文档库 最新最全的文档下载
当前位置:文档库 › 土壤饱和导水率测定——环刀法资料讲解

土壤饱和导水率测定——环刀法资料讲解

土壤饱和导水率测定——环刀法资料讲解
土壤饱和导水率测定——环刀法资料讲解

土壤饱和导水率测定——环刀法

1.测定意义:

土壤饱和导水率(土壤渗透率):单位水势梯度下水分通过垂直于水流方向的单位截面积饱和土壤水的流速。土壤处水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。

土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。

2. 测定原理

土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤饱和导水率(渗透系数)根据达西(H. Darcy)定律:

(1)

公式中:

K——饱和导水率(渗透系数),cm/s;

Q——流量,渗透过一定截面积S(cm2)的水量,mL;

L——饱和土层厚度,渗透经过的距离,cm;

S——环刀横截面积,cm2;

t——渗透过水量Q时所需的时间,s;

h——水层厚度,水头(水位差),cm。

饱和导水率(渗透系数)K的量纲为cm/s或mm/min或cm/h或m/d。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)

是土壤所特有的常数。

3 . 仪器

环刀(容积100cm3),量筒(100mL、10ml),烧杯(100mL),漏斗,秒表,温度计。

4. 操作步骤

4.1 在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8 h~12h,粘土浸24h。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。

4.2 在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。

4.3 向上面的空环刀中加水,水面比环刀口低1mm,水层厚5cm。

4.4 加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用100mL或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。

4.5 试验一般持续时间约1h才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。

5.计算结果

5.1渗出水总量按式(2)计算:

(2)

式中:

Q——渗出水总量,mm;

Q1、Q2、Q3……Qn——每次渗出水量,mL,即cm3;

S——渗透筒的横截面积,cm2;

10——由cm换算成mm所乘倍数。

土壤饱和导水率测定环刀法

土壤饱和导水率测定——环刀法 1.测定意义: 土壤饱和导水率(土壤渗透率):单位水势梯度下水分通过垂直于水流方向的单位截面积饱和土壤水的流速。土壤处水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。?饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。 2. 测定原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤饱和导水率(渗透系数)根据达西(H.?Darcy)定律: (1) 公式中:? K——饱和导水率(渗透系数),cm/s;? Q——流量,渗透过一定截面积S(cm2)的水量,mL; L——饱和土层厚度,渗透经过的距离,cm;? S——环刀横截面积,cm2;? t——渗透过水量Q时所需的时间,s;? h——水层厚度,水头(水位差),cm。? 饱和导水率(渗透系数)K的量纲为cm/s或mm/min或cm/h或m/d。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 3?. 仪器?

环刀(容积100cm3),量筒(100mL、10ml),烧杯(100mL),?漏斗,?秒表,??温度计。? 4.??操作步骤? 4.1????在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8?h~12h,粘土浸24h。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。??? 4.2????在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。 ?4.3????向上面的空环刀中加水,水面比环刀口低1mm,水层厚5cm。??? 4.4????加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用100mL或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。??? 4.5????试验一般持续时间约1h才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。 5.计算结果 5.1渗出水总量按式(2)计算: (2) 式中:? Q——渗出水总量,mm;? Q1、Q2、Q3……Qn——每次渗出水量,mL,即cm3;? S——渗透筒的横截面积,cm2; 10——由cm换算成mm所乘倍数。 5.2 渗透速度按式(3)计算: (3) ?式(3)中:?

灌砂法及环刀法测压实度(带计算过程)

灌砂法测压实度 最大干密度1.861g/cm3最佳含水率10.6% 椎体砂质量728克 标准砂密度1.344g/cm3环刀体积200cm3一、灌砂法 1、(灌砂筒质量+砂质量)-(剩余筒+砂质量)-椎体砂质量=洞内砂质量 2、洞内砂质量÷标准砂密度=洞体积 3、湿土质量÷洞体积=湿密度 4、湿密度÷(1+含水率%)=干密度 5、干密度÷最大干密度=压实度 二、环刀法 1、称量环刀质量 2、(环刀+湿土质量)-环刀质量=刀内湿土质量 3、刀内湿土质量÷环刀体积=湿密度 4、湿密度÷(1+含水率%)=干密度 5、干密度÷最大干密度=压实度 三、测含水率简易方法 1、先称量铁盒质量; 2、把取得的湿土,取出适当量放进铁盒内称量(盒+湿土)质量; 3、(铁盒+湿土)-铁盒=湿土质量 4、把酒精倒进铁盒刚没过湿土,点燃酒精可以轻轻搅拌。待酒精熄灭后再次加入酒精点燃。观察土是否已干。 5、称量(铁盒+干土)质量 6、(铁盒+湿土)-(铁盒+干土)=水质量 7、(铁盒+干土)-铁盒质量=干土质量 8、水质量÷干土质量=含水率

