文档库 最新最全的文档下载
当前位置:文档库 › 单闭环电压负反馈调速资料

单闭环电压负反馈调速资料

单闭环电压负反馈调速资料
单闭环电压负反馈调速资料

单闭环电压负反馈调速系统的动态建模与仿真

学院:

姓名:

学号:

时间:

目录

一、课题要求 ................................................................................................................... - 1 -

1.设计题目.............................................................................................................. - 1 - 2.设计内容.............................................................................................................. - 1 - 3.设计要求.............................................................................................................. - 1 -

4 . 控制对象参数 ...................................................................................................... - 1 -

二、设计方案 ................................................................................................................... - 2 -

1、概述 ..................................................................................................................... - 2 -

2、电压负反馈直流调速系统的原理 ......................................................................... - 2 -

三、参数计算 ................................................................................................................... - 4 -

四、单闭环电压负反馈调速系统的仿真模型.................................................................... - 5 -

1. 单闭环电压负反馈调速系统的仿真模型的建立 .................................................... - 5 -

2.开环带扰动无电压负反馈调速系统的仿真结果 ...................................................... - 6 -

3. 单闭环不带扰动电压负反馈调速系统的仿真结果................................................. - 6 -

4. 单闭环带扰动电压负反馈调速系统的仿真结果 .................................................... - 7 -

五、实训心得:................................................................................................................ - 9 -

一、课题要求

1.设计题目

5) 单闭环电压负反馈调速系统的动态建模与仿真

2.设计内容

(1)设计系统各单元电路和主控电路;

(2)分析并测定系统各环节的输入输出特性及其参数,调试各单元电路;(3)系统性能分析与程序设计;

(4)系统校正,修正系统静、动态性能。

3.设计要求

(1)初步掌握控制系统的分析和设计的基本方法。包括设计任务,进行计题目的方案论证。通过调查研究、设计计算,确定方案,写出总结报告。

(2)培养一定的自学能力和独立分析问题、解决问题的能力。包括学会自己分析解决问题的方法,对设计中遇到的问题,能通过独立思考、查阅工具书、参考文献,寻找答案。

(3)通过严格的科学训练和工程设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并培养学生在实际工作中应具有的生产观点,经济观点和全局观点

4 . 控制对象参数

直流调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统,直流电动机:220V,136A,1460r/min,电枢电阻Ra=0.2Ω,允许过载倍数λ=1.5;电枢回路总电阻:R=0.5Ω,电枢回路总电感:L= 15mH,电动机轴上的总飞轮力矩:GD2= 22.5N·m2,晶闸管装置:放大系数Ks=40,电流反馈系数:β=0.05V/A,转速反馈系数:α=0.007Vmin/r,滤波时间常

数:Toi=0.002s ,Ton=0.01s 。

二、设计方案

1、概述

直流调速系统中最基本的形式是目前广泛应用的晶闸管直流调速系统,采用直流测速发电机作为转速检测元件,实现转速的闭环控制,再加上一些积分与校正的方法,可以获得比较满意的静动态性能。然而,在实际应用中,其安装与维护都比较麻烦,常常是系统安装中可靠性的薄弱环节。此时,可用电动机端电压负反馈取代转速负反馈,构成电压负反馈调速系统。但这种系统只能维持电动机端电压恒定,而对电动机电枢电压降引起的静态速降不能予以抑制,因此系统静特性较差,只适用于对精度要求不高的调速系统。

2、电压负反馈直流调速系统的原理

电压负反馈直流调速系统的原理图如图2-1所示,图中作为反馈检测元件的只是一个起分压作用的电位器。电压反馈信号为

d

u U U γ=

式中Uu —电压反馈信号(∨);

