混凝土; (9)二期混凝土拆模后,对门槽所有的表面按DL/T5018-94中的要求进行清理,并对埋件的最终安装精度进行复测,作好记录报监理工程师。

EPS动力特性试验研究

第27卷 第11期 岩 土 工 程 学 报 Vol.27 No.11 2005年 11月 Chinese Journal of Geotechnical Engineering Nov., 2005  EPS动力特性试验研究 朱向荣1, 2,方鹏飞1,李云飞3,朱赞凌4  (1.浙江大学 宁波理工学院,浙江 宁波 315100;2.浙江大学 岩土工程研究所,浙江 杭州 310027;3.宁波宁兴房地产开发有限公司,浙江  宁波 315012;4.广东虎门技术咨询有限公司,广东 广州 510630)  摘 要:采用动三轴试验研究EPS在不同加载频率、不同循环次数和不同围压的下强度和模量等的变化规律,为EPS 工程应用提供一些理论依据。  关键词:EPS;HX-100多功能伺服式三轴仪;循环荷载;应力应变关系  中图分类号:TU 411.93 文献标识码:A 文章编号:1000–4548(2005)11–1253–04 作者简介:朱向荣(1961–),男,浙江义乌人,浙江大学宁波理工学院副院长,浙江大学岩土工程研究所教授,博士生导师,主要从事软粘土力学、桩基工程、地基处理和环境岩土工程等方面的研究。  Study on dynamic behavior of EPS ZHU Xiang-rong1, 2, FANG Peng-fei1, LI Yun-fei3, ZHU Zan-ling4 (1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310027, China; 3. Ningbo Ningxing Real Estate Co., Ningbo 315012, China; 4. Guangdong Humen Technical Consultant Ltd., Guangzhou 510630, China) Abstract: The variation of stress-strain relationship of EPS and modulus under the conditions of different loading frequency, cycles, and confining pressure was studied with dynamic triaxial test. The obtained results can provide the theoretical basis for the practical engineering application of EPS. Key words: expanded polystyrene; HX-100 servo triaxial apparatus; cyclic load; strain-stress relation 0 前 言  EPS(Expanded Polystyrene)全称为发泡聚苯乙烯,是一种良好的轻质回填材料,具有超轻性、自立性、施工简便等优点,自20世纪70年代起便被应用于国外的路基处理、桥头填埋等土建工程领域[1~3]。目前EPS在国内仅在东南沿海经济发达、软基分布广泛的几个省市,如浙江、广东等省中有一些应用,且多数应用于应急补救工程。1995年,杭甬高速公路宁波段望童桥头路堤采用EPS很好的处理了桥头路基出现的滑塌征兆和桩身、桥台立柱出现多处的严重环向裂缝,至今使用情况良好[4]。 国内外岩土工作者主要对EPS的物理化学性质和力学性质方面展开了研究。物理化学性质方面,主要研究EPS本身的物理化学性质特点和EPS块体所适应的周围水土介质环境,研究在土工应用过程中应采取的适宜防护措施[5~8]。力学性质方面,主要研究EPS 的应力–应变关系、压缩变形特性、抗弯性能、蠕变性能和摩擦性能等。在EPS的应力–应变关系和压缩变形特性的研究中,主要开展了单轴压缩试验和三轴压缩试验,得出相应条件下EPS的应力–应变试验关系曲线[3,5,9~11]。然而在大量实际工程中,如EPS用作路堤和桥台台背填料等,EPS材料上部主要荷载是车辆荷载等一些动荷载,因此有必要对EPS材料在动荷载条件下的力学性能进行研究。本文采用动三轴试验对EPS材料的动力特性进行试验研究,找出其内在的力学性质规律性,为EPS工程应用提供理论依据。 1 试验原理和方法  试验在HX–100多功能伺服式三轴仪上进行[12]。此三轴仪由微机控制加载系统和数据采集处理系统组成,可以完成动静两种状态下的无侧限压缩试验、三轴剪切试验和一维固结试验。配套系统有:真空抽气系统、计算机辅助系统等。 研究表明,影响试验结果的因素有试样形状、尺寸、试验加荷速度等,此外还受试样外表加工精度、试样表面平整程度等的影响。试样密度为24 kg/m3, ───────  收稿日期: 2005–01–17

相关文档