一、试验内容及要求: 路基路面施工或验收时对其施工压实质量进行检测,通过试验要求学生掌握路基路面压实度检测的各种方法,并能熟练进行现场检测。 灌砂法是利用均匀颗粒的砂去置换试洞的体积,它是当前最通用的方法,很多工程都把灌砂法列为现场测定密度的主要方法。该方法可用于测试各种土或路面材料的密度,它的缺点是:需要携带较多的量砂,而且称量次数较多,因此它的测试速度较慢。采用此方法时,应符合下列规定: (1)当集料的最大料径小于15cm、测定层的厚度不超过150mm时,宜采用 100mm的小型灌砂筒测试。 (2)当集料的粒径等于或大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用 150mm的大型灌砂筒测试。 二、试验仪具与材料(1)灌砂筒; (2)金属标定罐;灌砂筒的主要尺寸 结构小型灌砂筒大型灌砂筒 储砂筒直径(mm)100 150 容积(cm3)2120 4600 流砂孔直径(mm) 10 15 金属标定罐内径(mm)100 150 外径(mm)150 200 金属方盘基板边长(mm)350 400 深(mm) 40 50 中孔直径(mm) 100 150 注:如集料的最大粒径超过40mm,则应相应地增大灌砂筒和标定罐的尺寸。如集料的最大粒径超过60mm,灌砂筒和现场试洞的直径应为200mm。(3)基板;(4)玻璃板;(5)试样盘;(6)天平或台秤;(7)含水量测定器具;(8)量砂;(9)盛砂的容器;(10)其他。 三、试验方法与步骤 (1)标定筒下部圆锥体内砂的质量 ①在灌砂筒筒口高度上,向灌砂筒内装砂至距筒顶15mm左右为止。称取装入筒内砂的质量,准确至1g。以后每次标定及试验都应该维持装砂高度与质量不变。 ②将开关打开,让砂自由流出,并使流出砂的体积与工地所挖试坑内的体积相当(可等于标定灌的容积),然后关上开关,称灌砂筒内剩余砂质量,准确至1g。 ③不晃动储砂筒的砂,轻轻地将灌砂筒移至玻璃板,将开关打开,让砂流出,直到筒内砂不再下流时,将开关关上,并细心地取走灌砂筒。

土壤—饱和导水率(渗透系数)的测定—渗透筒法pdf

FHZDZTR0020 土壤 饱和导水率(渗透系数)的测定 渗透筒法 F-HZ-DZ-TR-0020 土壤—饱和导水率(渗透系数)的测定—渗透筒法 1 范围 本方法适用于田间土壤饱和导水率(渗透系数)的测定。 2 原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤的饱和导水率(渗透系数)是根据达西(H. Darcy )定律: K =h t S L Q ×××……(1) 式(1)中: K ——饱和导水率(渗透系数),cm/s ; Q ——流量,渗透过一定截面积S (cm 2)的水量,mL ; L ——饱和土层厚度,渗透经过的距离,cm ; S ——渗透筒的横截面积,cm 2; t ——渗透过水量Q 时所需的时间,s ; h ——水层厚度,水头(水位差),cm 。 饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。饱和导水率(渗透系数)K 的量纲为cm/s 或mm/min 或cm/h 或m/d 。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 图1 渗透筒Q =K ×S ×t ×h /L 3 仪器 3.1 渗透筒(图1)。 3.2 量筒,500mL 。 3.3 烧杯,400mL 。 3.4 漏斗。 3.5 秒表。 3.6 温度计。 4 操作步骤 4.1 测定深度:根据土壤发生层次(A 、B 、C )进行测定,每一层次要重复 测定5次。 A 层测定主要用作设计防止土壤侵蚀的措施及制定灌溉制度。 B 层测定用作设计防止土壤侵蚀的措施及预测该层土壤水分可能停滞的 情况,鉴定该层的坚实度和碱化度,并可鉴定该层是否适于作临时灌溉和固 定灌溉渠槽。 C 层测定结果可以提供土壤保水情况及鉴定是否可以作为大型灌溉渠 道、渠槽的资料。 4.2 在选定的试验地上,用渗透筒采取原状土,取土深度为10cm ,将垫有滤 纸的底筛网盖好,带回室内待测定。 4.3 将渗透筒浸入水中,注意水面不要超过土柱。一般砂土浸4h~6h ,壤土浸8h~12h ,粘土浸24h 。 4.4 在预定时间将渗透筒取出,挂在适当位置,待重力水滴完后装上漏斗,漏斗下接一烧杯。