γ—电压反馈系数。

图2-1 电压负反馈直流调速系统的原理图

这种系统对电动机电枢电阻Ra 引起静态速降,电压负反馈不能对它起抑制作用,故必须把主回路总电阻R 分成两部分R=Rr+Ra ,Rr 为晶闸管整流装置的内阻(含平波电抗器电阻),因而有以下两个关系式:

d r d U R I U =-0d

E

R I U a d d =- 通过绘制结构图和利用叠加原理和结构图运算规则,导出电压负反馈直流调速系

统的静特性方程如下: d e a d e r e n S P I C R I K C R K C U K K n -+-+=)1()1(*

式中,K=γk P K S 。

从静特性方程可见,与开环系统相比较,电压负反馈作用使整流装置内阻Rr 引起的静态速降减小到开环时的1/(1+K ),但由于电枢电阻引起的速降I d Ra/C e 和开环时相同,这一点从结构图上也可以明显看出,因为电压负反馈系统实际上只是一个自动调压系统,扰动量I d Ra 不被反馈环包围,电压负反馈系统对由它引起的速降也就无法克服了。这是电压负反馈系统调速性能指标差的一个重要原因,在电压负反馈调速系统中引入电流正反馈可提高系统的稳态性能指标。

三、参数计算

计算电力拖动系统机电时间常数m T

a N N e N R I n C U +=

带入数据得r V C e min/132.0=;

A Nm C C e m /26.130==π

; 所以s C C R GD T m

e m 18.03752== 575.71=e

C 调节器参数计算:如果将电压反馈环校正为典I 系统,调节器选用积分调节器s

τ1,由)1(11)(+=+=TS S K S T K s s W S S τ

和%5≤σ得5.01==S S T K KT τ

所以136.0=τ 35.71

由于纯积分环节调节缓慢,所以考虑在此基础上采用比例积分调节器,且KP=1;

电磁时间常数: 03.05

.010153

=?==-R l T l 电压反馈系数026.0)2.0136220(5≈?-÷=γ(U n *=5V )

四、单闭环电压负反馈调速系统的仿真模型

1. 单闭环电压负反馈调速系统的仿真模型的建立

图4-1单闭环电压负反馈调速系统的仿真模型

2.开环带扰动无电压负反馈调速系统的仿真结果

图4-2开环带扰动转速波形(扰动在2s后加上)

由图可知,在电机启动2s后加入负载干扰,电机转速有原来的1460r/min 下降到1000r/min,电机抗扰能力较差。

3. 单闭环不带扰动电压负反馈调速系统的仿真结果

(1)转速仿真波形

图4-3转速仿真波形

4. 单闭环带扰动电压负反馈调速系统的仿真结果

(1)转速仿真波形

图4-4转速仿真波形

由单闭环不带扰动电压负反馈调速系统的仿真结果和单闭环带扰动电压负反馈调速系统的仿真结果可以看出,在加入扰动后转速下降到1255r/min,与开环控制的系统相比较,转速下降相对较小些,这是因为电压负反馈作用使整流装置内阻Rr引起的静态速降减小到开环时的1/(1+K),其中K=γk P K S。这与开环相比较,电压负反馈的抗扰性能相对较好。

(2)电枢电压Ud的仿真波形

由仿真波形可以看出,电机在启动过程中电压无超调,这样对设备保护有好处;电机在2s加上额定负载扰动后,电枢电压迅速上升到额定电压220v左右,增强带载能力。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

转速负反馈的单闭环直流调速系统的设计

学号: 中州大学电机及拖动课程设计题目:转速负反馈的单闭环直流调速系统的设计 姓名: 专业:电气自动化 班级: 指导老师:赵静 2014年6月10号

摘要 该设计是转速负反馈的单闭环直流调速系统,目前调速系统分为交流调速和直流调速系统,由于直流调速系统的调速范围广、静差率小、稳定性好以及具有良好的动态性能,因此在相当长的时间内,高性能的调速系统几乎都采用直流调速系统,为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统,对调速指标要求不高的场合,采用单闭环系统,按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。在单闭环系统中,转速负反馈单闭环使用较多。在设计中用MATLAB 软件对电流环和转速环的设计举例进行了仿真,通过比较说明了直流调速系统的特性。 关键字:转速负反馈动态性能