土壤饱和导水率的田间测定

土壤饱和导水率的田间测定① 朱安宁 张佳宝 陈德立(南京农业大学资源与环境科学学院 南京 210095) (中国科学院南京土壤研究所) (澳大利亚墨尔本大学) 摘 要 本文简述了圆盘渗透仪(disc permeameter)在田间条件下测定土壤饱和导水率的原理及方法。该方法在测定时田间土壤饱和导水率附加了一个负压Ψo,因而可以控制土壤入渗孔隙的孔径大小、排除土壤裂缝和蚯蚓孔洞对测定的影响,具有操作简便,测定精度高等优点。 关键词 圆盘渗透仪;土壤饱和导水率;田间;测定 土壤饱和导水率是土壤重要的物理性质之一〔1〕。它是计算土壤剖面中水的通量和设计灌溉、排水系统工程的一个重要土壤参数〔2〕。但是,田间现场测定土壤饱和导水率(K s)一直是土壤水动力学研究中的一大难题,耗时费力,给土壤水动力学特性的研究带来诸多不便。目前,土壤饱和导水率测定的方法很多,室内有定水头渗透仪法、变水头渗透仪法等;田间现场测定比较成功的方法是采用双环法,该方法一般只用于测定表土层的入渗能力〔3〕,但耗水量大,实际操作很麻烦。 圆盘渗透仪(disc permeameter)用来测定土壤饱和导水率,前人都是通过田间取样,然后在实验室内完成。但是,由于土壤的空间变异性较大,往往不易得到精确的结果,因此如何使实验土柱内的土样和天然情况下一致,以及如何使土样有足够的代表性是应用此方法进行测定必须慎重考虑的问题〔3〕。用圆盘渗透仪(disc permeameter)在田间现场测定土壤饱和导水率是一种方便实用的新方法,基本上解决了土壤饱和导水率在田间测定难的问题。该方法需要测定点的区域比双环法更小,且省时、省力、省水,一般一天能测10个点左右,而且可以测定地下水位以上的任意深度土层的饱和导水率。并能排除土壤裂缝、蚯蚓孔及根孔等大孔隙对测定的影响。该方法在澳大利亚已经得到广泛应用,这里就澳大利亚悉尼生产的CSIRO圆盘渗透仪(如图1)在田间测定土壤饱和导水率的基本原理和方法作一简单介绍。并通过对河南封丘地区的田间实测数据的分析,介绍一种关于土壤饱和导水率的简单计算方法。这种测定方法在我国土壤方面的应用刚刚开始不久,随着节水农业研究的不断深入,以及为农业可持续发展和改善农田环境而进行的土壤溶质运移与地下水污染研究的不断展开,快速、方便、准确地监测田间土壤饱和导水率已成为急需解决的问题。因此,作者相信,用圆盘渗透仪测定田间土壤饱和导水率的方法在土壤水动力学研究领域中的应用将会越来越广泛。 1 圆盘渗透仪在田间测定土壤饱和导水率的原理和方法 1.1 测定原理 ①ACIAR项目资助(L WR1/96/164)和国家重点基础研究发展规划项目资助(G1999011803).

土壤饱和导水率

1、引言 土壤饱和导水率是土壤重要的物理性质之一,它是计算土壤剖面中水的通量和设计灌溉、排水系统工程的一个重要土壤参数,也是水文模型中的重要参数,它的准确与否严重影响模型的精度。下文介绍了确定饱和导水率的三类方法:按公式计算,实验室测定和田间现场测定,并对其研究现状进行分析,对同类研究有重要的参考价值。饱和导水率由于土壤质地、容重、孔隙分布以及有机质含量等空间变量的影响空间变异强烈。 王小彬等[1]研究了容重及粒径大小对土壤持水性的影响,并对各种物料处理(或措施)的保水效果及其对土壤持水特征的影响进行了探讨。研究结果表明,随着容重的增大,土壤的饱和导水率迅速下降;刘洪禄、杨培岭等[2]研究了波涌灌溉土壤表面密实层饱和导水率k与土壤机械组成、土壤容重、供水中断时间的定量关系。研究结果表明,随着容重的增加,饱和导水率逐渐减小,但随着黏粒含量的增加,饱和导水率的变化率变小;吕贻忠等[3]针对鄂尔多斯沙地生物结皮进行调查,利用人工喷水模拟降雨分析结皮对土壤入渗性能的影响。结果表明,3种土壤的饱和导水率随着土壤剖面深度的增加呈现出上土层高中间土层低、底土层又升高的趋势,扰动土与原状土的饱和导水率差异较大,达到显着水平,土壤容重、孔隙度、有机质含量、黏粒含量和全盐含量等均对土壤饱和导水率有一定的影响;Helalia认为有效孔隙率与土壤饱和导水率相关性明显。 单秀枝[4]通过测定并分析不同有机质含量的壤质土样的饱和导水率、水分特征曲线、水分扩散率及几个水分常数,研究结果表明,随着有机质含量的增加,土壤饱和导水率呈抛物线变化,当有机质含量为15 g/kg时,饱和导水率达到最大值。汪志荣、张建丰等[5]根据不同温度条件下的入渗资料,分析了活塞(Green Ampt)公式在温度场中的适用性,认为 Green-Ampt公式适用于温度场影响下的土壤水分运动;Hopmans和Duley[6]研究了土壤温度对土壤特性的影响,结论表明,随着温度的增加,土壤饱和导水率增大。邓西民等[7]在实验室对北京壤质黏土犁底层原状土柱进行模拟冻融处理,观测冻融对其容重、孔隙度、导水率的影响。研究结

环刀法测定压实度

一、目的和适用范围 1、本方法规定在公路工程现场用环刀法测定土基及路面材料的密度及压实度。 2 、本方法适用于细粒土及无机结合料稳定细粒土的密度。但对无机结合料稳定细粒土,其龄期不宜超过 2d ,且宜用于施工过程中的压实度检验。 二、仪具与材料 本试验需要下列仪具与材料: 1 、人工取土器:包括环刀、环盖、定向筒和击实锤系统(导杆、落锤、手柄)。 2 、天平:感量(用于取芯头内径小于 70mm 样品的称量),或(用于取芯头内径 100mm 样品的称量)。 3 、其它:镐、小铁锹、修土刀、毛刷、直尺、钢丝锯、凡士林、木板及测定含水量设备等。 三、方法与步骤 1 、按有关试验方法对检测试样用同种材料进行击实试验,得到最大干密度 ( ρ dmax ) 及最佳含水量 ( w 0 ) 。 2 、用人工取土器测定砂性土或砂层密度时的步骤:

( 1 )擦净环刀,称取环刀质量 M 2 ,准确至 0 . 1g. ( 2 )在试验地点,将面积约 30cm × 30cm 的地面清扫干净,并 将压实层铲表面浮动及不平整的部分,达一定深度,使环刀打下后, 能达到要求的取土深度,但不得将下层扰动。 ( 3 )将定向筒齿钉固定于铲平的地面上,顺次将环刀、环盖放入 定向筒内与地面垂直。 ( 4 )将导杆保持垂直状态,用取土器落锤将环刀打入压实层中, 至环盖顶面与定向筒上口齐平为止。 ( 5 )去掉击实锤和定向筒,用镐将环刀试样挖出。 ( 6 )轻轻取下环盖,用修土刀自边至中削去环刀两端余土,用直 尺检测直至修平为止。 ( 7 )擦净环刀壁,用天平称取出环刀及试样合计质量 M 1 ,准确 至 0 . 1g . ( 8 )自环刀中取出试样,取具有代表性的试样,测定其含水量 ( w )。 3 、本试验须进行两次平行测定,其平行差值不得大于 0 . 03g /cm 3 。求其算术平均值。 三、计算 按式(4--10)计算试验的含水量。

环刀法测量压实度的方法

环刀法测量压实度的方法 一、目的和适用范围:1、本方法规定在公路工程现场用环刀法测定土基及路面材料的密度及压实度。2、本方法适用于细粒土及无机结合料稳定细粒土的密度。但对无机结合料稳定细粒土,其龄期不宜超过2d,且宜用于施工过程中的压实度检验。 二、仪具与材料本试验需要下列仪具与材料: 1、人工取土器:见图4-6,包括环刀、环盖、定向筒和击实锤系统(导杆、落锤、手柄)。环刀内径6~8cm,高2~3cm。壁厚1.5~2mm。 2、电动取土器:如图4-7所示。由底座、行走轮、立柱、齿轮箱、升降机构、取芯头等组成。(1)底座:由底座平台(16)、定位销(15)、行走轮(14)组成。平台是整个仪器的支撑基础;定位销供操作时仪器定位用;行走轮供换点取芯时仪器近距离移动用,当定位时四只轮子可扳起离开地表。(2)立柱:由立柱(1)与立柱套(11)组成,装在底座平台上,作为升降机构、取芯机构、动力和传动机构的支架。(3)升降机构:由升降手轮(9)、锁紧手柄(8)组成,供调整取芯机构高低用。松开锁紧手柄,转动升降手轮,取芯机构即可升降,到所需位置时拧紧手柄定位。(4)取芯机构:由取芯头(10)、升降轴(2)组成,取芯头为金属圆筒,下口对称焊接两个合金钢切削刀头,上端面焊有平盖,其上焊螺母,靠螺旋接于升降轴上。取芯头为可换式,有三种规格,即50mm×50mm、70mm×70mm、100mm×100mm,另配有相应的取芯套筒、扳手、铅盒等。(5)动力和传动机构:主要由直流电机(4)、调速器(12)、齿轮箱组成。另配电瓶和充电器。当电机工作时,通过齿轮箱的齿轮将动力传给取芯机构,升降轴旋转,取芯头进入旋切工作状态。(6)电动取土器主要技术参数为:工作电压DC24V(36A·h);转速度50~70r/min,无级调速;整机质量约35kg。图4-7电动取土器1-立柱;2-升降轴;3-电源输入;4-直流电机;5-升降手柄;6、7-电源指示;8-锁紧手柄;9-升降手轮;10-取芯头;11-立柱套;12-调速器;13-电瓶;14-行走轮;15-定位销;16-底座平台 3、天平:感量0.1g(用于取芯头内径小于70mm样品的称量),或1.0g(用于取芯头内径100mm样品的称量)。 4、其它:镐、小铁锹、修土刀、毛刷、直尺、钢丝锯、凡士林、木板及测定含水量设备等。三、方法与步骤1、按有关试验方法对检测试样用同种材料进行击实试验,得到最大干密度(ρdm)及最佳含水量(w0)。2、用人工取土器测定粘性土及无机结合料稳定细粒土密度的步骤:(1)擦净环刀,称取环刀质量M2,准确至0.1g.(2)在试验地点,将面积约30cm×30cm的地面清扫干净,并将压实层铲表面浮动及不平整的部分,达一定深度,使环刀打下后,能达到要求的取土深度,但不得将下层扰动。(3)将定向筒齿钉固定于铲平的地面上,顺次将环刀、环

土壤饱和导水率测定环刀法精修订

土壤饱和导水率测定环 刀法 标准化管理部编码-[99968T-6889628-J68568-1689N]

土壤饱和导水率测定——环刀法 1.测定意义: 土壤饱和导水率(土壤渗透率):单位水势梯度下水分通过垂直于水流方向的单位截面积饱和土壤水的流速。土壤处水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。 2. 测定原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤饱和导水率(渗透系数)根据达西(H. Darcy)定律: K=K×K (1) S×t×h 公式中: K——饱和导水率(渗透系数),cm/s; Q——流量,渗透过一定截面积S(cm2)的水量,mL; L——饱和土层厚度,渗透经过的距离,cm; S——环刀横截面积,cm2; t——渗透过水量Q时所需的时间,s;

h——水层厚度,水头(水位差),cm。 饱和导水率(渗透系数)K的量纲为cm/s或mm/min或cm/h或m/d。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 3. 仪器? 环刀(容积100cm3),量筒(100mL、10ml),烧杯(100mL),漏斗,秒表,温度计。 4.操作步骤 4.1在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8h~12h,粘土浸24h。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。 4.2?在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。 4.3向上面的空环刀中加水,水面比环刀口低1mm,水层厚5cm。 4.4?加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用100mL或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。 4.5?试验一般持续时间约1h才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。 5.计算结果 5.1渗出水总量按式(2)计算: K=(Q1+Q2+Q3+?+Qn)×10 (2) S 式中: Q——渗出水总量,mm;