ABSTRAC The design speed negative feedback is single closed-loop dc speed regulating system, the current speed regulation system is divided into ac speed regulation and dc speed control system, due to the wide scope of speed control of dc speed regulating system, small static rate, good stability and has a good dynamic performance, so in a long time, almost all high performance speed control system using dc speed regulating system, in order to improve the dynamic and static performance of dc speed regulating system, usually adopts closed loop control system, the control of motor speed index requirements is not high, the single closed loop system, according to the feedback in different ways can be divided into the speed feedback, current feedback, voltage feedback, etc.In a single closed-loop system, speed closed-loop used more negative feedback https://www.wendangku.net/doc/ff15608141.html,ing MATLAB software in your design, for example, the design of current loop and speed loop are simulated, through comparing the characteristics of the dc speed control syste KEYWORDS:SPEED BACK MATLAB D

单闭环直流调速系统

第十七单元 晶闸管直流调速系统 第二节 单闭环直流调速系统 一、转速负反馈直流调速系统 转速负反馈直流调速系统的原理如图l7-40所示。 转速负反馈直流调速系统由转速给定、转速调节器ASR 、触发器CF 、晶闸管变流器U 、测速发电机TG 等组成。 直流测速发电机输出电压与电动机转速成正比。经分压器分压取出与转速n 成正比的转速反馈电压Ufn 。 转速给定电压Ugn 与Ufn 比较,其偏差电压ΔU=Ugn-Ufn 送转速调节器ASR 输入端。 ASR 输出电压作为触发器移相控制电压Uc ,从而控制晶闸管变流器输出电压Ud 。 本闭环调速系统只有一个转速反馈环,故称为单闭环调速系统。 1.转速负反馈调速系统工作原理及其静特性 设系统在负载T L 时,电动机以给定转速n1稳定运行,此时电枢电流为Id1,对应转速反馈电压为Ufn1,晶闸管变流器输出电压为Udl 。 n n I C R R C U C R R I U n d e d e d e d d d ?+=+-=+-=0)(φ φφ 当电动机负载T L 增加时,电枢电流Id 也增加,电枢回路压降增加,电动机转速下降,则Ufn 也相应下降, 而转速给定电压Ugn 不变,ΔU=Ugn-Ufn 增加。 转速调节器ASR 输出电压Uc 增加,使控制角α减小,晶闸管整流装置输出电压Ud 增加,于是电动机转速便相应自动回升,其调节过程可简述为: T L ↑→Id ↑→Id(R ∑+Rd)↑→n ↓→Ufn ↓→△U ↑→Uc ↑→α↓→Ud ↑→n ↑。 图17-41所示为闭环系统静特性和开环机械特性的关系。