土壤饱和导水率测定——环刀法

土壤饱和导水率测定——环刀法1.测定意义: 土壤饱和导水率(土壤渗透率):单位水势梯度下水分通过垂直于水流方向的单位截面积饱和土壤水的流速。土壤处水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。 2. 测定原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤饱和导水率(渗透系数)根据达西(H.Darcy)定律: K=K×K (1) S×t×h 公式中: K——饱和导水率(渗透系数),cm/s; Q——流量,渗透过一定截面积S(cm2)的水量,mL; L——饱和土层厚度,渗透经过的距离,cm; S——环刀横截面积,cm2; t——渗透过水量Q时所需的时间,s;

h——水层厚度,水头(水位差),cm。 饱和导水率(渗透系数)K的量纲为cm/s或mm/min或cm/h或m/d。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 3. 仪器 环刀(容积100cm3),量筒(100mL、10ml),烧杯(100mL),漏斗,秒表,温度计。 4.操作步骤 在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8h~12h,粘土浸24h。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。 在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。 向上面的空环刀中加水,水面比环刀口低1mm,水层厚5cm。 加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用100mL 或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。 试验一般持续时间约1h才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。

环刀法压实度试验

§ 4 — 3 环刀法测定压实度试验 一、目的和适用范围 ?本方法规定在公路工程现场用环刀法测定土基及路面材料的密度及压实度。 2 、本方法适用于细粒土及无机结合料稳定细粒土的密度。但对无机结合料稳定细粒土,其龄期不宜超过 2d ,且宜用于施工过程中的压实度检验。 二、仪具与材料 本试验需要下列仪具与材料: 1 、人工取土器:见图 4-6 ,包括环刀、环盖、定向筒和击实锤系统(导杆、落锤、手柄)。环刀内径 6~8cm ,高 2~3 cm 。壁厚 1.5~ 2 mm 。 2 、电动取土器:如图 4-7 所示。由底座、行走轮、立柱、齿轮箱、升降机构、取芯头等组成。 ( 1 )底座:由底座平台( 16 )、定位销( 15 )、行走轮( 14 )组成。平台是整个仪器的支撑基础;定位销供操作时仪器定位用;行走轮供换点取芯时仪器近距离移动用,当定位时四只轮子可扳起离开地表。 ( 2 )立柱:由立柱( 1 )与立柱套( 11 )组成,装在底座平台上,作为升降机构、取芯机构、动力和传动机构的支架。 ( 3 )升降机构:由升降手轮( 9 )、锁紧手柄( 8 )组成,供调整取芯机构高低用。松开锁紧手柄,转动升降手轮,取芯机构即可升降,到所需位置时拧紧手柄定位。 ( 4 )取芯机构:由取芯头( 10 )、升降轴( 2 )组成,取芯头为金属圆筒,下口对称焊接两个合金钢切削刀头,上端面焊有平盖,其上焊螺母,靠螺旋接于升降轴上。取芯头为可换式,有三种规格,即50mm × 50mm 、70mm × 70mm 、100mm × 100mm ,另配有相应的取芯套筒、扳手、铅盒等。 ( 5 )动力和传动机构:主要由直流电机( 4 )、调速器( 12 )、齿轮箱组成。另配电瓶和充电器。当电机工作时,通过齿轮箱的齿轮将动力传给取芯机构,升降轴旋转,取芯头进入旋切工作状态。 ( 6 )电动取土器主要技术参数为: 工作电压 DC24V (36A · h ); 转速度 50~70r/min ,无级调速;

环刀法压实度试验

环刀法测定压实度 一、目的和适用范围 1、本方法规定在公路工程现场用环刀法测定土基及路面材料的密度及压实度。 2 、本方法适用于细粒土及无机结合料稳定细粒土的密度。但对无机结合料稳定细粒土,其龄期不宜超过 2d ,且宜用于施工过程中的压实度检验。 二、仪具与材料 本试验需要下列仪具与材料: 1 、人工取土器:包括环刀、环盖、定向筒和击实锤系统(导杆、落锤、手柄)。 2 、天平:感量 0.1g (用于取芯头内径小于 70mm 样品的称量),或 1.0g (用于取芯头内径 100mm 样品的称量)。 3 、其它:镐、小铁锹、修土刀、毛刷、直尺、钢丝锯、凡士林、木板及测定含水量设备等。 三、方法与步骤 1 、按有关试验方法对检测试样用同种材料进行击实试验,得到最大干密度 ( ρdmax ) 及最佳含水量 ( w 0 ) 。 2 、用人工取土器测定砂性土或砂层密度时的步骤: ( 1 )擦净环刀,称取环刀质量 M 2 ,准确至 0 . 1g. ( 2 )在试验地点,将面积约30cm × 30cm 的地面清扫干净,并将压实层铲表面浮动及不平整的部分,达一定深度,使环刀打下后,能达到要求的取土深度,但不得将下层扰动。 ( 3 )将定向筒齿钉固定于铲平的地面上,顺次将环刀、环盖放入定向筒内与地面垂直。 ( 4 )将导杆保持垂直状态,用取土器落锤将环刀打入压实层中,至环盖顶面与定向筒上口齐平为止。 ( 5 )去掉击实锤和定向筒,用镐将环刀试样挖出。 ( 6 )轻轻取下环盖,用修土刀自边至中削去环刀两端余土,用直尺检测直至修平为止。 ( 7 )擦净环刀壁,用天平称取出环刀及试样合计质量 M 1 ,准确至 0 . 1g . ( 8 )自环刀中取出试样,取具有代表性的试样,测定其含水量( w )。