图中①②③④曲线是不同Ud之下的开环机械特性。 假设当负载电流为Id1时,电动机运行在曲线①机械特性的A点上。 当负载电流增加为Id2时,在开环系统中由于Ugn不变,晶闸管变流器输出电压Ud 也不会变,但由于电枢电流Id增加,电枢回路压降增加,电动机转速将由A点沿着曲线①机械特性下降至B’点,转速只能相应下降。 但在闭环系统中有转速反馈装置,转速稍有降落,转速反馈电压Ufn就相应减小,使偏差电压△U增加,通过转速调节器ASR自动调节,提高晶闸管变流器的输出电压Ud0由Ud01变为Ud02,使系统工作在随线②机械特性上,使电动机转速有所回升,最后稳定在曲线②机械特性的B点上。 同理随着负载电流增加为Id3,Id4,经过转速负反馈闭环系统自动调节作用,相应工作在曲线③④机械特性上,稳定在曲线③④机械特性的C,D点上。 将A,B,C,D点连接起来的ABCD直线就是闭环系统的静特性。 由图可见,静特性的硬度比开环机械特性硬,转速降Δn要小。闭环系统静特性和开环机械特性虽然都表示电动机的转速-电流(或转矩)关系,但两者是不同的,闭环静特性是表示闭环系统电动机转速与电流(或转矩)的静态关系,它只是闭环系统调节作用的结果,是在每条机械特性上取一个相应的工作点,只能表示静态关系,不能反映动态过程。 当负载突然增加时,如图所示由Idl突增到Id2时,转速n先从A点沿着①曲线开环机械特性下降,然后随着Ud01升高为Ud02,转速n再回升到B点稳定运行,整个动态过程不是沿着静特性AB直线变化的。 2.转速负反馈有静差调速系统及其静特性分析 对调速系统来说,转速给定电压不变时,除了上面分析负载变化所引起的电动机转速变化外,还有其他许多扰动会引起电动机转速的变化,例如交流电源电压的变化、电动机励磁电流的变化等,所有这些扰动和负载变化一样都会影响到转速变化。对于转速负反馈调速系统来说,可以被转速检测装置检测出来,再通过闭环反馈控制减小它们对转速的影响。也就是说在闭环系统中,对包围在系统前向通道中的各种扰动(如负载变化、交流电压波动、电动机励磁电流的变化等)对被调量(如转速)的影响都有强烈的抑制作用。但是对于转速负反馈调速系统来说,转速给定电压Ugn的波动和测速发电机的励磁变化引起的转速反馈电压Ufn变化,闭环系统对这种给定量和检测装置的扰动将无能为力。为了使系统有较高的调速精度,必须提高转速给定电源和转速检测装置的精度。

运动控制系统试验报告单闭环直流调速系统

运动控制系统试验报告——单闭环直流调速系统 学号:0504220110 姓名:杨娟 一.实验目的: 通过实验了解单闭环直流调速系统的结构和工作原理,通过系统调试深入领会系统的动静态特性, 并掌握控制系统的调试方法。 二.实验内容及结果: 1) 转速负反馈的单闭环直流调速系统。 转速负反馈单闭环调速系统的静特性为: 其中 为闭环系统的开环放大系数 要求输入信号U n *为阶跃信号,初值为0,终值为30,阶跃起始时刻为0时刻;负载电流为斜坡信号,斜率为1,起始时间为0,初始输出为0。仿真时间不小于20秒。设计转速调节器的参数,使得该闭环直流调速系统为有静差系统,理想空载转速为800r/min ,并计算其在I d =15时的闭环系统静态转速降落。即n ocl=800r/min ,又图中给出了Ks=30,* n U =30V ,a=0.02,Ce=0.127,代入方程得到参数 Kp=0.2419。其结构图及仿真的静特性。如下: 转速负反馈的单闭环直流调速系统的稳态结构图 转速负反馈单速度闭环调速系统的静特性 如图所示,电动机转速随着负载电流的增加线性下降,正好满足静特性方程的特点。当负载电流 Id=15时,代入静特性方程得静态转速降落为Δn cl=165.4r/min 2) 电压负反馈的单闭环直流调速系统 电压负反馈单闭环调速系统的静特性为: 其中K=γKpKs 为闭环系统的开环放大系数。 cl cl e d e * n s p e s p e d *n s p Δn n K C R I K C U K K α/C K K C R I U K K n -=+- +=+-=0)1()1()1(e s p C α K K K =e d a e d pe e n s p C I R K C I R K C U K K n -+-+=)1()1(*

单闭环电压负反馈调速

单闭环电压负反馈调速系统的动态建模与仿真 学院: 姓名: 学号: 时间:

目录 一、课题要求.............................................................................................................................. - 1 - 1.设计题目........................................................................................................................ - 1 - 2.设计内容........................................................................................................................ - 1 - 3.设计要求........................................................................................................................ - 1 - 4 . 控制对象参数................................................................................................................ - 1 - 二、设计方案.............................................................................................................................. - 2 - 1、概述................................................................................................................................ - 2 - 2、电压负反馈直流调速系统的原理................................................................................ - 2 - 三、参数计算.............................................................................................................................. - 3 - 四、单闭环电压负反馈调速系统的仿真模型.......................................................................... - 4 - 1. 单闭环电压负反馈调速系统的仿真模型的建立......................................................... - 4 - 2.开环带扰动无电压负反馈调速系统的仿真结果........................................................... - 5 - 3. 单闭环不带扰动电压负反馈调速系统的仿真结果..................................................... - 5 - 4. 单闭环带扰动电压负反馈调速系统的仿真结果......................................................... - 6 - 五、实训心得:.......................................................................................................................... - 8 -

原版单闭环直流调速系统

单闭环直流调速系统的设计与仿真 单回路的直流调速系统的设计和仿真 内容摘要:在对调速性能有较高要求的领域,如果直流电动机开环系统稳态性 能不满足要求,可利用速度负反馈提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统的静差,可利用积分调节器代替比例调节器。 通过对单闭环调速系统的组成部分可控电源、由运算放大器组成的调节器、晶闸管触发整流装置、电机模型和测速电机等模块的理论分析,比较原始系统和校正后系统的差别,得出直流电机调速系统的最优模型。然后用此理论去设计一个实际的调速系统,并用MATLAB仿真进行正确性的验证。 关键词:稳态性能稳定性开环闭环负反馈静差 The design and simulation of Single loop dc speed control system Abstract :In the higher demand for performance of speed, if the open loop dc system's steady performance does not meet the requirements, can use speed inverse feedback to improve steadystate precision, but although the speed inverse feedback system adopts proportion regulator,it still have off, in order to eliminate static, can use integral regulator to replace proportion regulator. Based on the theoretical analysis of the single closed loop system which is made up of controllable power, the regulator which is made up of operational amplifier, a rectifier triggered by thyristor , motor model and tachogenerators module, compare the difference of the open loop system and the closed loop system,the original system and the this paper compares the theory of open loop system and the closed-loop system, the difference of primitive system and calibrated system, conclude the optimal model of the dc motor speed control system. Then use this theory to design a practical control system, and verify the validity with MATLAB simulation. Key words: steady-statebehaviour stability open loop Close-loop feedback offset

带电流截至负反馈的转速单闭环直流调速系统

班级:10电气工程及其自动化三班 姓名: 学号: 题目: 带电流截至负反馈的转速单闭环直流调速系统 要求: 1.利用所学知识设计带电流截至负反馈的转速单闭环直流 调速系统;(10%) 2.设计过程中详细说明系统组成,单闭环直流调速系统的调 试方法和电流截至负反馈的整定;(10%) 3.使用MATLAB软件编写调试程序,分析调速系统的机械特性和转速单闭环调速系统的静特性;(30%) 4.要有详细原理说明和设计过程,方案以WORD文档的形式给出(30%) 5.课程总结,总结该课程的主要内容与相关实际应用。(20%) 作业成绩:

摘要 带电流截止负反馈的闭环直流调速系统的在对调速精度要求不高的,大功率容量的电机中的应用是非常广泛的,它具有控制简单方便,调速性能较好,设备成本低等的优点。本次设计主要介绍了单闭环不可逆直流调速系统的方案比较及其确定,主电路设计;控制电路设计;绘制原系统的动态结构图;绘制校正后系统的动态结构图;应用MATLAB软件对带电流截至负反馈的转速单闭环直流调速系统进行仿真,完善系统。 关键词:直流电机电流截止负反馈主电路控制电路

摘要 (1) 一、设计方案目的和意义 (3) 1.1设计的确定 (3) 1.2课程设计的目的和意义 (3) 二、课程设计内容 (4) 2.1设计要求 (4) 2.2设计主要内容 (4) 三、主电路设计 (4) 四、控制电路的设计 (6) 五、Matlab仿真及分析 (9) 5.1、matlab仿真图 (9) 5.2、仿真图分析 (14) 六、总结 (15)