土壤饱和导水率(渗透系数)测定、渗透仪法

FHZDZTR0022 土壤饱和导水率(渗透系数)的测定饱和导水率仪法 F-HZ-DZ-TR-0022 土壤—饱和导水率(渗透系数)的测定—饱和导水率仪法 1 范围 本方法适用于室内土壤饱和导水率(渗透系数)的测定。 2 原理 应用饱和导水率仪在被测土样(水饱和)上下两端保持一定的压力差,使水流自下而上流经土样,测定一定时间间隔流经土样的水量,根据达西定律即可计算出土壤饱和导水率(渗透系数)。对于一般土壤,采用恒水头装置的饱和导水率仪测定,其水头差保持不变,流经土样的水流速度是稳定的。对导水率小的粘质土壤,采用变水头装置的饱和导水率仪测定,在土样的两端造成较大的压力差,其压力差随时间的推移而变化。 3 仪器 3.1 恒水头饱和导水率测定仪(图1)。 图1 恒水头饱和导水率仪 3.2 水位电子测计。 3.3 集水圆筒。 3.4 温度计。 3.5 环刀,容积100cm3或250cm3。 4 操作步骤 4.1 采样:用环刀在表层或分层采集有代表性的土样,砂土重复取样3个~5个,粘土取样5个~10个。取好的土样要避免运输时的振动和水分的损失。粘土土样需用刀尖小心将土样底部剔毛,以恢复土壤的自然结构。 4.2 浸泡:在土样底部放一层滤纸,用纱布小心地将土样的底部包扎好,上端套上集水圆筒,放入水槽中浸泡使之饱和。槽中的水平面约高出土样顶部1cm,浸泡1d~3d,浸泡时间视土质而定,土质粘重的土壤时间需长些。 4.3 测定:将饱和后的土样置于容器的托板上。用水位调节器上下移动调节至水位调节器的水位和容器中的水位一致,使集水圆筒内、外保持一个固定水头差(仪器水头差范围2mm~20mm),其大小视土壤质地而定,粘重土壤水头差应大些。当土样顶部出现水层时,连接虹吸管(管内充满水,且不能有气泡),将集水圆筒内的水导入漏斗,流入量管。取一定时间间隔(根据流速自行确定),记录不同时段内量管中的水量,直到单位时间流量基本稳定时,该水量为恒定的水流量,此时记录3次~5次作计算用。 4.4 用水位电测计准确测量集水圆筒内、外的水头差。再用温度计测量水温。

灌砂法及环刀法测压实度(带计算过程)

灌砂法及环刀法测压实度(带计算过程)

灌砂法测压实度 最大干密度1.861g/cm3最佳含水率10.6% 椎体砂质量728克 标准砂密度1.344g/cm3环刀体积200cm3一、灌砂法 1、(灌砂筒质量+砂质量)-(剩余筒+砂质量)-椎体砂质量=洞内砂质量 2、洞内砂质量÷标准砂密度=洞体积 3、湿土质量÷洞体积=湿密度 4、湿密度÷(1+含水率%)=干密度 5、干密度÷最大干密度=压实度 二、环刀法 1、称量环刀质量 2、(环刀+湿土质量)-环刀质量=刀内湿土质量 3、刀内湿土质量÷环刀体积=湿密度 4、湿密度÷(1+含水率%)=干密度 5、干密度÷最大干密度=压实度 三、测含水率简易方法 1、先称量铁盒质量; 2、把取得的湿土,取出适当量放进铁盒内称量(盒+湿土)质量; 3、(铁盒+湿土)-铁盒=湿土质量 4、把酒精倒进铁盒刚没过湿土,点燃酒精可以轻轻搅拌。待酒精熄灭后再次加入酒精点燃。观察土是否已干。 5、称量(铁盒+干土)质量 6、(铁盒+湿土)-(铁盒+干土)=水质量 7、(铁盒+干土)-铁盒质量=干土质量 8、水质量÷干土质量=含水率

一、试验内容及要求: 路基路面施工或验收时对其施工压实质量进行检测,通过试验要求学生掌握路基路面压实度检测的各种方法,并能熟练进行现场检测。 灌砂法是利用均匀颗粒的砂去置换试洞的体积,它是当前最通用的方法,很多工程都把灌砂法列为现场测定密度的主要方法。该方法可用于测试各种土或路面材料的密度,它的缺点是:需要携带较多的量砂,而且称量次数较多,因此它的测试速度较慢。采用此方法时,应符合下列规定: (1)当集料的最大料径小于15cm、测定层的厚度不超过150mm时,宜采用100mm的小型灌砂筒测试。 (2)当集料的粒径等于或大于15mm,但不大于40mm,测定层的厚度超过150mm,但不超过200mm时,应用150mm的大型灌砂筒测试。 二、试验仪具与材料(1)灌砂筒; (2)金属标定罐;灌砂筒的主要尺寸

土壤 饱和导水率(渗透系数)的测定―环刀法.

FHZDZTR0021 土壤饱和导水率(渗透系数)的测定环刀法 F-HZ-DZ-TR-0021 土壤—饱和导水率(渗透系数)的测定—环刀法 1 范围 本方法适用于室内土壤饱和导水率(渗透系数)的测定。 2 原理 用环刀取原状土样,浸水后,在单位水压梯度下,根据达西定律,求得通过垂直于水流方向的单位土壤截面积的水流速度,称为土壤的饱和导水率或渗透系数。 3 仪器 3.1 环刀,容积100 cm3或200cm 3。 3.2 量筒,100mL 、10mL 。 3.3 烧杯,100mL 。 3.4 漏斗。 3.5 秒表。 3.6 温度计。 4 操作步骤 4.1 在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8 h~12h,粘土浸24h 。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。

4.2 在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL 烧杯承接。 4.3 向上面的空环刀中加水,水面比环刀口低1mm ,水层厚5cm 。 4.4 加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……t n min 更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用100mL 或10mL 量筒计量渗出水量Q 1、Q 2、Q 3……Q n 。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。 4.5 试验一般持续时间约1h 才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。 5 结果计算 5.1 渗出水总量按式(1)计算: Q =S Q Q Q Q n 10 (321×+++L L ……(1)式(1)中: Q ——渗出水总量,mm ; Q 1、Q 2、Q 3……Q n ——每次渗出水量,mL ,即cm 3; S ——环刀横截面积,cm 2; 10——由cm 换算成mm 所乘倍数。 5.2 渗透速度按式(2)计算: V = S t Q n n ××10……(2)式(2)中: V ——渗透速度,mm/min;

土壤饱和导水率测定环刀法

土壤饱和导水率测定环 刀法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

土壤饱和导水率测定——环刀法1.测定意义: 土壤饱和导水率(土壤渗透率):单位水势梯度下水分通过垂直于水流方向的单位截面积饱和土壤水的流速。土壤处水饱和状态时,便需用饱和导水率计算其通量。饱和导水率也是土壤最大可能导水率,常以它作为参比量,比较不同湿度条件下土壤的导水性能。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。 2. 测定原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤饱和导水率(渗透系数)根据达西 (H.Darcy)定律: K=K×K (1) S×t×h 公式中: K——饱和导水率(渗透系数),cm/s; Q——流量,渗透过一定截面积S(cm2)的水量,mL; L——饱和土层厚度,渗透经过的距离,cm; S——环刀横截面积,cm2; t——渗透过水量Q时所需的时间,s;

h——水层厚度,水头(水位差),cm。 饱和导水率(渗透系数)K的量纲为cm/s或mm/min或cm/h或m/d。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 3. 仪器 环刀(容积100cm3),量筒(100mL、10ml),烧杯(100mL),漏斗,秒表,温度计。 4.操作步骤 在室外用环刀取原状土样,带回室内浸入水中。一般砂土浸4h~6h,壤土浸8h~12h,粘土浸24h。浸水时要保持水面与环刀上口平齐,勿使水淹到环刀上口的土面。 在预定时间将环刀取出,除去盖子,在上面套上一个空环刀,接口处先用胶布封好,再用熔蜡粘合,严防从接口处漏水。然后将接合的环刀放到漏斗上,漏斗下面用100mL烧杯承接。 向上面的空环刀中加水,水面比环刀口低1mm,水层厚5cm。 加水后,自漏斗下面滴下第一滴水时用秒表计时,每隔1、2、3、5、10……tnmin更换漏斗下的烧杯(间隔时间的长短,视渗透快慢而定),并分别用 100mL或10mL量筒计量渗出水量Q1、Q2、Q3……Qn。每更换一次烧杯,要将上面环刀水面加至原来高度,并用温度计记录水温。 试验一般持续时间约1h才开始稳定。如果仍不稳定,应继续延长时间直到单位时间内渗出水量相等时为止。

压实度环刀法测定压实度

环刀法测定压实度 土的密度是指土的单位体积的质量。一般常用环刀法或蜡封法测定粘性土的密度,两者的主要区别在于测定土的体积不同。环刀法适用于较均一、可塑的粘性土。蜡封法适用于土中含有粗粒,或者坚硬易碎难以用环刀切割的土,或者试样量少,只有小块、形状不规则的土样时使用。对于饱和松散土、淤泥、饱和软粘土,不易取出原状样的土,可采用放射性同位素在现场测定其天然密度。砂土、砾石土,可在现场挖坑用灌砂法测定。1 本试验方法适用于细粒土。2 本试验所用的主要仪器设备,应符合下列规定:(1)环刀:内径61.8mm 和79.8mm,高度20m m。(2)天平:称量500g,最小分度值0.1g;称量200g,最小分度值O.01g。3 环刀法测定密度,应按下列步骤进行:(1)测定环刀的质量及体积用测径卡尺测量环刀的内径及高度,计算得环刀的体积;然后,将环刀置于天平上称得环刀质量m1。(2)切取土样在环刀内壁涂凡士林,刃口向下放在土样上,将环刀垂直下压,并用切土刀沿环刀外侧切削土样,边压边削至土样高出环刀,根据试样的软硬采用钢丝锯或切土刀整平环刀两端土样。(3)测定环刀和土样之质量擦净环刀外壁,称环刀和土的总质量m2。(4)测土样含水率从余土中取代表性试样测定含水率w。 4 试样的密度,应按下式计算:ρ= (m2- m1)/ V式中ρ——试样的密度(g/cm3),准确到0.01g/cm3。 5 试样的干密度,应按下式计算:ρd=ρ/ ( 1 + 0.01 w ) 6本试验应进行两次平行测定,两次测定的差值不得大于O.03g/cm3。,取两次测值的平均值。