题目: 带电流截至负反馈的转速单闭环直流调速系统 一、设计方案目的和意义 1.1设计的确定 控制电路采用转速单闭环调速系统控制,采用闭环系统可以比开环系统获得更硬的机械特性,而且静差率比开环是小得多,并且在静差率一定时,则闭环系统可以大大提高调速范围。但在闭环式必选设置放大器。如果只采用比例放大器的反馈控制系统,其被调量仍然是有静差的,这样的系统叫做有静差调速系统,它依赖于被调量的偏差进行控制,而反馈控制系统的作用是:抵抗扰动,服从给定,但反馈控制系统所能抑制的知识被反馈环包围的前向通道上的扰动。普通闭环直流调速系统及其存在的起动的冲击电流---直流电动机全电压起动时,如果没有限流措施,会产生很大的冲击电流,这不仅对电机换向不利的问题。电流截止负反馈的作用是在电动机发生超载或堵转的时候电流截止负反馈和给定信号相比较抵消。使电动机处于停止运行状态,以保护电机 1.2课程设计的目的和意义 通过本次课程设计了解单闭环不可逆直流调速系统的原理,组成及其各主要单元部件的原理。掌握晶闸管直流调速系统的一般调速过程。认识闭环反馈控制系统的基本特性。掌握交、直流电机的基本结构、原理、运行特性。掌握交、直流电动机的机械特性及起动、调速、制

不可逆单闭环直流调速系统静特性的研究

实验三不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图1-7。 四.实验设备及仪表 1.教学实验台主控制屏。 2.NMCL—31A组件 3.NMCL—33组件 4.NMEL—03组件 5.NMCL—18组件 6.电机导轨及测速发电机(或光电编码器)、直流发电机M01 7.直流电动机M03 8.双踪示波器 9.万用表 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。 5.系统开环连接时,不允许突加给定信号U g起动电机。 6.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 7.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的 调试(主电路未通电) (a)用示波器观察 NMCL—33的双脉冲观 察孔,应有双脉冲,且间 隔均匀,幅值相同;观察 每个晶闸管的控制极、阴 极电压波形,应有幅值为 1V~2V的双脉冲。 (b)触发电路输出 脉冲应在30°~90°范围 内可调。可通过对偏移电 压调节单位器及ASR输 出电压的调整实现。例 如:使ASR输出为0V, 调节偏移电压,实现 α=90°;再保持偏移电压 不变,调节ASR的限幅 电位器RP1,使α=30°。 2.求取调速系统在 无转速负反馈时的开环 工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且U g调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节直流发电机负载电阻,在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d,输出电流i d以及被测

单闭环转速负反馈直流调速系统

学号XXXXXXX 《电力拖动自动控制系统》 课程设计 (2008级本科) 题目:单闭环转速负反馈直流调速系统 系(部)院: 物理与机电工程学院 专业: 电气工程及其自动化 作者姓名: X X X 指导教师: X X X 职称: X X 完成日期: 2011 年 XX 月 XX 日

课程设计任务书 学生姓名XXX 学号XXXXXX 专业方向电气工程及其自动化班级XXX 题目名称单闭环转速负反馈直流调速系统 一、设计内容及技术要求: 设计一个单闭环转速负反馈直流调速系统; 1.使用简易的晶闸管整流桥V—M方式; 2.使用同步六脉冲触发器控制晶闸管整流桥; 3.形成的冲击电流较小; 4能在MATLAB/simulink平台上建立模型; 5.能够正确的调整系统各个模块的参数使之兼容; 6.能够有较好的仿真波形; 二、课程设计说明书撰写要求: 1.选用中小容量的电动机及其外围电路完成相应的功能。 2.用MATLAB/simulink实现软启动的功能。 3.给出设计思路、画出各程序适当的流程图。 4.给出所有参数确定的原因。 5.完成设计说明书(包括封面、目录、设计任务书、设计思路、硬件设计图、 程序流程框图、程序清单、所用器件型号、总结体会、参考文献)。 三、设计进度 第一周讨论论文题目 星期一上午查资料 星期一下午查找分析资料,确定各程序模块的功能 星期二至星期五 第二周 星期一至星期二完成硬件设计,算法流程图及建立模型 星期三至星期四完成设计,进行,调试,仿真并分析合理性 星期五答辩 指导教师签字:

目录 一、系统原理 (1) 二、系统仿真......................................... (2) 2.1系统的建模和模型仿真参数设置 (2) 2.1.1 6脉冲同步触发器子系统构建............................. (2) 2.1.2 主系统的建模和参数设置...................... . (4) 三、调试结果................................................ .. (14) 3.1示波器波形................................................ (14) 3.2比较波形................................................ .. (15) 四、总结 (17) 参考文献 (18) 电力拖动自动控制系统课程设计成绩评定表 (19)

实验1:不可逆单闭环直流调速系统静特性的研究(B5参考格式)

《运动控制系统》实验报告 姓名: 专业班级: 学号: 同组人: 实验一 不可逆单闭环直流调速系统静特性的研究 一、实验目的 1、了解转速单闭环直流调速系统的组成。 2、加深理解转速负反馈在系统中的作用。 3、研究直流调速系统中速度调节器ASR 的工作原理及其对系统静特性的影响。 4、测定晶闸管--电动机调速系统的机械特性和转速单闭环调速系统的静特性。 二、实验系统组成及工作原理 采用闭环调速系统,可以提高系统的动静态性能指标。转速单闭环直流调速系统是常用的一种形式。图1-1所示是不可逆转速单闭环直流调速系统的实验原理图。 图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路V 供电,通过与电动机同轴刚性联接的测速发电机TG 检测电动机的转速,并经转速反馈环节FBS 分压后取出合适的转速反馈信号U n ,此电压与转速给定信号U n *经速度调节器ASR 综合调节,ASR 的输出作为移相触发器GT 的控制电压U ct ,由此组成转速单闭环直流调速系统。 在本系统中ASR 采用比例—积分调节器,属于无静差调速系统。 图中DZS 为零速封锁器,当转速给定电压U n *和转速反馈电压U n 均为零时,DZS 的输出信号使转速调节器ASR 锁零,以防止调节器零漂而使电动机产生爬行。 RP 给定 图1-1 不可逆转速单闭环直流调速系统

三、实验注意事项 1. 直流电动机M03参数为:P N =185W ,U N =220V ,I N =1.1A ,n =1500r/min 。 2. 直流电动机工作前,必须先加上直流激励。 3. 系统开环以及单闭环起动时,必须空载,且不允许突加给定信号U g 起动电机,每次起动时必须慢慢增加给定,以免产生过大的冲击电流,更不允许通过突合主回路电源开关SW 起动电机。 4. 测定系统开环机械特性和闭环静特性时,须注意电枢电流不能超过电机额定值1A 。 5. 单闭环连接时,一定要注意给定和反馈电压极性。 四、实验内容 1、晶闸管--电动机系统开环机械特性及控制特性的测定 (1)连接晶闸管—电动机系统为开环控制,不必使用转速调节器ASR ,可将给定电压U g (开环时给定电压称为U g ,闭环后给定电压称为U n *)直接接到触发单元GT 的输入端(U ct ),电动机和测功机分别加额定励磁。 (2)测定开环系统控制特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,在0~1500r/min 之间记录几组 (3)测定开环机械特性时,须先使电动机空载(测功机负载回路开路),慢慢加给定电压U g ,使电动机转速慢慢上升至额定转速1500r/min ,然后合上负载开关SL ,改变负载变阻器R g 的阻值,使主回路电流达到额定电流I N ,此时即为额定工作点(n =n N =1500r/min ,I d =I N =1A )。然后减小负载变阻器R g 阻值,使主回路负载从额定负载减少至空载,记录几组转速 n 和负载转矩T 的数据,并在图1-3所示坐标系中画出开环机械特性曲线。 U g e 图1-2 开环控制特性曲线 图1-3 开环机械特性曲线