得出干密度后,再用这个干密度除以之前试验已测出的最大干密度即可得到压实度。

土石混合介质饱和导水率的研究

第20卷第6期2006年12月 水土保持学报 Jour nal of Soil and Water Co nser vation V ol.20N o.6 D ec.,2006  土石混合介质饱和导水率的研究X 周蓓蓓1,2,邵明安1,2,* (1.西北农林科技大学资源环境学院,陕西杨陵712100; 2.中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨陵712100) 摘要:采用恒定水头法对土石混合介质的饱和导水率进行测定,分析不同碎石含量及碎石直径对饱和导水率的 影响,同时利用实测值对Peck-W atson及Bo uw er-R ice两个传统估算方程的估测精度进行比较。结果表明:(1)饱 和导水率随碎石含量先增大后减小,且两者呈二项式关系;(2)饱和导水率随碎石直径增大而减小,两者呈幂函数 关系;(3)碎石直径介于1.0~5.0cm时,Bouw er-Rice和P eck-W atso n方程对饱和导水率的估算结果均大于实测 值。 关键词:碎石直径; 碎石含量; P eck-W atso n方程; Bouw er-Rice方程 中图分类号:S152.7 文献标识码:A 文章编号:1009-2242(2006)06-0062-05 Study on S aturated Hydraulic Conductivity of Soil S tone Mixtures ZHOU Bei-bei1,2,SHAO M ing-an1,2,* (1.College of Resources and Environment,N or thw est Sci-T ech U niv er sity of A gr icultur e and For estr y,Y ang ling,Shaanx i712100; 2.State K ey Labor ator y of Soil Er osion and D r y land Far ming on the L oess Plateau,I nstitute of Soil and W ater Conserv ation, Chinese A cademy of Science and M inistr y of W ater Resour ces,Y ang ling,S haanx i712100) Abstract:Based on the experim ent of the constant head method for saturated hydraulic conductivity,the effects of soil-stone ratios and stone sizes on K s w ere studied.Meanw hile,we calculated the K s w ith Peck-Watson and Bouw er-Rice equations respectively,then compared the results with the m easured data.The results show that:K s firstly decreases with the increases of the stone contents,and then increases.The relation betw een them follows binomial function;K s decreases w ith the increases of the mean diam eters of the stones;the relation betw een them follow s index function.T he values calculated by the equation of Peck-Watson and Bouw er-Rice are m uch g reater than measured data w hen the stone sizes are betw een1.0~5.0cm. Key words:stone sizes; stone contents; Peck-Watson equation; Bouw er-Rice equation 在计算土壤剖面水的通量及灌溉、排水系统工程中,饱和导水率是一个重要的参数[1,2,3]。目前,国内众多学者已经就饱和导水率进行了大量的研究,主要集中在直径小于2m m的土样[4,5,6]。事实上,进行水利工程的河道或土壤由于搬运和沉积作用经常含有不同含量及直径的碎石。碎石的存在改变了土壤水分的运动通道和过水断面,理论上土石混合介质的水分运移过程较均质土壤更为复杂。针对这一状况,国内学者根据土石混合介质基本物理性质,如容重、孔隙度、水分含量等对混合介质的饱和导水率进行了研究,其中作为重要影响因素之一的碎石含量逐渐受到人们的重视。Petersen(1968)年曾指出,碎石含量较其他影响因素更能影响土壤水分特性[6]。然而因为取样土壤的空间变异性及碎石含量、物理性质的差异性使所得结果不一致,甚至相互矛盾。Peck和Watson(1979)首先利用互不发生反应的球型介质对饱和导水率进行分析,发现随碎石含量增加饱和导水率逐渐减小[7]。吕国安等(2000)研究表明,碎石含量较多的偏壤土饱和导水率较小[3]。Sauer和Logsdon (2002)利用单环和盘式入渗仪测定了碎石岩石土壤的导水能力,结果表明饱和导水率随碎石含量的增加而增加[9]。同时对于碎石直径对饱和导水率影响的研究较少。由于混合介质需要较长时间才能达到稳定水流状态,费时耗力。因此,国外学者们提出了针对混和介质饱和导水率估算的研究理论,其中Peck和Watson(1976)推出了以碎石体积百分比估算饱和导水率的方程,Bouw er和Rice(1984)提出了利用孔隙比估算饱和导水率的Bouw er-Rice方程[10],使饱和导水率的试验研究简单化,但其估算结果精确性尚不清楚。 因此,本文以土石混合介质为研究对象,旨从试验上综合地揭示碎石含量及直径对土石混合介质饱和导水率的影响,为进一步开展土石混合介质水分养分运移的深入研究提供参考。同时,利用Peck-Watson方程及 X收稿日期:2006-06-08 *通讯作者 基金项目:国家自然科学基金资助项目(50479063,40025106和90102012) 作者简介:周蓓蓓,女,生于1982年,博土研究生。研究方向为农业生态学。

相关文档
相关文档 最新文档