单闭环直流调速系统的设计与仿真实验报告

比例积分控制的单闭环直流调速系统仿真 一、实验目的 1.熟练使用MATLAB 下的SIMULINK 仿真软件。 2.通过改变比例系数K P 以及积分时间常数τ的值来研究K P 和τ对比例积分控制的直流调速系统的影响。 二、实验内容 1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 三、实验要求 建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。 四、实验原理 图4-1 带转速反馈的闭环直流调速系统原理图 调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控

制,可以有效的抑制甚至消除扰动造成的影响。 当t=0时突加输入U in时,由于比例部分的作用,输出量立即响应,突跳到U ex(t)=K P U in,实现了快速响应;随后U ex(t)按积分规律增长,U ex(t)=K P U in+ (t/τ)U in。在t=t1时,输入突降为0,U in=0,U ex(t)=(t1/τ)U in,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。 五、实验各环节的参数及K P和1/τ的参数的确定 各环节的参数: 直流电动机:额定电压U N=220V,额定电流I dN=55A,额定转速n N=1000r/min,电动机电动势系数C e= min/r。 假定晶闸管整流装置输出电流可逆,装置的放大系数K s=44,滞后时间常数T s=。 电枢回路总电阻R=Ω,电枢回路电磁时间常数T l=电力拖动系统机电时间常数 T m=。 转速反馈系数α= min/r。 对应额定转速时的给定电压U n?=10V。 稳态性能指标D=20,s 5% 。 K P和1/τ的参数的确定: PI调节器的传递函数为 W PI(s)=K Pτs+1 τs =K P τ1s+1 τ1s 其中,τ1=K Pτ。 (1)确定时间常数 1)整流装置滞后时间常数T s=0.00167s;2)转速滤波时间常数T on=0.001s;

单闭环直流调速系统

单闭环直流调速系统 一、实验目的 1.掌握用PID控制规律的直流调速系统的调试方法; 2.了解PWM调制、直流电机驱动电路的工作原理。 二、实验设备 1.THKKL-6型控制理论及计算机控制技术实验箱; 2.PC机1台(含软件“THKKL-6”、“Keil uVision3”及“Easy 51Pro”); 3.51单片机下载线 4.USB数据线; 三、实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅(晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1 PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用PWM控制集成芯片,其内部电路结构及各引脚如图13-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

单闭环控制系统设计及仿真要点

单闭环控制系统设计及仿真 班级电信2014 姓名张庆迎 学号142081100079

摘要直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 关键词直流电机直流调速系统速度调节器电流调节器双闭环系统 一、单闭环直流调速系统的工作原理 1、单闭环直流调速系统的介绍 单闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。 2、双闭环直流调速系统的介绍 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图1—1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称

题目:单闭环不可逆直流调速系统设计

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ·························································································································- 1 -第二章英文摘要 ·····························································································错误!未定义书签。第三章课程设计的目的和意义 ··································································································- 1 -1.电力拖动简介····················································································································- 1 - 2.课程设计的目的和意义 ·······································································································- 2 -第四章课程设计内容··················································································································- 2 -第五章方案确定 ·························································································································- 3 - 5.1方案比较的论证·············································································································- 3 - 5.1.1总体方案的论证比较···························································································- 3 - 5.1.2主电路方案的论证比较·······················································································- 4 - 5.1.3控制电路方案的论证比较 ···················································································- 6 -第六章主电路设计 ·····················································································································- 7 - 6.1主电路工作设备选择 ·····································································································- 7 -第七章控制电路设计··················································································································- 8 -第八章结论······························································································································· - 11 -第九章参考文献 ······················································································································· - 11 -

相关文档
相关文档 最新文档